
2nd International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time

Systems
(WATERS 2011)

July 5th, 2011, Porto, Portugal

In conjunction with the 23rd Euromicro Conference on Real-Time Systems
(ECRTS 2011)

WATERS 2011 2

Table of Contents
Message from the Program Chairs 3
Program Committee 5

Research Papers

SMFF: System Models for Free 6
Moritz Neukirchner, Steffen Stein and Rolf Ernst

On the Gap between Schedulability Tests and Automotive Task Model 12
Saoussen Anssi, Stefan Kuntz, Sébastien Gérard and François Terrier

FORTAS : Framework fOr Real-Time Analysis and Simulation 21
Pierre Courbin and Laurent George

Hardware-Assisted Energy Consumption Evaluation Tool 27
for Multi-core Embedded Systems
Shiao-Li Tsao, Jyun-Wei Lin, QuanChung Chen and Chen-Wei Huang

Modelling real-time applications based on resource reservations 33
Laura Barros, César Cuevas, Patricia López Martínez, José María Drake
and Michael González Harbour

SimTrOS: A Heterogenous Abstraction Level Simulator 39
for Multicore Synchronization in Real-Time Systems
Jörn Schneider, Michael Bohn and Christian Eltges

Grasp: Visualizing the Behavior of Hierarchical Multiprocessor 45
Real-Time Systems
Mike Holenderski, Reinder Bril and Johan Lukkien

Modeling Real-Time Networks with MAST2 51
Michael González Harbour, J. Javier Gutiérrez, J. María Drake, Patricia López
and J. Carlos Palencia

Continuous Constant-Memory Monitoring of Embedded Software Timing 57
Johan Kraft and Thomas Nolte

WATERS 2011 3

Message from the Program Chairs
Research in real-time systems has gone very far from the initial seminal pa-
pers back in the 70s. Many algorithms, design methodologies, techniques and
tools have been proposed, spanning several application areas, from RTOS to
distributed systems, from safety critical to soft real-time systems. However,
unlike other research areas (e.g., networking) there are no widely recognized
reference tools or methodologies for comparing different research works in
the area.

In fact, the comparison among results achieved by different research
groups becomes non-trivial or impossible due to the lack of common tools
or methodologies by means of which the comparison is done. For example,
different authors use different algorithms for generating random task sets,
different application traces when simulating dynamic real-time systems, dif-
ferent simulation engines when simulating scheduling algorithms. Therefore,
research in the field of real-time and embedded systems would greatly ben-
efit from the availability of well-engineered, possibly open tools, simulation
frameworks and data sets which may constitute a common metrics for evalu-
ating simulation or experimental results in the area. Also, it would be nice to
have a possibly wide set of reusable data sets or behavioural models coming
from realistic industrial use-cases over which to evaluate the performance of
novel algorithms. Availability of such items would increase the possibility to
compare novel techniques in dealing with problems already tackled by oth-
ers from the multifaceted viewpoints of effectiveness, overhead, performance,
applicability, etc.

The ambitious goal of the International Workshop on Anaysis Tools and
Methodologies for Embedded and Real-time Systems is to start creating a
common ground and a community to collect methodologies, software tools,
best practices, data sets, application models, benchmarks and any other way
to improve comparability of results in the current practice of research in real-
time and embedded systems. People from industry are welcome to contribute
as well with realistic data or methods coming from their own experience.

The workshop seeks original contributions on methods and tools for real-
time and embedded systems analysis, simulation, modelling and benchmark-
ing. We look for papers describing well-engineered, highly reusable, possibly
open, tools that can be used by other researchers.

Areas of interest include, but are not limited to:

• Simulation of real-time, distributed and embedded systems

• Simulation of multi-core, many-core and massively parallel and dis-
tributed systems

• Modeling, analysis and simulation of Operating Systems components

WATERS 2011 4

• Tools and methodologies for real-time analysis

• Instrumentation of Operating Systems

• Tracing methods and overhead analysis

• Power consumption models and experimental data for real-time power-
aware systems

• Middleware components and mechanisms for distributed infrastruc-
tures supporting real-time and QoS-aware Cloud Computing applica-
tions

• Realistic case studies and reusable data sets

• Comparative evaluation of existing algorithms

We would like to thank the Euromicro organization for having allowed us
to organize this event, and particularly Gerhard Fohler for his prompt and
ready support. We would like to thank all the authors for having submitted
their work to the workshop for selection, the Program Committee members
for their effort in reviewing the papers, the presenters for ensuring interesting
sessions, and the attendees for participating into this event. We hope that
interesting ideas and discussions will come out of the presentations, demos
and the questions that will alternate along the day. We hope you will find
this day interesting and enjoyable.

The WATERS 2011 Chairs
Giuseppe Lipari and Tommaso Cucinotta

Real-Time Systems Laboratory
Scuola Superiore Sant’Anna, Pisa (Italy)
{g.lipari, t.cucinotta} @ sssup.it

WATERS 2011 5

Program Committee

• Andrea Acquaviva (Politecnico di Torino, Italy)

• Mark Bartlett (University of York, UK)

• Ian Broster (Rapita Systems Ltd, York, UK)

• Roberto Bucher (SUPSI, Manno, Switzerland)

• Gerhard Fohler (Technische Universitaet of Kaiserslautern, Germany)

• Christopher D. Gill (Washington University, St. Louis, Missouri)

• Michael Gonzalez (Universidad de Cantabria, Spain)

• Lucia Lo Bello (University of Catania, Italy)

• Damir Isovic (Mälardalen University, Sweden)

• Julio Medina (Universidad de Cantabria, Spain)

• Thomas Nolte (Mälardalen University, Sweden)

• Luigi Palopoli (University of Trento, Italy)

• Rodrigo Santos (Universidad Nacional del Sur, Bahia Blanca, Argentina)

• Simon Schliecker (Symtavision GmbH, Braunschweig, Germany)

• Douglas C. Schmidt (Vanderbilt University, Nashville, TN)

• Marisol Garcìa Valls (Universidad Carlos III de Madrid, Spain)

• Zlatko Zlatev (IT-Innovation Center, Southampton, UK)

WATERS 2011 6

SMFF: System Models for Free
Moritz Neukirchner, Steffen Stein and Rolf Ernst

Technische Universität Braunschweig
Braunschweig, Germany

neukirchner|stein|ernst@ida.ing.tu-bs.de

Abstract—Evaluation of scheduling, allocation or performance
verification algorithms requires either analytical performance
estimations or a large number of testcases. In many cases, e.g.
if heuristics are employed, extensive sets of testcase systems are
imperative. Oftentimes realistic models of such systems are not
available to the developer in large numbers.

We present SMFF (System Models for Free) - a framework
for pseudorandom generation of models of real-time systems.
The generated system models can be used for evaluation of
scheduling, allocation or performance verification algorithms.
As requirements for the generated systems are domain-specific
the framework is implemented in a modular way, such that the
model is extendible and each step of the model generation can
be exchanged by a custom implementation.

I. INTRODUCTION

During the development of e.g. scheduling or allocation
algorithms or algorithms for performance verification, test-
case systems are required to evaluate the applicability and
performance. If formal proofs of correctness or analytically
derived performance estimations can be given a small set of
such systems is sufficient. However, in many cases this is not
possible e.g. if heuristics are employed. In this case the algo-
rithm has to be tested with an extensive set of testcases. For
many algorithm developers, especially in academia, system
models are not available in large numbers. Manually creating
such system models is very time-consuming and might not
respect requirements on randomness.

In this paper we address this issue and present SMFF -
a framework for parameter-driven generation of models of
distributed real-time systems. These models incorporate a de-
scription of the platform, of the software applications mapped
onto the platform and the associated scheduling and timing
parameters, thus covering the entire model specification.

As system models, that are used for algorithm evaluation,
have to resemble real-world systems, requirements on testcase
systems may be highly domain- and problem-specific. The
presented framework provides a high degree of modularity,
allowing the user to extend the system-model and to re-
place algorithms for system model generation, thus making
the framework a universal tool for testcase generation. It is
available as open source software from [1]. The algorithms
presented in this paper and provided along with SMFF are ex-
ample implementations and were developed for the evaluation
of an algorithm to find execution priorities in static-priority-
preemptively scheduled systems under consideration of timing
constraints [2].

The key features of the SMFF framework are:

• Parameter-driven generation of complete system models
for use as testcases

• A modular framework architecture to allow exchange of
generation algorithms

• Extendible data structures to allow customization of the
system model

The SMFF framework is no simulation or benchmarking
environment. Thus, we do not address the issues of simulation
or performance monitoring. We rather provide models as input
for such tools.

This paper is structured as follows. First we will discuss
how the process of system model generation can be structured
into discrete steps. We will then give an overview of related
work and how previous approaches relate to this structure. In
section IV we will define the main terms and the system model
used throughout the paper. The following sections will address
the single steps of the model generation and the implemented
algorithms. Section IX covers aspects of the implementation
of the framework and its modularity. In section X we will
present an example of system model generation with the SMFF
framework. Then we will conclude the paper.

II. GENERAL APPROACH

In this section we will outline the general approach to
generate system models of distributed real-time systems.

We propose to divide the process of model generation into
six steps as depicted in fig. 1. The six steps can be grouped
into the categories structural definition, real-time property
definition and constraint definition. While some steps can be
executed independent of each other, some require other steps
to be performed beforehand (indicated by arrows).

The structural definition is composed of the platform model
generation, the application model generation and the applica-
tion mapping. During platform model generation the architec-
ture graph is constructed. Thus this step defines the topology
of the platform. In the application model generation step,
application graphs are created defining the logical structure of
software applications. The final step of the structural definition
maps the application models onto the platform model, defining
the distribution of the application on the hardware platform.
Naturally this step can only be performed after architecture
and application models have been created.

Real-time property definition is composed of the steps of as-
signment of timing properties and of assignment of scheduling
parameters. In the first step tasks and communication between
tasks are assigned an execution model such as best-case
execution and worst-case execution times. Furthermore tasks
can be assigned an activation model (e.g. activation period
and activation jitter). Thus this step defines the timing of each
entity of an application in isolation. This step can only be

WATERS 2011 7

Fig. 1: General testcase generation flow

performed after the application models have been generated.
In the second step scheduling parameters, such as execution
priorities for static priority preemptively (SPP) scheduled
resources, are assigned to the tasks and communication. This
step can only be executed after the application mapping, as
scheduling parameters depend on the scheduling strategy of
the resources tasks and communication have been mapped to.
After these two steps the timing behavior of the system is
completely specified.

The last category is composed of only one step - the
assignment of timing constraints. In assignment of timing
constraints limitations on e.g. end-to-end path latencies or
output jitters can be defined. Also this step can only be
performed after the application model has been created, as
constraints are specified for entities of an application.

Except for the outlined dependencies the steps of the system
model generation can be performed in arbitrary order and
independent of each other. This gives great flexibility to the
developer as it is possible to e.g. load manually defined
platform models and only perform the remaining steps of the
testcase generation with the provided platform model. Also
the developer may introduce further dependencies to tailor the
testcase generation process for his specific needs. E.g. one
may make the assignment of timing properties depend on the
application mapping to include processor-specific execution
times.

III. RELATED WORK

We now review previous approaches to generation of test-
case system models and highlight how these approaches relate
to the structure of testcase generation as described above.

For evaluation of real-time algorithms (e.g. scheduling,
allocation or performance verification) many developers rely
on handcrafted example systems, to highlight strengths and
shortcomings of different approaches (e.g. [3], [4], [5]). Others
rely on benchmark models of real applications such as MPEG2
decoders (e.g. [6]) or on more comprehensive benchmark
suites as e.g. [7]. A third approach many developers take for
evaluation and comparison of their algorithms is parameter-
driven testcase generation (e.g. [8], [9]).

If any of the first two approaches is taken, the results of
an algorithm evaluation tend to be fairly well reproducible
as the set of system models is well specified and oftentimes
publicly available. However the number of testcases typically
is low. As a result statements about average performance of
an algorithm may be inaccurate, as the examples might not be
representative of the targeted domain of application or might
not cover common corner-cases properly. This may bias the
evaluation of an algorithm.

The approach of pseudorandom parameter-driven testcase
generation can provide more accurate results on average
performance, as an algorithm can easily be evaluated against
a large set of system models. Many developers use custom
algorithms to generate testcases. Common approaches are to
select a platform and application model manually and to assign
timing properties in specified bounds (e.g. [9]) or to use a
fixed platform and generate task sets (i.e. application models)
automatically (e.g. [8], [10]). In both cases common corner-
cases, that might only occur for e.g. certain platforms, might
be neglected. To the best of our knowledge there exists no
single approach that addresses all steps of parameter-driven
pseudorandom system model generation. Instead parts of the
generation process have been addressed.

A fairly comprehensive tool for automatic testcase gener-
ation is task-graphs for free (TGFF) [11]. TGFF generates
task graphs based on a parameter set that allows detailed
influence on the topology. Furthermore it allows to generate
timing properties for all tasks (periods and execution times)
and latency constraints on paths. Thus it addresses the three
steps of application model generation, assignment of timing
properties and assignment of timing constraints. TGFF has
been widely used for generation of task sets (e.g. [12], [13],
[14]). However, if the algorithm under evaluation targets dis-
tributed systems with communicating tasks, platform topology
and application mapping may be relevant. TGFF is not able
to perform these steps of model generation, though.

The steps of application model generation and assignment
of timing properties have also been studied thoroughly in the
scope of single and multi-processor schedulability analysis.
Here benchmarking includes generation of task sets and as-
signment of timing parameters such as execution times and
activation periods. In many cases timing parameters of fixed-
size task sets are assigned so that a specific processor load
is accomplished by randomly assigning activation periods and
setting the execution times to match the required utilization
(see e.g. [15], [9]). [16] gives an analysis of properties
of commonly used algorithms to accomplish this task and
discusses their respective properties with respect to the task
set parameters generated. It shows that the chosen algorithm
can bias the benchmark favoring one schedulability test or
the other and proposes new algorithms for timing parameter
generation that have been widely adopted in the community
[17], [18], [19]. These findings should be considered when
designing an algorithm for timing parameter generation in the
described flow of pseudorandom system generation.

We are not aware of any tool capable of generating complete
system models covering the entire testcase generation flow.
With the SMFF framework we aim to incorporate all steps
of the testcase generation into a single framework, allowing
developers to generate complete system models to evaluate
their algorithms. In the following we will first provide a
detailed description of the system model and then address the
single steps of the testcase generation flow.

IV. SYSTEM MODEL

In this section, we will briefly introduce the main terms
used throughout the paper and elaborate on the system model.

WATERS 2011 8

Fig. 2: System Model

The term platform refers to the hardware software will run
on. We assume that a platform consists of set of processors
(computational resources) interconnected by a set of com-
munication media (communication resources). A platform is
modeled as a bipartite graph with the two types of resources
being the two types of vertices. The undirected edges between
the vertices denote connectivity between two resources.

Applications are running on the platform. An application
consists of a set of tasks and a set of communication channels
(task links). By a task link we understand a communication
entity that may be established/scheduled on a processor or
communication medium. An application is modeled as a
directed bipartite graph with the tasks and task links being
the two types of vertices. Edges denote communication of a
task via a task link while information flows in the direction
of the edge. All task links have an in-degree and out-degree
of 1. This model slightly deviates from the common model
of task graphs, where tasks are modeled as vertices and
communication between tasks as edges. We chose to modify
this model to provide better expressiveness for mappings of
task links. Regular task graphs can be transformed to the
modified model by replacing edges by a task link vertex and
two edges. We call two tasks adjacent to each other if a
task link exists that is adjacent to both tasks. This notion of
adjacency is identical to adjacency of tasks in regular task
graphs.

Tasks are mapped on resources, signifying that a task is
executed on that resource. Task links can be mapped on a
computational or a communication resource indicating that
communication is established via/on this resource.

An example system is depicted in fig. 2. It is composed
of a platform of two computational and one communication
resource (ρcomp,0, ρcomp,1 and ρcomm,0, respectively) and one
application of three tasks (τ1-τ3) that communicate over two
task links (λ1, λ2). Task link λ1 is mapped on a computational
resource, while λ2 is mapped on the communication resource.

As we are dealing with real-time systems timing properties
can be defined. A task can be assigned an activation model
and an execution model. An activation model may be a
specification of e.g. an activation period and an activation jitter.
An execution model can be specified by e.g. best-case and
worst-case execution time (BCET and WCET). An execution
model is also assigned to task links that are mapped on a
communication medium. In addition to the timing properties
a set of constraints on timing properties can be provided, e.g.
constraints on end-to-end path latency.

In the following sections we will explain the single steps
of system model generation. We will present possible char-
acterizations for the system models and present exemplary
algorithms for each step.

Algorithm 1 Platform Generation
INPUT: numRes, CRes%

1: numCRes = value from Binomial Distribution(n=numRes, p=CRes%)
2: for i = 1 to i =numCRes−1 do
3: connect comm. resources i− 1 and i to random comp. resource
4: for all unconnected comp. resources do
5: connect to random comm. resource
6: for all comm. resources connected to only one comp. resource do
7: connect to random comp. resource
8: Random pruning of superfluous connections

V. PLATFORM GENERATION

Automatically generated platform models should resemble
the architecture of real-world systems to provide a sensible
basis for evaluation. Thus, in order to be applicable to various
application domains an algorithm for generation of platform
models should be parametetrizable to produce a wide range
of different architectures. We have implemented an exem-
plary algorithm that allows to influence the size (i.e. number
of computational resources) and degree of connectivity (i.e.
communication structure between computational resources) of
generated platform models.

The algorithm produces platform graphs that are one bipar-
tite connected component. Furthermore it ensures, that each
communication resource is connect to at least 2 computational
resources. Algorithm 1 shows the pseudo-code for the plat-
form generation. The algorithm requires the two parameters
numRes and CRes%. numRes directly defines the number
of computational resources in the system. It allows the user to
scale the overall system size. The second parameter (CRes%)
controls the degree of connectivity of the platform. It allows
to set the average number of communication resources as
percentage of the number of computational resources. E.g.
if set to 5%, on average the generated platforms will have
0.05 times as many communication resources as computational
resources. As a result low values of CRes% will tend to
generate bus-like architectures, while higher values will tend
to create architectures with gateways.

First, the algorithm determines the number of communica-
tion resources based on a binomial distribution (line 1). Then
the algorithm ensures that all communication resources are
contained in one connected component (lines 2-3), that all
comp. resources are connected to at least one comm. resource
(lines 4-5) and that all comm. resources are connected to at
least two comp. resources (lines 6-7). In a last step (line 8) con-
nections are pruned, such that no two computational resources
are connected to the same two communication resources, if
this does not violate any of the required platform criteria.

VI. APPLICATION GENERATION

As platform models, also application models are highly
diverse for different domains (e.g. highly parallel applications
vs. sequential task graphs). TGFF [11] already provides so-
phisticated algorithms for parameter-driven task graph gen-
eration allowing to reflect this diversity. It has been used
extensively in various projects (e.g. [12], [13], [14]). The ex-
emplary algorithm of SMFF is based on TGFF but extends the
functionality by support for cyclic task graphs. The remaining
parameters are identical to the old algorithm of TGFF (for a
complete description of TGFF’s functionality refer to [20]).

WATERS 2011 9

Algorithm 2 Application Generation
INPUT: numTasks, diffNumTasks, taskMaxDegrIn, taskMaxDegrOut,

cyclicGraph
1: get task graph from TGFF(numTasks, diffNumTasks, taskMaxDegrIn,

taskMaxDegrOut)
2: if cyclicGraph then
3: undirect edges
4: find cycles
5: redirect edges
6: convert task graph to application model

Algorithm 2 shows the application model generation
in pseudo-code. The first four parameters (numTasks,
diffNumTasks,taskMaxDegrIn, taskMaxDegrOut)
are passed directly to TGFF (line 1). TGFF can only create
non-cyclic task graphs. If cycles are allowed in the created
applications (parameter cyclicGraph, line 2), the direction
of all edges of the task graph is deleted (line 3). A cycle search
is performed on the undirected graph (line 4) and edges are
re-directed (line 5). In a final step (line 6) the task graph is
transformed to the framework’s application model.

VII. APPLICATION MAPPING

The application mapping completes the structural definition
of a system model and determines the degree of distribution
of an application on the platform. Applications may be either
clustered, i.e. all tasks are located on only a few resources, or
widely spread, i.e. tasks are distributed across many resources.
However some domains may have very specific requirements
on application mapping. E.g. if the generated system model
should resemble a client-server setup, a path of the application
graph should start and end on the same resource while some
intermediate task has to be mapped on a different resource.

The example mapping algorithm is tailored to generate
mappings for “sensor-actuator-like” applications. More specif-
ically, it only maps two tasks of an application on the same
resource, if they are adjacent in the application model. At the
same time it tries to distribute the tasks of the application
across several resources. This mapping is performed by a
probabilistic algorithm that enforces the first criterion and lets
the user control the degree of distribution with a parameter.
The algorithm only supports chains of tasks without forks and
joins. Its pseudocode is shown in Algorithm 3.

As long as the application is not completely mapped (line 2)
the algorithm alternatingly selects the first/last task of the task
chain, that is not yet mapped (lines 3-6). For the selected
task the set of resources, that this task can be mapped on, is
calculated based on distances in the platform graph and the
distances to already mapped tasks of the application graph
(line 7). In the following step a probability with which the
task is mapped to a resource is calculated for every resource
in this set (line 8). This step is based on a weighted random
number generator, which selects a value from a given set
with a probability corresponding to the value’s weight (non-
normalized probability mass). The probabilities for all other
resources are initialized with 1 and are then modified by the
three parameters that are passed to the mapping algorithm.
kPredecessor and kSuccessor are factors applied to
the weight of a resource, if the predecessor or successor of
the task to be mapped, is mapped on a resource (line 8).
The third parameter kResDist is applied only to the end

Algorithm 3 Application Mapping
INPUT: kPredecessor, kSuccessor, kResDist

1: temp=0
2: while not all tasks mapped do
3: if (temp++)%2==0 then
4: get first unmapped task of task chain
5: else
6: get last unmapped task of task chain
7: calculate set of possible resources
8: calculate probability of all possible resources
9: if temp==2 then

10: apply kResDist to probabilities
11: map task on resource based on probability distribution

of the task chain. Each resource’s weight is multiplied by
kResDistdistance, where distance is the distance to the re-
source that the first task was mapped on (line 10). Thus,
kResDist allows to control the degree of distribution of an
application. In a final step a resource is chosen from the set
of possible resources based on probability mass and the task
is mapped to that resource.

VIII. DEFINITION OF REAL-TIME PROPERTIES AND
CONSTRAINTS

The previous three sections have elaborated on the algo-
rithms for the structural definition of a system model. Now, we
focus on the remaining steps of timing property and scheduling
parameter assignment and generation of constraints. Depend-
ing on the developer’s needs these three steps may be closely
related; e.g. if testcases are required where some constraints
are violated, the assignment of timing properties and schedul-
ing parameters have to be performed beforehand.

A. Assignment of Scheduling Parameters
Along with the framework we provide an exemplary al-

gorithm for assignment of scheduling parameters for SPP
scheduled resources. Execution priorities for tasks and task
links are assigned randomly. Execution priorities that were set
beforehand are left unchanged.

B. Assignment of Timing Properties
In this step of testcase generation the timing properties of

all tasks and task links are defined. In the example algorithm
of SMFF this comprises assignment of an activation period, an
activation jitter, BCET and WCET . SMFF uses the UUniFast
algorithm presented in [16] for this step. UUniFast assigns task
execution times, such that the resource utilization assumes a
specified value, while the distribution of the task execution
times is uniform.

In the SMFF implementation of UUniFast activation
periods are assigned uniformly in a specified inter-
val [minActPeriod, maxActPeriod]. The user further-
more specifies an interval for resource utilization [minResU,
maxResU]. From this interval a random value is chosen
for each resource and the task execution times are as-
signed according to UUniFast to achieve that resource uti-
lization. BCETs are assigned as user-specifiable percentage of
WCETs [bcetPercentage].

C. Assignment of Timing Constraints
The assignment of timing constraints for a testcase system

model is of particular importance when evaluating algorithms
for optimization or design space exploration, as it may signif-
icantly influence the number of feasible system configurations

WATERS 2011 10

Fig. 3: Organization of System Generation Stages

(i.e. configurations that do not violate any constraint).
The implemented algorithm is again targeted at sensor-

actuator-like applications. It defines paths from the first task
to the last task of a task chain. The value of the constraint is
defined as multiple of the sum of all WCETs along the path.
This factor - the constraint laxity - is randomly selected from
a user-defined interval [minLaxity, maxLaxity]. Smaller
laxity values result in more tightly constrained systems.

IX. IMPLEMENTATION AND MODULARITY

Until now we have focused on the testcase generation
algorithms of the SMFF framework. However, as previously
indicated, requirements on generated system models may be
diverse, depending on application domain, scheduling algo-
rithm and algorithm under evaluation. Thus the presented
implementations of the generation steps may not be suitable
for every user and the system model might not be sufficient.
To account for the diverse requirements the testcase genera-
tion framework is implemented in a modular way, allowing
extension of the data structures as well as replacement of
all generation steps. The framework was implemented in
Java for ease of development and platform independence.
The next paragraphs give a short overview of the software
architecture of SMFF, highlighting the aspects of modularity
and extensibility.

A. Model Generation Infrastructure

In order to enable a flexible combination of the system
model generation steps described in this paper, SMFFs gen-
eration logic is based on an aggregation of factories, each
responsible for one step of the generation process. For an
overview refer to fig. 3. All factories are grouped in a central
system generation factory orchestrating the order of the single
generation steps. The SMFF model generation core library as
depicted in fig. 3 does not provide any generation logic, but
merely defines the relationship between the single factories
and their APIs to ensure seamless integration of different
implementations of the model generation stages. An actual
implementation, as the one discussed in this paper needs to
provide an implementation for each of the factories.

The algorithms described in this paper are shipped with

Fig. 4: System Model and Extension Points

SMFF as standard implementations, e.g. StdPlatformFactory.
As an example, fig. 3 shows two additional possible imple-
mentations of a platform factory (AutomotivePlatformFactory,
FixedPlatformFactory), which could be integrated into the
flow. This shows that a user of the tool may replace e.g.
the standard platform generation logic with a platform factory
specific to his own requirements, while using the standard
implementations of the other factories for the remaining steps.

Similarly, e.g. the default order imposed on the stages
of system model generation can be altered by replacing the
standard implementation of the system factory.

B. Model Representation
Next, we present the system model data structure as shown

in fig. 4. It consists of a platform model and multiple ap-
plication models. Platform models are comprised of com-
putational and communication resources, represented by the
CommResource and CompResource class respectively. Simi-
larly, application models consist of tasks and task links, each
represented by a distinct class. Additionally, application and
platform models manage adjacency information about their
parts defining the bipartite graphs described in section IV.
A mapping is specified as a relation between task or task
links and communication and computational resources. In the
diagram this is indicated by the relevant local variables.

In order to reflect the flexibility of the model generation
framework also in the system model data structure, all model
elements allow the attachment of additional classes for ex-
tension of data and functionality without modification of the
basic data structure. Fig. 4 shows that application as well
as platform model components may be associated with a set
of data elements. Although not shown in the figure, data
extension points also exist for the system, application and
platform models, thus enabling a very flexible extension of
the model depending on the specific use-case of SMFF.

C. Framework Extensions
This flexible data structure allows usage of the gener-

ation framework for multiple purposes. For example, we
implemented an interface to the performance verification tool
SymTA/S [21] to allow verification of timing constraints. This
also allows to e.g. only generate systems that are schedulable.
All relevant data and functionality needed to transform the
system model to a SymTA/S compliant representation as well
as retrieving data from the SymTA/S tool is encapsulated in
data extensions of model elements. Another existing extension

WATERS 2011 11

Algorithm 4 Sample System Model Generation
INPUT: systemFactoryData

1: // create system factory
2: StdSystemFactory systemFactory = new StdSystemFactory(systemFactoryData);
3: // create new system model
4: SystemModel systemModel = systemFactory.generateSystem();
5: // create XML file
6: new ModelSaver(”SystemModel.xml”).saveModel(systemModel);
7: // create PDF file
8: PdfPrinter.convertToPdf(systemModel, ”systemGraph.pdf”);

(a) Factory Parameters (b) Small System

(c) Large System

Fig. 5: Example Systems generated with SMFF

is a Visualization Plugin to the SMFF framework. It enables
the display of a graph representation of the system model
as well as the export to a pdf file. This allows the user
to quickly grasp the platform and application graphs and
the application mappings of the generated system models.
The XML Load/Store Plugin completes the SMFF model
generation suite, allowing easy integration with other tools.

X. TESTCASE GENERATION EXAMPLE

In this section, we give a brief example on how to use SMFF
in practice. We assume that all necessary factories for the
system generation stages are present. We used the algorithms
specified earlier on in this paper for generation of the example
systems shown below.

Algorithm 4 shows the necessary code to generate a system
from a set of parameters as needed for the different model
generation stages, which we assume to be given. In order to
generate a system model, one merely needs to instantiate a
system factory, in this case the StdSystemFactory supplied
with SMFF (line 2). A system model is generated each time
the generateSystem() function of the factory is called
(line 4). The following lines show the code necessary to save
the model to an XML file (line 6) and create a pdf file (line 8)
containing a graphical representation of the system.

Fig. 5 shows two example systems that have been generated
by SMFF and exported using the visualization plugin. The
relevant parameters to the system model generation algorithms
as described in the previous sections are summarized in figure
5a. The parameters in column 1 resulted in the system model
shown in fig. 5b, the model shown in fig. 5c corresponds to
the parameter set in the second column. Note that multiple
application models were generated for both systems. Each
application model is depicted in a separate color.

XI. CONCLUSION

In this paper we have presented System Models for Free
(SMFF) - a framework for parameter-driven generation of
models of distributed real-time systems. SMFF can generate
completely specified system models, including specification of
platform architecture, of application models, mapping of ap-
plications and definition of timing and scheduling parameters
and timing constraints.

As illustrated with examples, the user can easily and quickly
generate pseudorandom system models for use in his field
of application, thanks to supplied standard implementations
of parameter-driven factories. More advanced users can take
advantage of the flexible infrastructure of SMFF, by replacing
implementations of system generation steps or extending the
system model to tailor SMFF to fit their specific needs.

If you would like to use SMFF in your project, feel free to
contact any of the authors or visit http://smff.sourceforge.net.

REFERENCES

[1] M. Neukirchner, “System models for free (smff),” Internet. [Online].
Available: http://smff.sourceforge.net

[2] M. Neukirchner, S. Stein, and R. Ernst, “A lazy algorithm for distributed
priority assignment in real-time systems,” in Proc. of 2nd IEEE Work-
shop on Self-Organizing Real-Time Systems (SORT), 2011.

[3] S. Perathoner, E. Wandeler, L. Thiele, A. Hamann, S. Schliecker,
R. Henia, R. Racu, R. Ernst, and M. G. Harbour, “Influence of different
abstractions on the performance analysis of distributed hard real-time,”
Design Automation for Embedded Systems, vol. 13, pp. 27–49, 2009.

[4] J. Real and A. Crespo, “Mode Change Protocols for Real-Time Systems:
A Survey and a New Proposal,” Real-Time Systems, vol. 26, pp. 161–
197, 2004.

[5] J. G. Garcı́a and M. G. Harbour, “Optimized priority assignment for
tasks and messages in distributed hard real-time systems,” in Proc. of the
IEEE Workshop on Parallel and Distributed Real-Time Systems, 1995.

[6] T. Cucinotta and L. Palopoli, “QoS Control for Pipelines of Tasks using
Multiple Resources,” IEEE Trans. on Computers, vol. 59, pp. 416–430,
2010.

[7] A. R. Weiss, “The standardization of embedded benchmarking: pitfalls
and opportunities,” in Int’l. Conf. on Computer Design (ICCD), 1999.

[8] T. D. ter Braak, P. K. F. Hölzenspies, J. Kuper, J. L. Hurink, and G. J. M.
Smit, “Run-time spatial resource management for real-time applications
in heterogeneous mpsocs,” in Proc. of DATE’10, 2010.

[9] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority scheduling on
multiprocessors,” in Proc.. 22nd IEEE Real-Time Systems Symp. (RTSS),
2001.

[10] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LITMUSRT : A Testbed for Empirically Comparing Real-
Time Multiprocessor Schedulers,” in RTSS, 2006.

[11] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs for free,”
in Proc. of the 6th Int’l. workshop on Hardware/software codesign
(CODES/CASHE), 1998.

[12] V. Kianzad, S. Bhattacharyya, and G. Qu, “Casper: an integrated energy-
driven approach for task graph scheduling on distributed embedded
systems,” Application-Specific Systems, Architecture Processors, 2005.
ASAP 2005. 16th IEEE Int’l. Conf. on, pp. 191–197, 2005.

[13] M. Schmitz, B. Al-Hashimi, and P. Eles, “Energy-efficient mapping and
scheduling for dvs enabled distributed embedded systems,” in Proc. of
the conf. on Design, automation and test in Europe (DATE), 2002.

[14] L. Shang and N. K. Jha, “Hardware-software co-synthesis of low power
real-time distributed embedded systems with dynamically reconfigurable
fpgas,” in VLSI Design, 2002.

[15] E. Bini, G. Buttazzo, and G. Buttazzo, “A hyperbolic bound for the rate
monotonic algorithm,” in Proceedings of the 13th Euromicro Conference
on Real-Time Systems, 2001.

[16] E. Bini and G. Buttazzo, “Measuring the performance of schedulability
tests,” Real-Time Syst., vol. 30, pp. 129–154, 2005.

[17] E. Bini, T. H. C. Nguyen, P. Richard, and S. Baruah, “A response-time
bound in fixed-priority scheduling with arbitrary deadlines,” Computers,
IEEE Transactions on, vol. 58, pp. 279–286, 2009.

[18] V. Pollex, S. Kollmann, K. Albers, and F. Slomka, “Improved worst-case
response-time calculations by upper-bound conditions,” in DATE, 2009.

[19] F. Zhang and A. Burns, “Schedulability analysis for real-time systems
with edf scheduling,” Computers, IEEE Transactions on, vol. 58, pp.
1250 –1258, 2009.

[20] K. Vallerio, Task Graphs for Free (TGFF v3.0), April 2008.
[21] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,

“System level performance analysis - the symta/s approach,” Computers
and Digital Techniques, IEE Proc. -, vol. 152, pp. 148–166, 2005.

WATERS 2011 12

On the Gap between Schedulability Tests and
Automotive Task Model

Saoussen Anssi1, Stefan Kuntz1, Sébastien Gérard2, François Terrier2
1Continental Automotive France SAS, PowerTrain E IPP

1 Avenue Paul Ourliac - BP 83649, 31036 France
{saoussen.ansi, stefan.kuntz}@continental-corporation.com

2CEA LIST, Laboratory of model driven engineering for embedded systems,
Point Courrier 94, Gif-sur-Yvette, F-91191 France

{ sebastien.gerard, francois.terrier}@cea.fr

Abstract- In this paper, we study the adequacy of availa-
ble schedulability tests for monoprocessor fixed-priority
systems to enable performing scheduling analysis for au-
tomotive applications. We show that, in spite of the work
carried out during the last decade to enhance these tests in
order to support more realistic task model, a gap still ex-
ists between the task model considered in these tests and
automotive task model. However, we claim that an exten-
sion of these tests is possible to support some of the unco-
vered automotive features. The aim of this study is to raise
discussion and make researchers involved in the develop-
ment of such schedulability tests be aware of the gap still
existing between current schedulability tests and automo-
tive task model. The study is illustrated by showing the
concrete challenges faced when applying scheduling anal-
ysis to a real automotive case study.

I. INTRODUCTION

Today, embedded automotive systems often involve
hard real-time constraints intended to ensure full sys-
tem correctness [1]. Power train and chassis applica-
tions, for example, include complex (multi-variable)
control laws, with different sampling periods, for use in
conveying real-time information to distributed devices.
One hard real-time constraint controlled in power train
applications is ignition timing, which varies with en-
gine position. The latter is defined by a sporadic event
characterizing the flywheel zero position. End-to-end
response times must also be bounded, since a too long
control loop response time may not only degrade per-
formance, but also cause vehicle instability. These con-
straints have to be met in every possible situation.

Automotive software development costs are sharply
impacted by wrong design choices made in the early
stages of development but often detected after imple-
mentation. Most timing-related failures are detected
very late in the development process, during implemen-
tation or in the system integration phase. Timing verifi-

cation is usually addressed by means of measuring and
testing rather than through formal and systematic anal-
ysis. For this reason, innovative and complex functio-
nalities are not implemented in a cost-efficient way1.
The benefits of defining an approach that permits early
timing verification for automotive systems are thus
obvious. Such an approach would enable early predic-
tion of system timing behavior and allow potential
weak points in design to be corrected as early as possi-
ble

In this context, we aim at developing an approach
that enables automotive system designers predicting
early the timing behavior of a system before the costly
implementation phase of a project begins.

Quantitative analysis techniques (such as scheduling
or performance analysis) are good candidates for ana-
lyzing non-functional properties for automotive appli-
cations. Using these techniques, designers could detect
infeasible real-time architectures, and therefore prevent
costly design mistakes, while providing an analytical
basis for assessing the design tradeoffs associated with
resource optimization. For these reasons, in our ap-
proach, we suggest to use the scheduling analysis as an
early verification technique for automotive systems.

Task scheduling and schedulability analysis have
traditionally been the most studied topics within the
field of real-time systems [2]. The problem of schedul-
ing fixed-priority task set with hard deadlines on a uni-
processor was first studied by Liu and Layland. They
gave a worst case performance analysis of the rate mo-
notonic scheduling algorithm [3]. Liu and Layland
work has come through the work of a large group of
researchers who extended it in a number of ways. For
instance, many necessary and sufficient feasibility tests
have been developed to predict the schedulability of a

1 These statements are based on the study of current automotive software
development practices and particularly in the case of Continental

WATERS 2011 13

task set. These tests are based on the calculation of the
worst-case response time of a task, which is the longest
time between the arrival of a task and its subsequent
completion. The feasibility of the task can be checked
by comparing its worst-case response time to its dead-
line.

Adapting these schedulability tests to enable sche-
duling analysis for automotive applications has been
tackled by some recent academic studies [4] but it is
still in its very beginning. Results from these works will
be discussed later in this paper. Some commercially
available scheduling analysis tools, such as SymTA/S
[5] are said to be based on techniques extending such
feasibility tests to take into account automotive task
model specificities. However, information about the
algorithms used in these techniques is not publicly
available.

 In this paper, we aim at determining the extent to
which some of these tests can be used to perform sche-
duling analysis for automotive applications. This means
answering the following questions: to what extent the
task model considered in these tests do map a realistic
automotive task model. To answer this question, we
firstly propose a characterization of an automotive task
model; we list the most important features that should
be considered when developing a schedulability test for
such task model. Then, we show to what extent the
available feasibility tests satisfy these features. Al-
though, we show that some features are already cov-
ered by some schedulability tests, we conclude that a
gap still exists between automotive task model and the
assumptions considered in such feasibility tests. How-
ever, we claim that an extension of some of these tests
is possible to support some of the uncovered automo-
tive features.

The paper is organized as follows. In section II, we
give a characterization of automotive task model. Then,
in section III we present a brief state-of-the art of the
available schedulability tests and show to what extent
they cover the automotive task model features. Section
IV is dedicated to highlight the challenges met to apply
schedulability analysis to automotive systems. This is
done through performing scheduling analysis to an au-
tomotive use case using an open source tool that im-
plements some of the studied schedulability tests.

II. AUTOMOTIVE TASK MODEL

In this section, we present a characterization of auto-
motive task model. We consider task model of mono-
processor applications based on OSEK/VDX, i.e. with
a fixed priority scheduling. The features listed in this
section have been collected based on the author’s expe-

rience in the automotive domain and particularly in
Powertrain context at Continental.
Automotive task model is characterized by the follow-
ing features:
• Arbitrary deadlines : Automotive tasks may have

deadlines less, equal or greater than their periods.
Deadlines greater than periods are used for func-
tions that are distributed over several processors.
In this case, the deadlines of these functions are a
sort of end-to-end deadlines that can be greater
than function periods.

• Offsets/variable offsets: In an automotive appli-
cation, a task start may be delayed by a value
called offset or phasing. The particularity of some
automotive tasks is that their phasing depends on
the variable engine speed.

• Preemptive and cooperative tasks: In automo-
tive applications, there are two kinds of tasks:
Preemptive tasks and cooperative tasks. Preemp-
tive tasks can be interrupted by higher priority
tasks at any time and can interrupt any lower prior-
ity task at any time of its execution. Cooperative
tasks can be interrupted by higher priority coop-
erative tasks only in predefined points called sche-
dule points. Figure 1, shows an example of a
system with preemptive and cooperative tasks.
Task T1 is a preemptive task having the highest
priority, task T2 and T3 are both cooperative tasks,
T2 has got higher priority than T3. As the figure
shows, T2 waits until the schedule point of T3 to
start executing while T1, being preemptive, inter-
rupts T2 before its schedule point.

Figure 1: Preemptive and Cooperative Tasks

Cooperation is needed in automotive task model to
ensure data consistency while avoiding a long
blocking time of higher priority tasks that may re-
sult from fully non-preemptive tasks.

• Same priority level: In automotive task model,
different tasks may have the same criticality and
hence the same priority level is assigned to them.
To schedule these tasks the FIFO (First In First
Out) protocol is used. This means that if two tasks
having the same priority are waiting to start ex-

WATERS 2011 14

ecuting, the task that was activated first will start
its execution first.

• Dependant tasks: In automotive task model, task
dependency may result from the use of shared re-
sources. It may also result from precedence rela-
tionship between tasks called “task chaining”
where the activation of a task is triggered by the
termination of its predecessor. In Powertrain ap-
plications, task chaining is needed to enable e.g.
the activation of timing tasks by the OS clock
where this clock is modeled as a periodic task that
triggers other tasks at the end of each instance of
it.

• Heterogeneous recurrences: In automotive task
model, tasks can be time-triggered or event trig-
gered. Event triggered tasks are activated by the
arrival of events that can be sporadic or singular
(arrives only once). Time-triggered tasks are peri-
odic tasks that are activated at predetermined
points in time. In automotive, there are two kinds
of periodic tasks, timing tasks and engine-
synchronous tasks. Timing tasks have timing re-
currences (e.g. 1ms, 10ms, etc). Engine-
synchronous task recurrences are expressed in en-
gine angle degree rather than time (e.g. 2°crk). In
fact these recurrences depend on the Camshaft and
Crankshaft positions that vary with the engine
speed (The camshaft is the element of the engine
that allows the opening and the closure of intake
and exhaust valves. The crankshaft is the part of
the engine that translates reciprocating linear pis-
ton motion into rotation). Hence, expressing the
period of such tasks in time depends also on the
engine speed. For instance, for a 6 cylinder system,
a task that should be activated each 120°crk has
got a recurrence of 3.3ms at 6000rpm and 13.33ms
at 1500rpm. This variable aspect of recurrence
should be taken into account when designing a
schedulability test for such task model.

• Changing execution profile: The execution time
of some automotive tasks depend of the engine
speed. For instance, some tasks are deactivated
beyond a certain speed (i.e. their computation time
becomes zero). Hence, to analyze the real time be-
havior of such systems, the schedulability test used
should take into account task variable execution
times.

• Self-suspending tasks: During its execution, a
task may suspend itself to wait for one or more
event.

• System overheads: In automotive task model,
overheads may results from: the computation time
required to activate a task, the computation time

required to schedule the tasks, the computation
time to terminate a task and reschedule and finally
the computation time to lock and unlock a re-
source.

III. ADEQUACY BETWEEN SCHEDULABILITY

TESTS AND AUTOMOTIVE TASK MODEL

This section studies to what extent, the above-
mentioned task model features are supported by the
available schedulability tests. First, we present a brief
historical review of the development of these tests (we
focus on tests developed for fixed priority systems). In
the second part we discuss to what extent the automo-
tive task model features are supported by these tests.

A. Schedulability Tests: Brief historical review
In this section, we present a historical review of the
most known results achieved within schedulability test
development for fixed-priority monoprocessor systems
In 1973, Liu and Layland published a paper on the
scheduling of periodic tasks that is generally regarded
as the foundational and most influential work in fixed
priority real time scheduling theory [3]. They consi-
dered the following assumptions: 1) all tasks are peri-
odic, 2) all tasks are released at the beginning of period
and have a deadline equal to their period, 3) all tasks
are independent, i.e., have no resource or precedence
relationships, 4) all tasks have fixed computation time
or, at least, an upper bound on their computation time
which is less than or equal to their periods, 5) no task
may voluntary suspend itself, 6) all tasks are fully
preemptible, 7) all overheads are assumed to be 0, 8)
there is just one processor. Based on this model, Liu
and Layland gave a sufficient utilization-based condi-
tion for the feasibility of a fixed priority task set sche-
duled with the rate monotonic algorithm [3]. They
proved that a set of n periodic tasks, each having a
computation time Ci and a period Ti is feasible with
this algorithm if











−≤∑

=

12
1

1

n
n

i i

i
n

T

C

Due to the limitations of Liu and Layland test (pessi-
mistic condition, unrealistic task model with deadlines
equal to periods, task priorities have to be assigned
according to the rate monotonic policy) more complex
feasibility tests were developed to address the above
limitations. In 1987, Lehoczky et al. [6] gave the first
exact schedulability test for the Liu and Layland task
model. Concurrently, another group of researchers
looked at the problem of determining the worst case
response time of a task. Joseph and Pandya [7] and

WATERS 2011 15

Audsley et al. [8] developed independently an algo-

rithm to compute the worst-case response time iR of a

task τi as the least-fixed-point of the following recursive
equation:

∑
−

= 










+=

1

1

i

j
j

j

i
ii C

T

R
CR

In 1982, Leung [9] considered fixed priority sche-
duling of a set of tasks with deadlines less than their
periods. Lehoczky [10] considered another relaxation
of the Liu and Layland model to permit a task to have a
deadline greater than its period. The Lehoczky ap-
proach uses the notion of “busy-period”. A “level i
busy period” is defined as the maximum time for which
a processor executes tasks of priority greater than or
equal to the priority of task i. Lehoczky shows how the
worst-case response time of a task i can be found by
examining a number of windows, each defined to be
the length of the busy period starting at the window,
and each window starting at an arrival of task i. In the
early 1990, Tindell [11] extended the Lehoczky re-
sponse time analysis providing an exact test for tasks
with arbitrary deadlines.
A further relaxation of Liu and Layland task model is
to permit tasks to have specified offsets (phasing). Tin-
dell proposed in [12] a test for fixed priority tasks in
which task offsets can be taken into account. This test
has been later extended to by Palencia and Gonzalez
[13].
Wang and Saksena [14] introduced a feasibility test
where they take into account non-preemptible tasks in
addition to preemptible ones.
B. Schedulability Tests Evaluation
As shown in the previous section, many feasibility tests
have been developed to extend the Liu and Layland
original test and be closer to a realistic task model. In
this section, we show to what extent the automotive
task features presented previously are supported by
these tests. We give also some suggestion of possible
extensions of some of these tests to support the unco-
vered features.
• Arbitrary deadlines : For automotive task model,

the schedulability test should support tasks with
deadlines less, equal or greater than periods. The
Leung [9] test remains incomplete as it assumes
that deadlines are either less or equal to periods. It
is the same case for the Lehoczky [10] test as it
considers only tasks with deadlines greater than
periods. In addition, Lehoczky test restrict all tasks

to have ii kTD = wherek is constant across all

tasks. However, the Tindell test [11] for tasks with
arbitrary deadlines can be used as it allows dead-

lines to be less, equal or greater than periods. In
addition, unlike the test proposed by Lehoczky, the
analysis given by Tindell places no restrictions
upon the relative task periods. Hence, the Tindell
test described in [11] supports the arbitrary dead-
lines feature of automotive task model. However,
to use this test, the remaining features should also
be covered

• Offsets/variable offsets: The Tindell test [11]
described above assumes that all tasks are released
at beginning of period. Hence this test is incom-
plete and does not allow accurate analysis for au-
tomotive tasks with offsets. However, Tindell
developed a second test [15] that allows tasks to
have offsets. In this test the concept of transaction
is introduced. A transaction is a collection of re-
lated tasks and it has got a period. A member task
of a transaction no longer has a specific period as-
sociated with it; it has rather an every attribute ei
whereby it is permitted to run at most every ei

transaction invocation. Task offsets are defined
with reference to the start of the transaction and
are assumed to be static and less than the period of
the transaction. This test can be used for automo-
tive tasks with static offsets. However, as men-
tioned previously, the offsets of some automotive
tasks vary from one activation to the next, making,
hence, the Tindell test inefficient to analyze such
tasks. For such tasks, the test developed by Gonza-
lez and Palencia [13] can be used. This test ex-
tends the Tindell test for static offsets to allow
analysis for tasks with static and dynamic offsets.
It also enhances the Tindell test by allowing offsets
to be greater than task periods. To be able to use
this test to analyze automotive task model, the test
should also take into account the feature described
above, such as the mixed preemptive and coopera-
tive scheduling.

• Preemptive and cooperative tasks: Unfortunate-
ly, the Palencia and Gonzalez test described above
[13] assumes that all tasks are fully preemptible. It
is the same also for the Tindell tests. Non preempt-
ible tasks are considered in the Wang and Saksena
test [14]. They defined the concept of preemption
threshold that, as for task priority, is assigned off-
line and remains constant at run-time. When a task
is released, it is inserted to the ready queue at its
priority, when the task starts executing, its priority
is raised to its preemption threshold and it keeps
this priority until it finishes execution. Based on
this model, they gave an algorithm to calculate the
worst-case response time of tasks using the busy-
period technique. The task model considered in

WATERS 2011 16

this test is slightly different from our model in term
of preemptibility. In fact, in this test, a non-
preemptible task cannot be interrupted by a higher
priority task until it terminates its execution. In our
model, interruption of cooperative tasks by other
cooperative tasks is forbidden only during the ex-
ecution of task sections (code section between two
schedule points). We think that such behavior can
be captured with the notion of preemption thre-
shold in a quite generic way by bringing this
preemption threshold at the task section level ra-
ther than task level. This same approach is used in
Hladik et al. test [4] to calculate the blocking time
of a task due to the locking of a shared resource by
a lower priority task in a simplified OSEK task
model (more details about the Hladik test will be
given in next section). Hence in our case the
blocking time of a cooperative task T1 is the ex-
ecution time of the longest section of a lower
priority task T2 if this section has got a preemption
threshold equal or greater than the priority of T1.
In conclusion, the mixed preemption-cooperation
aspect of automotive task model can be covered by
extending the Wang and Saksena test. In addition,
this test takes into account tasks with arbitrary
deadlines as it is based on the extension of pre-
vious work such as the Tindell test for arbitrary
deadlines. However, this test does not support
tasks with static or dynamic offsets.

• Same priority level: All the tests described above
have been developed assuming different priority
levels for different tasks except the Hladik et al.
test [4]. In this test, Hladik gives a schedulability
test for a simplified OSEK/VDX task model. In
this model, tasks can be preemptive or not with ar-
bitrary deadlines and shared resources. Moreover
different tasks are allowed to have the same priori-
ty level and the FIFO scheduling is used for these
tasks. The test uses the busy-period technique to
calculate the worst-case response time for tasks.
To calculate this response time, the test calculates
first the worst case start time of an instance of a
task. In this start time, the delay due to the execu-
tion of the tasks having the same priority level and
activated before the considered task instance is
added. The Hladik test covers hence more features
then the previously described tests. However, this
test does not take into account tasks with offsets.
In addition, the test does not deal explicitly with
cooperative tasks. Nevertheless, as mentioned be-
fore, this test adapts the preemption threshold no-
tion to calculate blocking time due to shared
resource locking. We think that this same approach

can be used to calculate the blocking time due to
the non-preemptible sections of cooperative tasks.

• Dependant tasks: Except the Hladik test, all the
above mentioned tests assume that tasks are inde-
pendent. The Hladik test described in [4] deals on-
ly with task dependency resulting from shared
resource use. In this test, the OSEK IPCP protocol
is considered for shared resource. Based on the
work of Sha et al. in [16], The test considers that
the worst-case blocking time of a task T is reduced
to at most the duration of at most one critical sec-
tion of a lower priority task that is using a resource
whose ceiling priority is higher than or equal to the
priority of task T. Hladik used the preemption
threshold notion to calculate this blocking time
showing that a task T can be blocked by at most
one critical section of a lower priority task with a
preemption threshold higher than or equal to the
priority of T. In [17], Hladik et al. extend this test
to take into account task chaining. However the
test proposed is not an exact one since it presents
only an upper bound of the worst-case response
time.

• Heterogeneous recurrences: As mentioned pre-
viously, automotive task model contains both spo-
radic and periodic tasks. Periodic tasks have either
timing recurrence or angular recurrence. Most of
the schedulability tests presented above assume
that tasks are purely periodic or sporadic with a
known minimum inter-arrival time. Hence automo-
tive periodic and sporadic tasks are taken into ac-
count. However, the problem remains unsolved
concerning engine-synchronous tasks with angular
recurrences. During engine running, the period of
these tasks vary significantly making it impossible
to consider a mean inter-arrival time for them.
Moreover, these tasks present usually hard dead-
lines and have quite high priorities. In scheduling
theory, tasks with such features are called aperiod-
ic tasks. Among the work performed in system
scheduling, most works focused on the problem of
how to design feasible systems with such tasks
[18], but none of the schedulability tests calculat-
ing the worst-case response times has considered
this kind of tasks. As for a fixed engine speed the
timing recurrence of engine-synchronous tasks is
constant (hence they become purely periodic), one
can think to use the above-mentioned schedulabili-
ty tests to perform schedulability analysis at a
fixed engine speed. However, the worst-case re-
sponse times found for a particular speed are not
valid for other engine speeds. Extending the avail-
able schedulability tests to cover all the engine

WATERS 2011 17

speeds seems to be intractable and inefficient. The
main reason is that the computation of the response
time is not an exact computation when the model
becomes too complex.

• Changing execution profile: As mentioned pre-
viously, during engine running, the execution time
of some tasks varies significantly as some treat-
ments are performed or not depending on the cur-
rent engine speed. Tasks with varying execution
times have never been considered by the schedula-
bility tests. All of them assume that tasks have a
known maximum computation time. Extending
these tests to take into account this variability in
execution times seems also to be intractable.

• Self suspending tasks: self suspending tasks are
not taken into account by schedulability tests. All
of them assume that no task may voluntary sus-
pend itself. However extending some of these tests
to take into account this feature seems to be feasi-
ble. For example, one can use the transaction no-
tion used in Tindell and Gonzalez tests [12, 13].
This way a self-suspending task can be modeled as
a transaction composed of two tasks, the first task
corresponds to the code before the suspension and
the second task to the code after the suspension.
As the activation of the second task depend on the
computation time of the first one, the second task
will have a variable offset. The work of Gonzalez
on variable offsets can thus be used.

• System overheads: System overheads are as-
sumed to be null in all above-mentioned tests. In
[19], Bimard and Goerge give an algorithm to cal-
culate the worst case response time of tasks where
interference of kernel overheads are included into
worst-case response time computation equation. In
this test, overheads resulting from resource sharing
are not considered as it assumes that tasks are in-
dependents. In addition this test does not take into
account tasks with offsets as well as self suspend-
ing tasks.

C. Conclusion
 As shown in the previous section, some features of the
automotive task model are already handled by some of
the available schedulabilitiy tests such as arbitrary
deadlines and offsets. For other features such as en-
gine-synchronous tasks and varying execution times
which are quite important, they are unfortunately not
taken into account. Extending the presented schedula-
bility tests to end up with a final test covering all the
necessary features seems to be quite challenging. On
one hand, each of these tests focus only on some fea-
tures and neglects the other (For instance tests dealing
with offsets do not consider cooperative tasks while

tests dealing with non-preemptive tasks do not consider
task offsets, etc). Hence one should find a way to com-
bine the different techniques suggested in these tests.
This means that ending up with an exact test is not
guaranteed. Besides, engine-synchronous recurrences
and variable execution times have never been tackled
in these tests. This makes us think that extending these
tests to cover these features is intractable. Although
these evaluation results show that some automotive task
model features can be covered by the exten-
sion/combination of some of these tests, they show also
that a gap still exists concerning other features which
are considered to be quite important in automotive ap-
plications.

IV. ILLUSTRATION

In this section, we show the concrete challenges faced
when applying scheduling analysis to automotive ap-
plications. The work consists in performing scheduling
analysis to an automotive use case using an open
source tool, MAST [20], that is based on some of the
above mentioned feasibility tests. The response times
obtained are compared with values obtained from mea-
surements done on the application using a test bench.
A. MAST overview
MAST is an open source tool that offers, for fixed
priority systems, a suite of schedulability tests such as
the RMA test developed by Liu and Layland [3] as well
as the Gonzalez et al. test mentioned previously [13].
The tool also implements tests dedicated for distributed
systems. The MAST model is based on the notion of
transaction which represents a succession of interre-
lated activities. Each activity represents the execution
of an operation which represent, itself a small segment
of code execution. A transaction is characterized by an
external event and a succession of activities. The out-
put event of each activity in the transaction is the input
event of the subsequent activity. For the first activity,
the input event is the external event of the transaction.
Tasks are represented by scheduling servers in MAST.
A MAST scheduling server represents a schedulable
entity in a processing resource. The allocation of opera-
tion to scheduling servers is ensured through the de-
scription of the corresponding activity.
B. Use case presentation
The system to be analyzed is a simplified configuration
of a Powertrain software platform. The Table below
summarizes the tasks with their properties:

WATERS 2011 18

Table 2. Powertrain task model

Timing tasks

Task Priority
Period
(ms)

Deadline
(ms)

Type
Sections
WCETs
(ms) **

T1_T 9 1 0.2 Preemptive 0.14
T2_T 7 5 0.5 Cooperative {0.01}

T3_T 4 10 10 Cooperative
{0.12, 0.09,
0.11, 0.05}

T4_T 3 40 40 Cooperative {0.38}

T5_T 2 100 100 Cooperative
{0.27, 0.22,
0.29, 0.2,

0.25, 0.12}

T6_T 3 10 20 Cooperative
{0.29, 0.14,
0.2, 0.31}

Engine-synchronous tasks

Task Priority
Period
(°CRK)

Deadline
(° CRK)

Type
Sections
(ms) **

T1_ENG 5 120 = period Cooperative {0.7}
T2_ENG 5 360 = period Cooperative {0.02}

 ** The WCETs used in this example were measured using internal methods and
tools that for confidentiality reasons cannot be presented here

The “section WCET” column shows either the

worst case execution time of the non-preemptible sec-
tions for a cooperative task or simply the worst case
execution time of a preemptive task.

The periods of T1_ENG and T2_ENG depend on
the Crankshaft position (measured in °crk) that, itself,
depends on the engine speed. Some treatments per-
formed by T1_ENG are no more activated beyond
6500rpm, meaning that the computation time of this
task changes beyond this speed. The engine-
synchronous tasks should be executed in this order:
T1_ENG then T2_ENG, we ensure this by introducing
an offset of 45°crk on the activation of T2_ENG.
Hence, like periods, this offset varies also with the en-
gine speed.

The Tasks T3_T, T4_T, T5_T and T6_T are acti-
vated by the termination of T2_T. In addition, T3_T
and T6_T which have the same recurrence are acti-
vated alternatively. This is ensured by introducing an
offset of 5ms on the activation of T6_T.
C. Analysis challenges

To analyze this system, we choose the Gonzalez et
al. test [13] that is implemented in this tool as an “off-
set_based” test. Although this test does not cover all
the features of our model, it is the closest one among
the tests available in this tool.

Analyzing this system as it is using the above men-
tioned tool is not possible because of the angular recur-
rences of engine-synchronous tasks and the varying
execution time of T1_ENG. In fact, this tool uses the
notion of physical time as measured by a unique time
base meaning that an angular base can not be de-
scribed. In addition, the chosen schedulability test does
not support varying execution times. To convert the
recurrence of engine-synchronous tasks in millise-
conds, we are obliged to choose a fix speed for which
we perform the analysis. For a 6 cylinder engine run-

ning at 6000rpm, the T1_ENG has got a recurrence of
3.33ms, T2_ENG has got a recurrence of 10ms (the
calculation of these recurrences is based on formula
describing the configuration parameters of the engine
that for confidentiality reasons can not be presented
here). At this speed, T1_ENG has got the execution
time described in the table 1 and T2_ENG offset is
equal to 1.25ms. We will hence perform the analysis
with these values. However we should keep in mind
that the analysis results are valid only for an engine
running at this speed, which is very limiting as, during
its functioning, an engine usually runs at different
speeds.

To perform analysis with the “offset_based” test,
we should first develop the Powertrain model analyza-
ble with this technique. As shown in the use case de-
scription, the cooperative timing tasks are dependant as
they have precedence relationships. It is the same for
the engine-synchronous tasks. Hence, the first idea is to
model a transaction for each kind of tasks, i.e. a first
transaction for cooperative timing tasks and a second
one for engine-synchronous tasks (the preemptive task
will be modeled by a third transaction). However, for
cooperative timing tasks, we will obtain a non-linear
transaction as all cooperative timing tasks are activated
by the same task T2_T (we obtain a transaction with a
fork relationship). This is unfortunately not supported
by the MAST offset_based technique that considers
only linear transactions. We are obliged hence to relax
some dependencies of the timing tasks. We will con-
sider for example only the chaining of T3_T by T2_T
and the remaining tasks will be modeled by indepen-
dent transactions.
D. MAST model for Powertrain dynamic architecture

In the Powertrain MAST model, each section de-
scribed in table 1 is modeled as an operation for which
we specified the WCET. The tasks are modeled as
scheduling servers. A first transaction is modeled to
represent the interrelation between T1_ENG and
T2_ENG. For this transaction, we specified an external
event with 3.33 ms as period. This means that the activ-
ities of this transaction execute each 3.33ms. However
we must capture also that the activity of T2_ENG is not
executed in each occurrence of the transaction but ra-
ther each 10ms. To model this situation in MAST, we
use a rate divisor event handler. Rate divisor is a kind
of activity that only generates one output when a num-
ber of input events equal to the rate factor have arrived.
In our case, a rate divisor with rate factor equal to 3 is
then placed between the activity of T1_ENG and the
activity of T2_ENG. To specify the offset on the acti-
vation of T2_ENG, we use the offset event handler.
This is a kind of activity that generates its output event

WATERS 2011 19

after a time interval has elapsed from the arrival of a
referenced input event. A second transaction is created
in a similar way to model the chaining of the task T3_T
by T2_T and all remaining tasks are modeled by inde-
pendent transactions for which we specify an external
event having as period the period of the task. For each
transaction, timing requirements can be attached to
output events. In particular each deadline described in
table 1 is represented in MAST either as a hard local
deadline (for intermediate tasks in a transaction) or
hard global deadline (for transactions containing only
one task).
E. Analysis results evaluation

To evaluate the response times obtained, we com-
pare them with response time values that we measured
using a test bench. This done by measuring the time
elapsed from the activation of a task until its termina-
tion. These measurements are performed at 6000rpm
and, of course, take into account all the features of the
Powertrain tasks (cooperation, chaining, FIFO for simi-
lar priorities, offsets, deadlines, etc). Table 2 shows the
response times from the analysis and the measurements

Table 2. Task response times from measurements and analysis

Task
Measured re-

sponse time (ms)
Response time

from analysis (ms)
Deadline

T1_T 0.14 0.14 0.2
T2_T 0.9 0.15 0.5
T3_T 2.86 1.39 10
T4_T 2.8 2.6 40
T5_T 10.2 4.66 100
T6_T 5.74 2.19 20

T1_ENG 1.73 0.85 3.33
T2_ENG 1.6 1.03 10

As the table shows, there is an obvious divergence

between the measured values and the values from anal-
ysis. Especially, although the values determined from
analysis are supposed to give the worst case response
times, these values are lower than the measured values
for all the tasks. This is due to the fact that the analysis
technique used does not take into account the blocking
of cooperative tasks by non-preemptible sections of
lower priority cooperative tasks as well as the delay
due to the execution of tasks having the same priority
that have been activated earlier. Due to these reasons,
the response time calculated for the task T2_T tells that
the task is schedulable as the value determined is less
than the deadline. However, this is not compatible with
the measured value that shows that with this configura-
tion (and taking into account the cooperative aspect)
the task T2_T misses its deadlines (as the measured
response time is greater than its deadline). Further-
more, we should keep in mind that the system configu-
ration that have been analyzed is different from the
original configuration that we were obliged to adapt in

order to cope with the limitations of the technique and
the tool.

V. CONCLUSION

In this paper, we discussed the adequacy between
available schedulability tests and a realistic automotive
task model. We showed that although some automotive
features are already covered by some of these tests, a
gap still exists between them which make the applica-
tion of scheduling analysis for automotive systems a
challenging task. For some uncovered features, we
made some suggestions about possible extensions of
available tests to take into account these features. In
this paper, we illustrated the study by attempting to
perform scheduling analysis to an automotive real case.
This allowed us highlighting the challenges met during
this task. The limitations of the used technique are also
shown through the comparison of the analysis results
with measurements performed on the considered use
case. In this paper, the focus is made on monoprocessor
systems. An important feature that should be also con-
sidered when developing schedulabiltity tests for auto-
motive applications is the distributed aspect. Especially
particular communication protocols such as CAN and
Flexray should be taken into account.

REFERENCES

[1] N. Nave, F. Simonot-Lion, editors: The Automotive Embedded

Systems Handbook. Industrial Information Technology series,
CRC Press / Taylor and Francis, ISBN 978-0849380266, De-
cember 2008.

[2] L. Sha, T. Abdelzaher, K. Arzen, A. Cervin, T. Baker, A.
Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, A. Mok, Real
Time Scheduling Theory: A Historical Perspective, Real-Time
Systems Journal, November-December 2004.

[3] Liu, C. L. and J. W. Layland: 1973, Scheduling alghorithms for
multiprogramming in a hard real-time environment.

[4] P. Hladik, A. Deplanche, S. Faucou, and Y. Trinquet, Sched-
ulability analysis of OSEKNVDX applications, in 15th Interna-
tional Conference on Real-Time and Network Systems, 2007.

[5] SymTA/S website (www.symtavision.com/symtas.html)
[6] Lehoczky, J. P., L. Sha, and D. Y. Ding: 1989, The rate mono-

tonic scheduling algorithm: exact characterization and average
case behaviour'. In: Proc. 10th IEEE Real-Time Systems Sym-
posium.

[7] Joseph, M. and P. Pandya: 1986, Finding response times in a
real-time system. BCS Computer Journal 29(5), 390-395.

[8] Audsley, N. C., A. Burns, M. Richardson, and A. J. Wellings:
1991, Hard real-time scheduling: the deadline monotonic ap-
proach. In: Proc. 8th IEEE Workshop on Real-Time Operating
Systems and Software. Atlanta, GA, USA,

[9] Leung, J. Y. T. and J. Whitehead: 1982, On the complexity of
fixed-priority scheduling of periodic, real-time tasks. Perform-
ance Evaluation (Netherlands)

[10] Lehoczky, J. P.: 1990, Fixed priority scheduling of periodic
task sets with arbitrary deadlines. In: Proc. 11th IEEE Real-
Time Systems Symposium.

WATERS 2011 20

[11] Tindell, K., A. Burns, and A. J. Wellings: 1994a, An extendi-
ble approach for analysing fixed priority hard real-time tasks.
Real-Time Systems

[12] K. Tindell, Adding Time-Offsets to Schedulability Analysis,
Technical Report YCS 221, Dept. of Computer Science, Uni-
versity of York, England, January 1994.

[13] J.C. Palencia Gutiérrez and M. González Harbour, Schedula-
bility Analysis for Tasks with Static and Dynamic Offsets.
Proceedings of the 18th. IEEE Real-Time Systems Symposium,
Madrid, Spain, December 1998.

[14] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with
preemption threshold. In Proceedings of the Sixth International
Conference on Real-Time Computing Systems and Applica-
tions (RTCSA’99), 1999

[15] K. Tindell, Adding Time-Offsets to Schedulability Analysis,
Technical Report YCS 221, Dept. of Computer Science, Uni-
versity of York, England, January 1994

[16] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization IEEE
Transactions on Computers, September 1990

[17] P. Hladik, A. Deplanche, S. Faucou, and Y. Trinquet, Compu-
tation of worst-case response time of OSEK/VDX applications
with precedence relations. In 14th International Conference on
Real-Time and Network Systems, 2006

[18] Sha, L., J. P. Lehoczky, and R. Rajkumar: 1986, Solutions For
Some Practical Problems in Prioritizing Preemptive Schedul-
ing'. In: Proc. 7th IEEE Real-Time Sytems Symposium

[19] F. Bimbard and L. George. FP/FIFO feasibility conditions with
kernel overheads for periodic tasks on an event driven osek
system. In Proceeding of the Ninth IEEE International

Symposium on Object-Oriented Real-Time Distributed Com-
puting (ISORC 2006
[20] M. Gonzalez Harbour, J. J. Gutiérrez Garcia, J.C. Palencia

Gutiérrez, J.M. Drake Moyano. MAST: Modelling and Analy-
sis Suite for Real Time Applications. 13rd Euromicro confer-
ence on real Time Systems (ECRTS’01). June 2001.

WATERS 2011 21

FORTAS : Framework fOr Real-Time Analysis and
Simulation

Pierre Courbin
ECE Paris, LACSC

37 quai de Grenelle, 75015 Paris, France
Email: courbin@ece.fr

Laurent George
University of Paris-Est, LISSI

120 rue Paul Armangot, 94400 Vitry sur Seine, France
Email: lgeorge@ieee.org

Abstract—Research in real-time scheduling has produced a
large number of algorithms with their associated feasibility
conditions to respond to the increasing complexity of multipro-
cessors architectures. However, it is difficult to find tools able to
evaluate and compare these algorithms based on simulations or
on analytical tests. Our tool named FORTAS offers to facilitate
the comparison between different algorithms for uniprocessor
and multiprocessors real-time scheduling. Developed in Java with
a programming paradigm oriented to modules and abstraction,
it gives the user the opportunity to develop their own extensions.
Moreover, it proposes to automate the process of comparing
different algorithms: generation of sets of tasks, computation
of results for each algorithm and generation of graphs for
comparison. FORTAS has already been used effectively for
various published papers ([1], [2], [3], [4]).

I. INTRODUCTION

There is no need to recall the growing importance of
multiprocessors architectures including multicore systems ad-
dressed by the field of real-time scheduling. These architec-
tures have brought a lot of questions to this area, and its own
set of answers: algorithms, techniques, optimizations etc.

Many solutions have been proposed by the community
to meet this challenge: either for preemptive or for non-
preemptive scheduling, with fixed or dynamic priority, based
on a global scheduling approach, on a partitioning approach
or on the recent semi-partitioning scheduling approach.

Everyone develops his idea, discovers many advantages
and would like to share with the community so that it can
use, understand the tricks and possibly be inspired in order to
improve the original idea. But when comes the time to test the
solution and present it, we are often faced to a problem: on
what basis can we compare? How can we compare ourselves
as fairly as possible, without bias the results by implementing
the best possible pre-existing solutions? Too few common
ways of generating sets of tasks used for simulations or
common way to implement other solutions are existing.

The tool presented in this paper does not respond to each
questions, but it proposes a perfectible, extensible, open and
scalable solution for these concerns. A minimalist Graphical
User Interface (GUI) is available for those who want fast
performance and basic usage. The code is open and offered
to those who want complete control and specific results. This
paper presents some functionalities of this tool.

Section II presents the related work and our motivation.
Then, we present the four main options identified as the most
common: test a scheduling algorithm (section III), observe
a scheduling (section IV), generate tasks and sets of tasks
(section V) and edit and run an evaluation of performance
comparison (section VI). A final section is devoted to conclu-
sions and future work related to this tool (section VII).

II. RELATED WORK AND MOTIVATIONS

A. Brief overview of existing tools

Several tools, commercial or free, are already available to
study real-time systems. On the commercial side, the goal
is usually an analysis and a complete design of a particular
system. Examples are TimeWiz (TimeSys Corp.) or RapidRM
(Tri-Pacific Software Inc.) based on the Rate Monotonic Anal-
ysis methodology (RMA). On the other hand, free projects
proposed by the academic community generally respond to
specific needs and are not always flexible or even maintained.
For projects still in development, we can cite MAST [5] which
proposes a set of tools to analyze and represent the temporal
and logical elements of real-time systems. Cheddar [6] mainly
focuses on theoretical methods of real-time scheduling and
proposes a simulator and the majority of existing feasibility
tests. STORM [7] defines the hardware platform and software
as an XML file and then conduct simulations on scheduling.
Others tools like RESCH [8], Grasp [9] or LitmusRT [10] can
analyze the practical operation of a real-time scheduling on a
real system such as µC/OS-II and Linux.

Each tool provides a valuable aid for the analysis of real-
time systems. However, it seemed that almost all of them
focus on the analysis or design of a given scheduling: given
my platform, or even my set of tasks, what will be the
performance or how do I have to change my system to ensure
its schedulability?

FORTAS implements some of these elements but often
remains far less advanced than existing tools. However, it
focuses on the possibility to compare and evaluate scheduling
algorithms, whether based on a theoretical analysis of feasi-
bility or on the simulation of scheduling, without necessarily
focusing on a given platform or a specific set of tasks.

WATERS 2011 22

B. Our motivation for developing the FORTAS tool

Like for many researchers, the tools proposed by the com-
munity does not exactly correspond to our needs. Especially,
we needed to evaluate and compare algorithms based on
analytical tests and not simulations. We also needed to have a
simple GUI to use this tool for teaching purposes. We certainly
do not meet all the needs in this area but we simply want to
offer and make our work available.

Thus, this tool was first developed for analytical testing and
evaluation. The Java programming language was chosen for
its development efficiency and proven interoperability. Each
part of the program is conceived as a module and an effort
of abstraction was given to each element. Thus, the GUI is
completely interchangeable and can be redeveloped by anyone
without coming to interfere with the core program. Similarly,
a new algorithm, a new scheduling policy, a new way to
sort tasks or processors, a new partitioning heuristic, a new
criterion of comparison for graphs etc can be made by adding
a simple Java file to the project without further changes.

To introduce the current possibilities of the tool, we identi-
fied four main axis which will be explained in the following
sections. A basic GUI has been developed to quickly test some
features and understand the possibilities.

III. TEST A MONO/MULTIPROCESSORS SCHEDULING

Fig. 1. Test a Scheduling

The first option is to test a scheduling algorithm. This part
corresponds to analytically test if a set of tasks associated
to a set of processors will be schedulable or not (see Fig.
1). Whatever the number of processors contained in the set,
the tool should be able to act upon an algorithm and give a
solution.
Based on the current state of the solutions, we have identified
three different approaches for multiprocessors:

• The global scheduling, which consists in scheduling tasks
in a single queue and allow jobs to migrate between
processors, requires a global feasibility test in order to
check the schedulability.

• With partitioned scheduling, we need to find a partition-
ing heuristic to assign tasks to processors and then to use
a uniprocessor feasibility condition on each processor to
decide on the schedulability of the task assigned to it. A

sorting criterion for tasks and processors can be added to
improve the performance of the approach.

• The semi-partitioned scheduling consists in partitioning
the majority of the tasks, and allow a few to migrate
between processors. In addition to partitioned scheduling,
this approach needs a uniprocessor feasibility condition
which takes into account the migrant tasks.

In order to obtain a modular and scalable tool, a scheduling
algorithm has been split into several parts:

• A feasibility test is an interface which has to answer if a
task added to a given processor is schedulable.

• A partitioning heuristic that defines how the processors
should be checked in order to assign tasks.

• A criterion for sorting tasks or processors that defines the
order in which they must be addressed.

A. Partitioning Heuristics

Used for partitioned and semi-partitioned approaches, parti-
tioning heuristic was defined as an abstract class. This abstract
object needs one function: according to a feasibility test, a set
of processors and a task, it must return the processor able to
schedule this task, if any.
Currently, four partitioning heuristics are proposed:

• First-Fit allocates the task to the first processor it fits
into (according to the feasibility test). The process always
starts from the first processor of the set.

• Next-Fit allocates the task to the first processor it fits
into (according to the feasibility test). The process always
starts from the last processor where a task has been
assigned.

• Best-Fit allocates the task to the best processor it fits
into so that it will minimize a quantity (according to the
feasibility test, for example the utilization).

• Worst-Fit is similar to Best Fit but it selects the processor
that maximizes the quantity defined in the feasibility test.

Modularity: A new partitioning heuristic can be added
by deriving the abstract class. For information, the First-Fit
heuristic is coded in about 10 lines.

B. Algorithm/Feasibility test

A scheduling algorithm is defined according to the multipro-
cessor approach used: global, partitioned or semi-partitioned
scheduling. An abstract class defines the generic procedure for
each approach:

• The global scheduling requires only a feasibility test on
all tasks and processors.

• The partitioned scheduling sorts the tasks / processors
based on criteria, then assigns them on processors ac-
cording to the selected partitioning heuristic and to the
uniprocessor feasibility test defined in the algorithm.

• The semi-partitioned scheduling offers several methods
presented in the literature, which includes different
ways to determine when and how to split tasks between

WATERS 2011 23

processors.

Modularity: For example, about 10 lines in a Java file
are sufficient to define the partitioning algorithm which
allows us to test any sort criterion of tasks and processors,
any partitioning heuristic and which uses the uniprocessor
feasibility test for preemptive Earliest Deadline First (EDF)
scheduling based on the computation of the Load [11].

If we consider τ = {τ1, . . . , τn} a set of n sporadic tasks,
τi(Ci, Ti, Di) the ist task where Ci is its worst-case execution
time (WCET), Ti is its minimum inter-arrival time and Di is
its relative deadline, here are some feasibility tests currently
available in the tool:

• EDF-LL [12]: the total utilization of the set Uτ
def
=∑n

i=1
Ci

Ti
≤ 1.

• EDF-BHR [11]: Load(τ) def
= supt≥0

DBF(τ,t)
t ≤ 1 with

DBF (Demand Bound Function) represents the upper
bound of the work load generated by all tasks with acti-
vation times and absolute deadlines in the interval [0, t].
The tool implements some optimizations to accelerate the
calculation of the Load function such as the computation
of the C-Space using the simplex algorithm proposed by
George & al. in [13] or the QPA algorithm of Zhang &
al. [14].

• DM-ABRTW [15]: Deadline Monotonic (DM) test based
on the response-time analysis: ∀τi ∈ τ , ri ≤ Di, where
ri is τi’s worst case response time.

• RM-LL [12]: Rate Monotonic (RM) test based on the
total utilization of the set Uτ ≤ n(n

√
2− 1).

Here are some global and semi-partitioned scheduling algo-
rithms currently available in the tool:

• RTA (Global) proposed by Bertogna & al. in [16]. It is a
global feasibility test based on an iterative estimation of
the worst case response time of each task for GlobalEDF
schedulers.

• EDFWM (Semi-partitioned) proposed by Kato & al. in
[17]. It splits migrants tasks in subtasks and defines a
window during which a subtask should be executed on a
processor.

• C=D (Semi-partitioned) proposed by Burns & al. in [18].
It splits migrants tasks in two parts: one with a C=D
(τi,1(C, Ti, C), WCET equal to its deadline) and a second
part with the remaining values (τi,2(Ci−C, Ti, Di−C)).

• EDF-RRJM (Semi-partitioned) proposed by George &
al. in [4]. It uses Round Robin Job Migration to split
migrants tasks and reduces the number of migration by
using job migrations at job boundaries.

IV. VIEW A SCHEDULING

The second option proposed is to allow the user to view the
sequence of scheduling w.r.t time. This part is performed by
an abstract object "Scheduler" which will proceed according
to the rules defined by the scheduling, check deadline misses
and record the jobs scheduled. A GUI proposes a graphical

Fig. 2. GUI to display a scheduling

representation of the scheduling (see Fig. 2).

A. Available schedulers

Schedulers currently implemented are:
• PFair family (PF , PD2) represents the global scheduling

presented in [19]
• Arbitrary Priority Assignment chooses the active job with

the highest predefined priority.
• Deadline Monotonic (DM) chooses the active job with

the minimal relative deadline
• Rate Monotonic (RM) chooses the active job with the

minimal period
• Earliest Deadline First (EDF) chooses the active job

with the minimal absolute deadline
• Least Laxity First (LLF) chooses the active job with the

minimal laxity
Each of these scheduler can then be used as mono

or multiprocessors schedulers: one Java object EDF
can represent the uniprocessor EDF scheduler or the
GlobalEDF scheduler according to the number of processors
available.

Modularity: Add a new scheduling policy to the tool
consists of adding an object that derives from the abstract
class and only defines the function which chooses the job to
be scheduled in the list of active jobs. The EDF scheduling,
preemptive and non preemptive, for mono and multiprocessors,
is thus a Java file of about 10 lines.

V. GENERATING TASKS AND SETS OF TASKS

One of the challenges of a test tool for real-time scheduling
is to offer a method of generating sets of tasks which give
representative and reusable results for the most honest and
consistent possible comparison.

We based our methods of generation of tasks and sets
according to the article [20] and the UUnifast algorithm [21].

WATERS 2011 24

With a modular and abstract code, it is possible to use various
methods of generation and various parameters such as type
of task deadline or a specific probability distribution for the
utilization of tasks. Sets are saved in a XML file to be loaded
for others options of the tool.

A. Generating a Task

Here we present the procedure derived from [20]. UUnifast
algorithm is also available. To generate a task, according to
[20], several parameters are needed:

• The type of deadline, IMPLICIT (the deadline of each
task equal its period), CONSTRAINED (the deadline of
each task is less than or equal to its period) or ARBI-
TRARY (the deadline of each task can be lower, equal or
greater than its period).

• The probability distribution of the utilization of each task
(such as uniform in the interval [0;1] or exponential of
mean 0.5).

• The interval used to generate the values of periods and
deadlines.

The generation procedure is as follows:
1) The period is generated following a uniform distribution

in the defined interval.
2) The utilization of the task is generated according to the

distribution selected.
3) The value of WCET is calculated based on the period

and utilization of the task.
4) The value of the deadline is set to the period (IM-

PLICIT), uniformly selected between the WCET and
period (CONSTRAINED) or uniformly selected between
the WCET and the maximum value of the defined
interval (ARBITRARY).

B. Generating Sets Of Tasks

To generate sets of tasks, several functions are available but
the main procedure is also extracted from the article [20].
The following procedure needs a task generator (see section
V-A), a minimum number of tasks, a maximum utilization of
set of tasks and a number of sets to produce:

1) The minimum number of tasks is created based on the
task generator; utilization of the set must not exceed
the maximum utilization defined. This is the first set of
tasks.

2) A new task is generated according to the same task
generator. If it can be added to the previous set without
exceeding the maximum defined utilization, it is added
to create a new set. If not, return to the previous step.

These steps are repeated until the number of sets expected is
reached.

VI. EDIT/RUN AN EVALUATION

This option uses the previous options (see sections III,
IV and V) to automate the generation of results in order to
compare various algorithms (see Fig. 3).

Fig. 3. Edit/Run an Evaluation

The definition of an evaluation is done in an XML file
containing:

1) A list of types of sets of tasks. These sets of tasks can
be defined by generation parameters according to section
V-B (see section VI-A).

2) An equivalent list for sets of processors (see section
VI-A).

3) A list of algorithms. For each one, we can define some
settings: partitioning heuristics, criteria for sorting tasks,
type of sets of tasks (previously defined in the XML
at point 1) and the sets of processors to be considered
(previously defined in the XML at point 2) (see section
VI-B).

4) A list of graphs to be produced according to the results
(see section VI-C).

A. Defining the sets

You could choose to use pre-existing sets of tasks or define
generation parameters (see section V) and let the generator
create the sets.

<EvaluationSetOfTasks name="Deadline_IMPLICIT__Distrib_UNIFORM"
autoPath="true" path=".\SetOfTasks" fileName="setOfTasks.xml"
deadline="IMPLICIT" distribution="UNIFORM" minU="2" maxU="4"
nbMinTasks="5" number="10000" />

Fig. 4. Example to define a type of sets of tasks in the XML Evaluation file

Figure 4 defines that in the folder "./SetOfTasks/", a file
"setOfTasks.xml" will be placed in an auto generated sub-
folder "./SetOfTasks/IMPLICIT_UNIFORM/" and will contain
10000 sets of tasks with a utilization between 2 and 4, a
minimum of 5 tasks for each set and each task will be
generated with an "IMPLICIT" deadline and an "UNIFORM"
distribution of utilization in the interval [0;1].

Figure 5 defines that in a folder "./SetOfProcessors/", a
file "setOfProcessors4.xml" contains the definition of a set of
processors with 4 homogeneous processors.

WATERS 2011 25

<EvaluationSetOfProcessors name="4_Processors_HOMOGENEOUS"
autoPath="false" path=".\SetOfProcessors" fileName="setOfProcessors4.xml"
nbProcessors="4" type="HOMOGENEOUS" />

Fig. 5. Example to define a type of sets of processors in the XML Evaluation
file

B. Defining the scheduling algorithms

Then, you define algorithms to be tested. For each, indicate
the name of the scheduling algorithm (corresponding to its
class name), a file path defining the location where results will
be stored and parameters such as the partitioning heuristics to
consider, sets of tasks and processors to test and criteria for
sorting tasks and processors.

<EvaluationAlgorithm name="4_EDFPartitionned" algoName="EDF_Load_P"
path=".\Results" fileName="results.xml" >

<Heuristic>FIRST_FIT</Heuristic>
<Heuristic>WORST_FIT</Heuristic>
<CriterionSortSetOfProcessors>PROCESSOR_NONE_ORDER
</CriterionSortSetOfProcessors>
<CriterionSortSetOfTasks>TASK_DENSITY_DECREASING_ORDER
</CriterionSortSetOfTasks>
<EvaluationSetOfTasks>Deadline_IMPLICIT__Distrib_UNIFORM
</EvaluationSetOfTasks>
<EvaluationSetOfProcessors>4_Processors_HOMOGENEOUS
</EvaluationSetOfProcessors>

</EvaluationAlgorithm>

Fig. 6. Example to define an algorithm in the XML Evaluation file

Figure 6 defines that the algorithm "EDF_Load_P" (which
correspond to the partitioning algorithm based on the feasibil-
ity test using the computation of the Load to EDF preemptive
schedulers) will be tested on the previously defined sets
of tasks "Deadline_IMPLICIT__Distrib_UNIFORM", without
sorting processors and sorting tasks according to decreasing
density. Heuristics "FIRST_FIT" and "WORST_FIT" will be
tested following all possible combinations between all previ-
ous parameters.

The results will be stored automatically in files named
"results.xml", in separate subfolders for each parameter in the
main folder "./Results/".

C. Defining a graph

Finally, parameters for graphs can be defined. X-axis and
Y-axis have to be selected according to a class name. For
example, "GetUtilizationValue" returns the utilization of the
set of tasks, "GetSuccessValue" retrieves in the result files if
the set has been successfully scheduled by the algorithm.

Modularity: A new class placed in the correct package
will automatically add a new possible value for axis in graphs.

By defining a curve name, it indicates what each curve
must represent. For example, "GetAlgorithmCurveName"
will generate a curve for each algorithm, while
"GetHeuristicCurveName" will generate a curve for each
partitioning heuristic found in the result files.

Modularity: To add a new type of curve, just add a Java file
with a class derived from the abstract object "GetCurveName".

It is also possible to filter the results in order to focus
only on some of the data. For example, the graph can
concentrate on a particular type of deadline or on results for
a 4-processor platform. It can consider only some algorithms,
some heuristics or only sets of tasks in a particular range of
utilization.

Modularity: Each of these parameters corresponds to "fil-
ter", it is possible to add a new filter to the tool by filing a
Java file derived from the abstract class in the correct package.

<Graphs path="./Graphs/">
<Graph name="MyGraph " Scale="1">
<GetValueX name="GetUtilizationValue" />
<GetValueY name="GetSuccessValue" />
<GetCurveName name="GetAlgorithmCurveName" />
<Deadlines>

<Deadline>IMPLICIT</Deadline>
<Deadline>CONSTRAINED</Deadline>

</Deadlines>
<Distributions>

<Distribution>UNIFORM</Distribution>
</Distributions>
<NumbersOfProcessors>

<NumberOfProcessors>4</NumberOfProcessors>
</NumbersOfProcessors>
<Filters>

<Filter name="StatisticsHeuristicFilter">
<ToKeep>FIRST_FIT</ToKeep>

</Filter>
<Filter name="StatisticsAlgorithmFilter">

<ToKeep>EDF_Load_P</ToKeep>
<ToKeep>DM_RT_P</ToKeep>

</Filter>
<Filter name="StatisticsUtilizationRangeFilter">

<ToKeep>2</ToKeep>
<ToKeep>4</ToKeep>

</Filter>
</Filters>

</Graph>
</Graphs>

Fig. 7. Example to define a graph in the XML Evaluation file

Figure 7 creates a text file "MyGraph.txt" in the folder
"./Graphs/" containing data which describe a graph with a X-
axis representing the utilization of sets of tasks, Y-axis the
success ratio. Each curve will be a different algorithm. We will
focus on sets of tasks with "IMPLICIT" or "CONSTRAINED"
deadlines, with a utilization generated with a "UNIFORM"
distribution of probability. Only 4-processor platform will
be checked and results from the "FIRST_FIT" heuristic.
Both algorithms "EDF_Load_P" and "DM_RT_P" (partitioned
scheduling algorithm based on the exact feasibility test on
response time for a DM preemptive scheduler) will be taken
into account. Finally, we are interesting only in sets of tasks
with utilization in the range [2; 4].

The graph produced with the example given in this paper
is shown in figure 8. This figure is created using Gnuplot
(http://www.gnuplot.info/) to interpret "MyGraph.txt".

WATERS 2011 26

Fig. 8. Example of graph produced according to the example

D. Generating the evaluations

The evaluation file allows us automating the whole proce-
dure: the generation of sets of tasks and the generation of
graphs. Filters allows us to reuse some of the results and thus
to resume the evaluations conducted previously.

However, this process can be time-consuming. Since the
tool can also be used with a command-line, it allows us to run
the computation, stop them at a predefined times and resume
them later. It can then be used to spread the workload over
multiple computers: the tool will generate a list of parameters
corresponding to an XML Evaluation file; each parameter can
be run on different computers and then assembled without
recoveries problems.

VII. CONCLUSION AND FUTURE WORK

The tool presented in this paper allows us to test if a set
of tasks is schedulable on a set of processors according to a
specific algorithm. You may view the sequence of scheduling
in time to check that no deadline is missed. A procedure is also
proposed to generate sets of tasks according to various param-
eters. Furthermore, the tool offers to automate the creation of
evaluations of algorithms from beginning to end: generation
of sets to test, computation of the results for all algorithms
desired with a distribution of work on different computers and
finally creation of graphs associated.

All these options can be improved by the user by defining
itself new parameters, new algorithms, new axes for graphs
etc. This is facilitated by a programming paradigm oriented to
modules and abstract classes.

Version 0.5 of the tool can be downloaded from http://www.
ece.fr/~courbin/Research/FORTAS/FORTASv0.5.zip. The first
stable version will be released as open source licensing by the
end of 2011. A complete documentation of the code will be
made before this first stable version.

REFERENCES

[1] I. Lupu, P. Courbin, L. George, and J. Goossens, “Multi-criteria eval-
uation of partitioning schemes for real-time systems,” in The 15th
IEEE International Conference on Emerging Technologies and Factory
Automation, no. MF-001244. IEEE Computer Society Press, 2010.

[2] L. George and P. Courbin, Reconfigurable Embedded Control Systems:
Applications for Flexibility and Agility. Hershey, PA, USA: IGI Global,
2011, ch. Reconfiguration of Uniprocessor Sporadic Real-Time Systems:
The Sensitivity Approach.

[3] R. Davis, L. George, and P. Courbin, “Quantifying the sub-
optimality of uniprocessor fixed priority non-pre-emptive scheduling,” in
Proceedings of 18th International Conference on Real-Time and Network
Systems, RTNS’10, Toulouse, France, Nov. 2010. [Online]. Available:
http://www-rocq.inria.fr/syndex/publications/pubs/rtns10/rtns10-2.pdf

[4] L. George, P. Courbin, and Y. Sorel, “Job vs portioned partitioning for
the earliest deadline first semi-partitioned scheduling,” Elsevier Journal
of Systems Architecture - Special issue on multiprocessor real-time
scheduling, to appear in 2011.

[5] M. G. Harbour, J. J. G. García, J. C. P. Gutiérrez, and J. M. D. Moyano,
“Mast: Modeling and analysis suite for real time applications,” in In
13th Euromicro Conference on Real-Time Systems, 2001, p. 125.

[6] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a flexible real
time scheduling framework,” Ada Lett., vol. XXIV, pp. 1–8, November
2004. [Online]. Available: http://doi.acm.org/10.1145/1046191.1032298

[7] Y. T. Richard Urunuela, Anne-Marie Deplanche, “Storm : A simulation
tool for real-time multiprocessor scheduling evaluation,” in The 15th
IEEE International Conference on Emerging Technologies and Factory
Automation, no. MF-000477. IEEE Computer Society Press, 2010.

[8] R. R. S. Kato and Y. Ishikawa, “A loadable real-time scheduler suite
for multicore platforms,” 2009. [Online]. Available: Available:http:
//www.contrib.andrew.cmu.edu/?shinpei/papers/techrep09.pdf

[9] M. Holenderski, M. M. H. P. van den Heuvel, R. J. Bril, and J. J.
Lukkien, “Grasp: Tracing, visualizing and measuring the behavior of
real-time systems,” in International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2010.

[10] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “Litmusrt : A testbed for empirically comparing real-time
multiprocessor schedulers,” in RTSS, 2006, pp. 111–126.

[11] S. Baruah, R. Howell, and L. Rosier, “Algorithms and complexity
concerning the preemptive scheduling of periodic real-time tasks on one
processor,” Real-Time Systems, vol. 2, pp. 301–324, 1990.

[12] L. C. Liu and W. Layland, “Scheduling algorithms for multi-
programming in a hard real time environment,” Journal of ACM, vol. 20,
no. 1, pp. 46–61, January 1973.

[13] L. George and J. Hermant, Characterization of the Space of Feasible
Worst-Case Execution Times for Earliest-Deadline-First scheduling.
Journal of Aerospace Computing, Information and Communication
(JACIC), American Institute of Aeronautics and Astronautics (AIAA),
November 2009, vol. Vol. 6, Num. 11.

[14] F. Zhang and A. Burns, “Schedulability analysis for real-time systems
with edf scheduling,” IEEE Transactions on Computers, vol. 58, pp.
1250–1258, 2009.

[15] N. Audsley, A. Burns, M. Richardson, K. Tindell, and J. Wellings, “Ap-
plying new scheduling theory to static priority pre-emptive scheduling,”
Software Engineering Journal, vol. 8, pp. 284–292, 1993.

[16] M. Bertogna and M. Cirinei, “Response-time analysis for globally
scheduled symmetric multiprocessor platforms,” in RTSS ’07: Proceed-
ings of the 28th IEEE International Real-Time Systems Symposium.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 149–160.

[17] S. Kato, N. Yamasaki, and Y. Ishikawa, “Semi-partitioned scheduling of
sporadic task systems on multiprocessors,” in ECRTS ’09: Proceedings
of the 2009 21st Euromicro Conference on Real-Time Systems. Wash-
ington, DC, USA: IEEE Computer Society, 2009, pp. 249–258.

[18] A. Burns, R. Davis, P. Wang, and F. Zhang, “Partitioned edf scheduling
for multiprocessors using a c=d scheme,” in Proceedings of 18th
International Conference on Real-Time and Network Systems (RTNS),
2010, pp. 169–178.

[19] S. Baruah, J. Gehrke, and G. Plaxton, “Fast scheduling of periodic tasks
on multiple resources,” in Proceedings of the International Parallel
Processing Symposium, vol. pp 280-288, Santa Barbara, California.
IEEE Computer Society Press, April 1995.

[20] T. P. Baker, “A comparison of global and partitioned EDF schedulability
tests for multiprocessors,” in International Conf. on Real-Time and
Network Systems, 2006, pp. 119–127.

[21] E. Bini and G. C. Buttazzo, “Biasing effects in schedulability
measures,” in Proceedings of the 16th Euromicro Conference on
Real-Time Systems. Washington, DC, USA: IEEE Computer Society,
2004, pp. 196–203. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1009383.1009838

WATERS 2011 27

Hardware-Assisted Energy Consumption Evaluation

Tool for Multi-core Embedded Systems

Shiao-Li Tsao, Jyun-Wei Lin, QuanChung Chen, Chen-Wei Huang, Chi-Neng Huang
+

Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
+
Information and Communications Research Laboratories, Industrial Technology Research Institute, Taiwan

sltsao@cs.nctu.edu.tw

Abstract—Energy consumption evaluation is a critical issue in the

design phase of system-on-chips (SoCs) and embedded systems.

However, conventional approaches suffer from difficulties in

providing fast and accurate estimation and evaluation results,

especially for complicated multi-core embedded systems. In this

paper, we propose and implement a hardware-assisted energy

consumption evaluation tool for an embedded system. Our

system, called reconfigurable hardware-assisted log profiler

(REALprof), uses a programmable profiling hardware to

monitor runtime programs, automatically record the energy

related parameters of the system, and thus can estimate the

system energy consumption based on the logs in the memory

without introducing software profiling overhead. Our prototype

works with a quad-core embedded system at 100 MHz on an

FPGA platform and the experimental results demonstrate that

the proposed profiling tool provides fast and fine-grained

evaluation of energy consumption of a multi-core embedded

system.

Keywords-Energy Consumption, Energy Evaluation, Multi-core

Embedded Systems

I. INTRODUCTION

Energy consumption is a critical issue for battery-

operated embedded systems such as smart phones, mobile

Internet devices, etc. The energy consumption evaluation tool

is highly demanded in the design phase of system-on-chips

(SoCs) and embedded systems. Conventional tools such as

circuit-level power consumption simulation provide accurate

estimation results but require long simulation time. This

approach may not be able to apply to a complicated embedded

system such as a multi-core embedded system running an

operating system (OS) and embedded applications. On the

other hand, high-level power consumption estimation tools

based on hardware performance counters and registers can

offer fast evaluation. However, the profiling software usually

has to frequently sample the performance and energy status,

i.e. to frequently access hardware counters and registers, to

obtain accurate estimation results, and thus introduces

considerable software profiling overhead.

The capacity and performance of reconfigurable

hardware such as field programmable gate array (FPGA) grow

rapidly. FPGA thus becomes a suitable platform for system-

level emulation, design verification, and energy consumption

evaluation. In this paper, we propose a hardware-assisted

energy evaluation tool for embedded systems, called

reconfigurable hardware-assisted log profiler (REALprof).

The proposed tool composes of a profiling software and a

flexible profiling hardware which can be easily integrated into

the target SoC design on an FPGA platform. The profiling

hardware is programmable and can be controlled by the

profiling software dynamically. The profiling software can

change the configurations of the profiling hardware such as

monitoring parameters, sampling frequencies, etc. to obtain

the energy consumption evaluation in different granularities.

The embedded system then runs the system and application

software, and the profiling hardware automatically records the

energy consumption parameters in the memory without the

involvement of the profiling software. The profiling software

finally generates an energy consumption evaluation report

based on the logs in the memory after a profiling process. The

proposed tool offers fast, accurate and system-level energy

consumption estimations so that system designers can identify

energy consumption problems of the target system, and

optimize their hardware and software designs.
The rest of the paper is organized as follows. Section 2

discusses related work. Section 3 describes the methodology
and architecture of our proposed energy evaluation tool.
Section 4 describes the implementation, experimental
environment and results, and a case study. Finally, Section 5
concludes this study.

II. RELATED WORK

Energy consumption evaluation tools for embedded

systems can be categorized into measurement-based approach,

circuit-level simulation and architecture-level simulation.

Measurement-based approach measures the power

consumption of an embedded system directly through a power

meter [8]. The evaluation is fast and accurate, but the target

hardware must be available and the platform must be specially

designed to support hardware power measurements. Moreover,

if a detailed and accurate evaluation is required, measurement-

based approach may require expensive power measurement

devices, and time synchronization between measurement

devices and the target embedded system must be considered.

The measurement-based approach is usually applied to the

optimization during the system integration phase.

WATERS 2011 28

Energy consumption of an SoC is related to

manufacturing technology, transistor characteristics, circuit

architecture, and low-level hardware factors. To evaluate the

energy consumption during the SoC design phase, gate-level

and circuit-level simulations are usually adopted. For example,

Synopsys HSPICE [6] is a circuit simulator which also

supports the power estimation of an IC design, and Synopsys

PrimeTime [7] is a cell-based design tool for gate-level power

analysis. These tools are useful for hardware designers to

estimate energy consumption in early design stage, but the

simulation speed is extremely slow for a large scale

integration circuit such as a multi-core embedded system

running system and application software.

Architecture-level energy evaluation approach analyzes

the architecture of a target system and constructs energy

models for each component. Wattch [9] is one of the well-

known energy evaluation tools based on this approach. It

categorizes processor components into four categories: array

structures, fully associative content-addressable memory,

combinational logic and wires, and clocking. Power models of

components are developed according to capacitance equations,

and they are integrated with an architecture-level simulator

such as SimpleScalar [5]. Architecture-level energy simulation

[10][11] is faster than circuit-level simulation, but it still

requires considerable simulation time for evaluating

complicated embedded systems.

Energy consumption of a processor is closely related to

some hardware activities. Therefore, Contreras et al. [12]

proposed another architecture-level approach for Intel XScale

processor. Embedded processor such as Intel XScale and

ARM provides performance counters for monitoring hardware

activities. They construct processor power models by using

these available hardware performance counters. The tool thus

can perform a quick energy evaluation based on the hardware

performance counters. Because this approach is based on

hardware monitoring at run time, the target hardware must be

available, and the processor must support essential

performance and/or energy counters [13].

Bhattacharjee et al. [3] proposed a FPGA-based power

emulation approach. The concept is similar to Contreras’ work.

They add some component-specific event counters to the

target processor and construct power models based on these

counters. Because the FPGA is reconfigurable, this approach

is more flexible than Contreras’ approach. Although FPGA

emulation speed is slower than the real application-specific

integrated circuit (ASIC), it is much faster than circuit-level

and architecture-level simulation. The energy evaluation

approach proposed by Contreras and Bhattacharjee relies on

hardware monitoring at run time. The profiling software has to

sample and access performance and energy counters

frequently to obtain accurate evaluation results. Considerable

profiling software overhead is thus introduced.
Ghodrat et al. [4] further proposed a hybrid approach for

system-level energy evaluation. Some of the components use
software simulation and the other components use FPGA
emulation. This approach reduces the simulation time and is
more flexible than pure FPGA emulation. However, the

communication and synchronization between software
simulation and FPGA emulation are new challenges.

III. DESIGN OF THE PROPOSED REALPROF

REALprof hardware
Embedded hardware

(SoC) design

FPGA emulation
Embedded system &
application software

REALprof software

Energy evaluation
reports

Embedded system

Component power model &
gate-level power analysis

+

+ +

Hardware modifications

Software modifications

Figure 1. The proposed flow for evaluating and optimizing the energy

consumption of an embedded system.

Conventional software profiling tools insert profiling

instructions into the target software. This approach influences

the behaviors of the original system and software, and also

introduces additional software profiling overhead. To improve

profiling accuracy and minimize the profiling overhead, the

proposed REALprof uses flexible hardware to assist energy

consumption evaluation of an embedded system without the

involvement of the profiling software. Figure 1 illustrates our

proposed flow for the development and energy consumption

evaluation of an embedded system. In the design phase, an

SoC which is composed of synthesizable soft intelligent

properties can be constructed on an FPGA emulation platform.

At this stage, we can use gate-level power analysis tools to

obtain the power consumption of each hardware event such as

a pipeline stall, cache miss, etc. on an SoC. These gate-level

power analysis tools can calculate power dissipation based on

the target design netlist, cell library power models, signal

activities, and capacitance effects.

REALprof hardware is integrated into the target SoC, and

it is managed by REALprof software. REALprof software can

dynamically change the configurations of REALprof hardware

such as sampling frequencies, number of monitoring

parameters, etc. For a profiling process, embedded software

including system and application software and REALprof

profiling software run on the emulation platform. Based on the

configurations, REALprof hardware automatically records the

necessary hardware events in the memory when the embedded

software is running. The performance logs are handled by the

hardware so that the software behavior of the system remains

unchanged during the profiling process. After the profiling

process, REALprof software retrieves the hardware logs in the

memory and generates an energy evaluation report. System

designers can thus read the report, try to identify the design

defects, and optimize the hardware and software designs.

After a number of iterations of evaluation and optimization,

the embedded system design can be confirmed and REALprof

hardware and software can be removed from the final

embedded system.

WATERS 2011 29

REALprofmonitor

Program counter

REALprof controller

System bus

Event active signals

Program counters

Clock

Program
counters

En

EveAct

EnLog

Address

Data out

Status

Sampling period

Start offset

Sampling number

Event mask

Status

Sampling period

Start offset

Sampling number

Event mask

Status

Sampling period

Start offset

Sampling number

Event mask

Status

Sampling period

Start offset

Sampling number

Event mask

Control unit

REALprofmonitor

Event counter

Control unit

SRAM

Figure 2. Architecture of REALprof hardware.

TABLE I. DESCRIPTION OF REGISTERS IN REALPROF HARDWARE.

Register Description

Status Control status of a REALprof monitor

Sampling Period Sampling period of a REALprof monitor

Start Offset Start time for profiling in number of delay cycles for

a REALprof monitor

Sampling Number Number of samples for a REALprof monitor

Event Mask Enable/disable of a REALprof monitor

Figure 2 illustrates the architecture of REALprof

hardware. REALprof hardware is designed as a bus slave

component. Programmers can use memory-map I/O to access

REALprof hardware. REALprof hardware consists of a

hardware controller and a number of hardware monitors.

REALprof controller contains five control registers for each

REALprof monitor. TABLE I. lists the registers and their

descriptions. Programmer can access these registers and

configure the status, sampling period, start offset, and event

mask for REALprof monitors individually. A number of event

active signals are connected to REALprof controller, such as

pipeline stall, cache miss, etc. Each event active signal is

connected to “EveAct” signal of an individual REALprof

monitor. REALprof monitor snoops the “EveAct” signal and

increases the event counter when the event occurs. “En” signal

is true when REALprof is active, and it indicates whether a

REALprof monitor should snoop signals or not. “EnLog”

signal is similar to a timer IRQ (Interrupt ReQuest) signal. The

period of a timer trigger is determined by the sampling period

register. When “EnLog” is triggered, a REALprof monitor

stores the current value of the event counter and current time

stamp to the SRAM and resets the event counter. After the

procedure, REALprof controller increases the sampling

number register which indicates how many samples are

collected in the SRAM for a particular REALprof monitor. At

the same time, the time stamp, processor identifier, and the

program counter of the correspondent processor that triggers

the event counter are also recorded in the memory by another

REALprof monitor. The reason why the time stamp,

processor identifier, and current program counter that

associate with the event are also recorded is because

REALprof software can associate the profiling results with a

specific running program and a specific function of a program.

Therefore, REALprof software could provide detail energy

evaluation for not only a processor, but also a running

program and a function in a running program.

We derive the energy consumption of an embedded

system according to the gate-level power models and profiling

results. Equation (1) shows our high-level energy model:
 




Ii

i

event

i

eventtotalidle CETPE
 to1

(1)

Total energy consumption (E) consists of idle energy

and active energy. Idle energy is the product of idle power

(Pidle) and total execution time (Ttotal). Idle power reflects

leakage power and power of hardware components which are

always active. Active energy is contributed by all event energy.

For an embedded system with I major power consumption

events such as pipeline stall, cache miss, etc., the event energy

is the summation of the product of energy of the i
th

 event

(E
i
event) and counts of the i

th
 event (C

i
event). Pidle and E

i
event are

obtained off-line by using gate-level power simulations which

will be described in the next section. The event active count,

C
i
event, and execution time, Ttotal, are from REALprof. Based

on the design mentioned above, REALprof can provide

performance evaluation through event counts and energy

evaluation through event energy. It is useful for designers to

optimize system and make a trade-off between performance

and energy efficiency in the design stage.

Moreover, REALprof hardware can be dynamically

configured by REALprof software. For example, system

designers may want to see the overall energy consumption of

an embedded system first. Then, they may want to see the

power consumption during a specific period of execution or

the power consumption of a specific program in details.

Therefore, the system designer can configure the profiling

starting time and duration, reduce or increase the sampling

frequencies for monitoring parameters, reduce or increase the

number of monitoring parameters, and can obtain energy

evaluation of the embedded system in different granularities.

IV. IMPLEMENTATION

Figure 3 gives an overview of the prototype system. We

established the MPSoC using GRLIB open source IP library

[14] with the proposed REALprof. GRLIB includes LEON3

soft-core processor and abounding peripheral cores. LEON3

core is interfaced using AMBA 2.0 protocol and uses

synthesizable VHDL model. LEON3 is a 32-bit soft-core

processor based on SPARC V8 architecture. LEON3 has 7-

stage pipeline with L1 Harvard architecture cache. Data cache

of LEON3 supports snoop protocol so that it is possible to

build a SMP system using LEON3 processor. Based on the

GRLIB, we implemented a quad-core LEON3 multi-core

processor on an FPGA board. Figure 3 also shows the detail of

the target MPSoC design. It includes a LEON3 quad-core,

abounding peripherals, and REALprof hardware. Four LEON3

processors snoop data on AHB (Advanced High-performance

Bus). Configurations of each processor are shown in TABLE

II. . REALprof hardware is a flexible hardware component and

wrapped as an AHB slave. Therefore, it can be easily

integrated into a target SoC design. Each processor connects

WATERS 2011 30

its program counter and event signals to REALprof hardware.

We used DE3-340 [15] development board to construct the

prototype emulation platform. The DE3-340 consists of an

Altera Stratix III 340 FPGA, DDR2 SO-DIMM socket, and

several peripheral components. We used Quartus II 8.0 design

suite [16] to compile our design and downloaded the target

design to the DE3 FPGA. We implement REALprof software

as device drivers and utilities in SnapGear Linux distribution

[17]. Multi-thread applications are integrated to SnapGear

Linux package and use REALprof to perform performance

and energy evaluation on the target multi-core emulation

platform.

Figure 3. Overview of the prototype system with quad-core LEON3 and

REALprof.

TABLE II. LEON3 PROCESSOR CONFIGURATIONS.

Integer Unit

8 register windows, 1-cycle load delay, SPARC V8

MUL/DIV support, 2-cycle multiplier latency, power-
down mode support

Floating Point Unit only netlist is available for FPGA

L1 Instruction

Cache
4-way set-associative, total 16 KB, 32 bytes/line, LRU

L1 Data Cache
4-way set-associative, total 16 KB, 32 bytes/line,

LRU, AHB fast snoop and separate snoop tags

MMU
Separate instruction/data TLB, fast write buffer, LRU,

32 entries for each instruction/data TLB

In order to evaluate the energy of LEON3 processor, we

monitor a number of hardware events for each processor using

REALprof. Table 3 lists these events. To obtain the power

consumption of each event, we use gate-level power

estimation tools. Figure 4 illustrates detail gate-level power

analysis flow. We use Design Compiler [18] to synthesis the

target design with Faraday cell-based design kit for UMC 90

nm 1P9M process. In typical condition (25˚C, 1.0 Volt), the

target ASIC expects to operate at 400 MHz. After synthesis,

we use ModelSim [19] to perform gate-level simulation for

generated netlist and software. The generated waveform in

VCD (Value Change Dump) format then feeds to PrimeTime

PX for dynamic power calculation. PrimeTime PX produces a

hierarchical power report and FSDB (Fast Signal DataBase)

waveform according to design netlist, cell library, cell delay,

and VCD waveform. Finally, we can construct event energy

models. Table 3 lists event energy consumption of a LEON3

processor when the processor is finally produced as an ASIC

according to the gate-level power analyses.

Figure 4. Flowchart of gate-level power analyses.

TABLE III. LEON3 PROCESSOR EVENTS AND THEIR ENERGY

CONSUMPTION.

Component Event Energy/Power

Pipeline

Power down 16.1 mW

Idle 49.2 mW

Normal 58.2 mW

Multiplication operation 32 pJ

Division operation 218.75 pJ

Instruction TLB miss 4.25 pJ

Data TLB miss 4.25 pJ

Instruction cache

Power down 0.4084 mW

Idle 49.1 mW

Flush 16.403 nJ

Hit 126.575 pJ

Miss 123 pJ

Data cache

Idle 0.601 mW

Flush 25.869 nJ

Hit 314 pJ

Miss 952.95 pJ

Register file

Idle 6.28 mW

Single access 9.65 mW

Double access 12.9 mW

Programmers set REALprof registers to start profiling

before the target program execution and stop profiling after

the execution or after a period of time. REALprof does not

need software to sample hardware performance counters

periodically. Therefore, the software overhead during the

profiling process is significantly reduced. Figure 5 shows that

the overhead of the conventional architecture-level evaluation

based on hardware performance counters increases linearly

with number of counters. The more information an

architecture-level profiling tool gathers, the more overhead it

suffers. On the contrary, our approach offers constant and

negligible software overhead during a profiling process.

Moreover, the behavior of the target program remains

unchanged when REALprof is employed. Figure 6 shows that

software overhead increases with the profiling frequency. As

can be seen from the figure, it is difficult to perform profiling

WATERS 2011 31

below microsecond granularity using the conventional

architecture-level approach.

Figure 5. Overhead comparison between architecture-level simulations and

REALprof under different number of hardware counters that tools refer

Figure 6. Overhead comparison between architecture-level simulations and

REALprof under different profiling frequencies.

TABLE IV. compares our approach with other energy

evaluation approaches. Our approach offers fast and fine-

grained evaluation, and software overhead is negligible.

TABLE IV. COMPARISON OF PREVIOUS APPROACHES AND REALPROF.

 REALprof

Profiling
based on

hardware

counters [12]

Architecture-

level
simulation [9]

Circuit-level

simulation
[6][7]

Method
Hardware

emulation

directly

execute

Software

simulation

Software

simulation

Speed ~ 100 MHz real speed KIPS ~ MIPS
extremely

slow

Flexibility

of

profiling

Y N Y Y

Profiling

overhead

Negligible
(less than 30

cycles)

Software
profiling

overhead

N/A N/A

Profiling
granularity

~30 cycles
~
millisecond

~microsecond cycle

Profiling

hardware

resource

Hardware

counters +

RAM

Hardware
counters

N N

Program

behavior
while

profiling

Remain
unchanged

influenced
Remain
unchanged

Remain
unchanged

Operating

system
Y Y usually N N

Our approach uses reconfigurable hardware resources to

record the profiling data. TABLE V. shows the resource usage

of the prototype. For StratixIII 340 FPGA, the target LEON3

multi-core system with REALprof hardware only uses about

30% logic and 12% memory blocks. REALprof only uses

about 2% logic and 4% memory blocks for 1 controller and 68

monitors.

TABLE V. STRATIXIII 340 FPGA RESOURCE USAGE.

Combinational
ALUTs

Logic
registers

DSP
block

Block

memory

bit

Number of
components

LEON3

processor
12581 8451 4 343936 4

DDR2

controller
781 601 0 4096 1

peripherals 2600 1269 0 16384 N/A

REALprof
4826

(2%)

2091

(1%)

0

(0%)

557056

(4%)

1 controller

68 monitors

Total
58531
(22%)

37765
(14%)

16
(3%)

1953280
(12%)

To demonstrate the profiling process on a multi-core

embedded system, we use SPLASH-2 [20] FFT as the target

multi-thread application program. Figure 7 illustrates the

energy evaluation of events on the first CPU (CPU_0). As

shown in figure, data cache dominates the variation of the

energy consumption of a processor. This phenomenon

matches the gate-level power analyses. Figure 8 illustrates the

energy evaluation of each core. Designer can use the

evaluation result to optimize the target hardware and software

design. In this case, we can observe that SPLASH-2 FFT is a

well parallelized multi-thread program.

Figure 7. Energy evaluation of the events on the first CPU (CPU_0). (RF:

total power of register file, Pipeline: total power of pipeline, I$: total power of
instruction cache, D$: total power of data cache)

WATERS 2011 32

Figure 8. Energy evaluation of each core.

V. CONCLUSIONS

In this paper, we proposed a hardware-assisted energy
evaluation tool - REALprof. REALprof uses flexible hardware
to profile the energy consumption of the processors, programs,
and functions without software involvement, and can provide
energy evaluation in different granularities. The fast, accurate,
and system-level energy evaluation can help system designers
in optimizing hardware and software designs. The prototype
system based on quad-core LEON3 MPSoC and Linux was
implemented on an FPGA platform. Experimental results
demonstrate that REALprof could provide fine-grained
profiling results in sub-microsecond level and overhead can be
negligible.

ACKNOWLEDGEMENT

The authors would like to thank Industrial Technology

Research Institute, MediaTek Inc. and National Science

Council of the Republic of China for financially supporting

this research under Contract No. 100-2219-E-009-022-, 100-

2220-E-009-038-, and 99-2220-E-009-045-.

REFERENCES

[1] L. Shannon and P. Chow, “Using Reconfigurability to Achieve Real-
Time Profiling for Hardware/Software Codesign,” Proceedings of the
12th International Symposium on Field Programmable Gate Arrays, pp.
190-199, Monterey, California, February 2004.

[2] J. G. Tong and M. A. S. Khalid, “Profiling Tools for FPGA-Based
Embedded Systems: Survey and Quantitative Comparison,” Journal of
Computers, Vol. 3, No. 6, pp. 1-14, June 2008.

[3] A. Bhattacharjee, G. Contreras, and M. Martonosi, “Full-System Chip
Multiprocessor Power Evaluations Using FPGA-Based Emulation,”
Proceedings of the 13th International Symposium on Low Power
Electronics and Design, pp. 335-340, Bangalore, India, August 2008.

[4] M. A. Ghodrat, K. Lahiri, and A. Raghunathan, “Accelerating System-
on-Chip Power Analysis Using Hybrid Power Estimation,” Proceedings
of the 44th Design Automation Conference, pp. 883-886, San Diego,
California, June 2007.

[5] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure for
Computer System Modeling,” IEEE Computer, Vol. 35, No. 2, pp. 59-67,
February 2002.

[6] Synopsys HSPICE,

http://www.synopsys.com/Tools/Verification/AMSVerification/CircuitS
imulation/HSPICE/Pages/default.aspx

[7] Synopsys PrimeTime PX.

http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeT
ime.aspx

[8] D. Shin, H. Shim, Y. Joo, H.-S. Yun, J. Kim, and N. Chang, “Energy
Monitoring Tool for Low-Power Embedded Programs,” IEEE Design
and Test of Computers, Vol. 19, No. 4, pp. 7-17, July 2002.

[9] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations,” Proceedings of
the 27th International Symposium on Computer Architecture, pp. 83-94,
Vancouver, British Columbia, Canada, June 2000.

[10] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “The Design
and Use of SimplePower: A Cycle-Accurate Energy Estimation Tool,”
Proceedings of the 37th Design Automation Conference, pp. 340-345,
Los Angeles, California, June 2000.

[11] R. Ben Atitallah, S. Niar, and J.-L. Dekeyser, “MPSoC Power
Estimation Framework at Transaction Level Modeling,” Proceedings of
the 19th International Conference on Microelectronics, pp.245-248,
Cairo, Egypt, December 2007.

[12] G. Contreras and M. Martonosi, “Power Prediction for Intel XScale
Processors Using Performance Monitoring Unit Events,” Proceedings of
the 10th International Symposium on Low Power Electronics and
Design, pp. 221-226, San Diego, California, August 2005.

[13] G. Contreras, M. Martonosi, J. Peng, G.-Y. Lueh, and R. Ju, “The
XTREM Power and Performance Simulator for the Intel XScale Core:
Design and Experiences,” ACM Transactions on Embedded Computing
Systems, Vol. 6, No. 1, February 2007.

[14] J. Gaisler, E. Catovic, M. Isomäki, K. Glembo, and S. Habinc, GRLIB
IP Library User’s Manual Version 1.0.20, Aeroflex Gaisler, February
2009.

[15] ALTERA DE3 Development and Education Board User Manual, Terasic
Technologies.

[16] Altera Quartus II.

http://www.altera.com/products/software/quartus-ii/subscription-edition

[17] D. Hellström, Manual: SnapGear Linux for LEON Version 1.38.0,
March 2009.

[18] Synopsys Design Compiler.

http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/D
esignCompilerGraphical.aspx

[19] Mentor Graphics ModelSim.

http://www.mentor.com/products/fv/modelsim

[20] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological
Considerations,” Proceedings of the 22nd International Symposium on
Computer Architecture, pp. 24-36, Santa Margherita Ligure, Italy, June
1995.

WATERS 2011 33

This work has been funded by the EU under contracts FP7/NoE/214373
(ArtistDesign); and by the Spanish Ministry of Science and Technology under
grant TIN2008-06766-C03-03 (RT-MODEL).

Modelling real-time applications based on resource
reservations

Laura Barros, César Cuevas, Patricia López Martínez, José María Drake, and Michael González Harbour
Grupo de Computadores y Tiempo Real

Universidad de Cantabria
39005, Santander, Spain

{barrosl, cuevasce, lopezpa, drakej, mgh}@unican.es

Abstract—The new MAST 2 specification for modelling and
analysis of real-time systems, introduces two new classes named
VirtualSchedulableResource and VirtualCommunication Channel.
They are used for modelling the schedulable entities in real-time
applications that are designed and executed relying on a resource
reservation paradigm. These modelling elements bring together
into one single object the two different views that are used to
describe a virtual resource through its life cycle. In the initial
phase of the application design, a virtual view of the modelling
element is used. It describes the fraction of the processor or
network bandwidth needed to satisfy the timing requirements of
the application. The second view is used afterwards, during the
application deployment phase. It describes the real scheduling
parameters with which the processor or network scheduler must
execute the threads or communication channels that implement
the virtual resources in the physical platform. The negotiation
process between the application and the resource reservation
middleware, which is carried out to make the designed
application compatible with the current workload of the
platform, can be seen as the pursuit of a configuration that makes
both views compatible. This paper describes these new modelling
elements and some scenarios where they are used.

Keywords: Real-time; Resource Reservation; Modelling;
Virtual Resources

I. INTRODUCTION

Resource Reservations is a paradigm that is widely applied
to the design and execution of hard real-time applications. Its
basic principle [1][2][3] in processing resources consists in
executing each application thread in a server, which has an
assigned fraction of the processor capacity. If during the
execution, the thread activity tries to exceed its assigned
capacity, the server suspends it temporarily to avoid it.
Similarly, for communication resources each message stream is
assigned to a communication server that represents a fraction of
the communication network bandwidth. The use of this
paradigm provides three main advantages:

 System robustness: If a system is designed to be
schedulable according to its specification, and one or more
of its applications exceed their design specifications by
requiring more processing capacity than expected, these
applications would not meet their timing requirements but
the rest of the system would not be affected.

 Design simplicity: Using the resource reservation
paradigm, the design of the scheduling of an application is
accomplished in two stages. First, the application is
scheduled independently, based on a virtual execution
platform. Afterwards, the virtual platform implementation
is negotiated on the physical execution platform. Among
other advantages, this allows deploying an application
with hard real-time requirements on an open platform
whose workload is unknown by the application designer.

 Reusability of real-time legacy modules: A legacy
subsystem or a reusable software component that
implements real-time services can include as metadata the
virtual execution platform that describes the resources
required to satisfy its timing requirements.

MAST [4] is an open source set of tools that enables
modelling and performing timing analysis of real-time
applications. MAST can be used to design real-time
applications, representing the real-time behavior and
requirements together with the design information, and
allowing an automatic schedulability analysis. MAST is
basically constituted by a modelling methodology, close to that
proposed by the OMG’s MARTE profile [5][6], and a suite of
tools including worst-case response time schedulability
analysis, calculation of blocking times, sensitivity analysis
through the calculation of slack times, and optimized priority
assignment techniques. Version 2 of MAST [7] has been
formulated recently and it extends the modelling methodology
to advanced real-time paradigms, like resource-reservation and
partition-based scheduling. The MAST 2 tools are still under
development but, being both MAST 1 and MAST 2 versions
based on formal UML metamodels, it is possible to perform
simple transformations using MDA strategies and take
advantage of the tools available in the current MAST suite for
developing systems based on these new paradigms.

The aim of this paper is to describe how MAST 2 can be
used to cover the different phases followed in the development
and execution of applications based on resource reservations.
Section 2 describes the MAST extension that deals with this
paradigm, whereas Section 3 describes how the extension is
applied to develop real-time applications. The information
provided by the different modelling elements is described
through a simple example in Section 4. Finally, Section 5
summarizes some current work lines and conclusions.

WATERS 2011 34

II. MODELLING ELEMENTS FOR THE RESOURCE

RESERVATION PARADIGM

The temporal behavior model of a system is conceived in
MAST (and in MARTE) as the superposition of two models:
the reactive model and the resources model, shown in Figure 1.
The reactive model describes, by means of EndToEndFlow
elements (as e2efA and e2efB), three aspects: the set of steps
that, ordered by the control flow, conform the responses to
events executed in the application, the generation patterns of
the WorkloadEvents (coming from the environment or from the
clock) which trigger these responses (such as triggerA and
triggerB), and the TimingRequirements that must be satisfied
by the execution of the responses (as tr1 and tr2). The
resources model describes the usage of processing or
communication resources and of mutual exclusion resources,
by the steps belonging to the different EndToEndFlows. In the
case of passive resources (as a Mutex), for the description of
the resource it is enough to specify the synchronization
protocol (priority ceiling, priority inheritance, stack resource).
However, in the active resources (such as processors and
communication networks), the model specifies its Scheduler
together with its policy. In addition, it is necessary to specify
the set of SchedulableResources, which are schedulable entities
in a processing resource, each of them characterized by its
scheduling parameters.

 The MAST 2 model extension that supports the resource

reservation paradigm concerns only the SchedulableResource
model elements. The new specialized elements decouple the
reactive model from the resources model. This enables the
design and analysis of the scheduling of an application using a
virtual platform based upon resource reservation contracts, and
without knowing the resources of the physical execution
platform (Figure 2). Bearing in mind that in the development
process of an application based on resource reservations the
same instance of a SchedulableResource is going to be
transformed from its virtual view to the real view, the virtual
schedulable resource has been defined as inherited from the
real schedulable resource, thus maintaining both views. The
tool that processes the instance according to the stage of the
design process, chooses the appropriate view.

 The modelling elements defined in MAST 2 for representing
virtual schedulable resources are VirtualSchedulableResource
and VirtualCommunicationChannel. They extend the Thread
and Communication Channel classes respectively, by adding a
reference to the VirtualResourceParams or VirtualComm
ChannelParams element that holds the information of the
resource reservation contracts. Figure 3 shows the relations
among the different modelling elements for the case of
processing capacity reservation. For simplicity, the
corresponding network elements are not shown.

 It is important to notice that the inheritance relationship
implies that a VirtualSchedulableResource is a Thread, so the
tools that process it as a real schedulable resource will find
within it the reference SchedulingParameters that characterizes
it as a Thread. Likewise, the optional nature (0..1 multiplicity)
of the Scheduler and SchedulingParameters references, makes
it possible to create a VirtualSchedulableResource instance
without any reference to the physical execution platform.

The concrete classes that extend

ResourceReservationParams define the behavior of the
VirtualSchedulableResource (or of the VirtualCommunication
Channel). This root class has been defined as abstract to
include future types of virtual resources. Figure 4 shows the
virtual resources currently defined, which follow the periodic
replenishment strategy [11][12] for fixed priority scheduling:
the periodic server [8], the deferrable server [9] and the
sporadic server [10] models defined in the bibliography.

trigerA stepA1 stepA2 stepA3

stepB1 stepB2

mutexU

triggerB

e2efA

e2efB

virtualRsrc1

virtualRsrc4 virtualRsrc3

Reactive
model

Virtual
platform

virtualRsrc2

Figure 2: Application model in the virtual resource reservation view

Figure 3: New classes in the resource reservation MAST model

Figure 1: Root elements of the MAST models

triggerA stepA1 stepA2 stepA3

stepB1 stepB2

processorX

primaryScheduler

mutexU

triggerB

e2efA

e2efB

thread1

thread4 thread3

Reactive
model

Resource
model

thread2

tr1

tr2

WATERS 2011 35

The attributes defining any type derived from
VirtualPeriodicReplenishmentParams are the following:
 Budget: Time => Minimum execution capacity per server

period.

 Deadline: Time => The server guarantees that a piece of
work of size less than or equal to the budget and requested
for a server with full capacity will be completed before the
server’s deadline.

 Period: Time => The period of the replenishment
mechanism. The virtual resource will guarantee that every
period, the part of the application running on it will get, if
requested at the start of the period, at least the specified
budget on the processing resource on which the associated
schedulable resource is running.

The VirtualCommChannelParams class is similar, except
for the Budget attribute, which is defined as the number of bits
of transmission capacity.

The different server models vary in the granularity of the
capacity replenishment and in how the platform responds when
the application time is beyond the budget capacity. As an
example, Figure 5 shows the worst-case response time of an
activity of duration ta in a virtual schedulable resource with
DeferrableServerParams (Budget tB, Deadline tD and Period
tP). For this kind of virtual schedulable resource it is possible to
evaluate the maximum response time tx of an activity with
duration ta in the following manner:

III. SUPPORTING REAL-TIME APPLICATION DEVELOPMENT

 Figure 6 shows the four phases followed in the
development of a real-time application based on the resource
reservation paradigm: (1) The application is designed relying
on a virtual platform. (2) The application is analysed to verify
if it satisfies its timing requirements. (3) The instantiation of
the virtual platform is negotiated with the execution platform.
(4) The application is executed. The information and the
models used in the process are also shown in the figure.

A simple example, called ServoControl, is used in this
paper to illustrate the design process of a real-time system
based on the resource reservation paradigm. It implements the
controller of a servo engine, which is executed with a period of
10ms and a deadline of 5ms on a distributed platform
composed of two processors, Central and Remote,
interconnected by a CAN bus with a throughput of 1Mb/s.
Figure 7 shows the reactive model of the application. It
comprises only one EndToEndFlow, which involves seven Step
elements, representing the activities executed in both
processors and the transmission of messages through the bus.

Figure 4: Resource reservation parameters classes in MAST 2

controlTrans: EndToEndFlow

clockEvent

readGoal

transmitReq

readSensorPosition

returnPosition

evaluateControl

transmitControl

setServoInputs

«PeriodicEvent»
period=0.01

«Step»
SimplOp(wcet=4.0E-4)

«Step»
message(maxSize=64)

«Step»
SimplOp(wcet=7.5E-5)

«Step»
Message(maxSize=256)

«Step»
SimplOp(wcet=0.8E-3)

«Step»
Message(maxSize=256)

«Step»
SimplOp(wcet=5.0E-5)

«HardGlobalDeadline»
deadline=5.0E-3
refEvent= ”clockEvent”

e1

e2

e3

e4

e5

e6

end

Figure 7: Reactive model of the ServoControl example

Figure 6: Phases in the design and execution of a real-time application

Timing
requirements

« Mast2»
RR-model

(1)Design

(2)Analysis

(3)Negotiation

(4)Execution
Application
Workload

« Mast2»
RR-model & constraints

« Mast2»
Exec-model

Figure 5: Worst case response time for the deferrable server

tb tB tB-tb+ ta

tb>ta case
time

time

budgetCapacity

tD
tx=tD-tB+ta

ta tD-tB

tB

Execution
requirement tb-ta

tD
tx=tR+tD-tB+ta-tb

tbtD-tB

tB
Execution

requirement

tb<ta and NB=1 case
tR

tD
tD-tB ta-tb

tBbudgetCapacity

tB
tb

WATERS 2011 36

A. RT-Application specification and design.

The real-time application design consists in defining a
virtual execution platform (i.e. a set of virtual resources),
assigning to each step the virtual resource where it is executed,
and according to this mapping, assigning values to the
attributes of the virtual resources of the virtual platform. It is
important to remark that this process can be done without
knowing the physical platform where the application will be
really executed.

Different design strategies may be applied to define the
virtual platform. The simplest one consists in assigning an
independent virtual resource per transaction and per processing
node that take part in the application. In this case the
replenishment period of each virtual resource is made equal to
the minimum interarrival time of the transaction trigger, and
the budget must be equal to the sum of the wcets of the Steps
executed in the same virtual resource. In this strategy the
deadline attributes are kept indeterminate until the negotiation
phase. The virtual platform that results from this design
criterion for the ServoControl example is shown in Table I.
The RR-Model (see Figure 6) that describes the application
design is formulated as a MAST 2 model, which includes the
reactive model (the “controlTrans” EndToEndFlow shown in
Figure 7), and the virtual resources of Table I.

TABLE I. VIRTUAL PLATFORM AFTER DESIGN

VirtualResource Assigned steps R. Period Budget Deadline

VR_Central
(vr1)

readGoal
evaluateControl

10 ms 1.2 ms ?

VR_Bus (vr2) transmitReq
returnPosition
transmitControl

10 ms 576 bits ?

VR_Remote
(vr3)

readSensor
setServos

10 ms 0.125
ms

?

When other design paradigms are used, the criteria to
define the number of virtual resources and to assign steps to
them may be different. Hence, if the wcet of the different steps
executed in a processor has a large variability, or if some of its
steps require access to a mutex with a high utilization, it can be
advisable to use several virtual resources to schedule the steps
of this processor. Likewise, if the application design is based
on a component-based paradigm, the deployment of the
components in the platform is unknown, so it is convenient to
assign the virtual resources to each individual component in
order to facilitate their later deployment. In this case, a virtual
resource can be assigned for each invocation of the component
services that is made in the different transactions. Hence, a
strict ownership relation is kept between the component and its
virtual resources.

B. RT-Application analysis

The analysis phase of a real-time application based on a
resource reservation paradigm deals with establishing the
relations among the virtual platform attributes that make the
application satisfy its timing requirements. These requirements
are formulated in the RR-model as Timing_Requirement
modelling elements.

The design criterion described in the previous section
guarantees that, when the execution of a step is required, there
is enough budget to execute it without waiting for the next
replenishment. Besides, its response time (tx) can be delimited
by the expression tx<tD-(tB-wcet). In the case that the
EndToEndFlow transaction is linear, for each timing
requirement imposed on it, a restriction among the virtual
resources attributes can be obtained. For example, in the
ServoControl application, the restriction introduced by the
timing requirement is the following:

vr1.tD-(vr1.tB-readGoal.wcet)+ vr1.tD-(vr1.tB-evaluateControl.wcet)+

 +vr2.tD-(vr2.tB-transmitReq.wcet)+ vr2.tD-(vr2.tB-returnPosition.wcet)+

 +vr2.tD-(vr2.tB-transmitControl.wcet)+ vr3.tD-(vr3.tB-readSensor.wcet)+

 +vr3.tD-(vr3.tB-setServos.wcet) < tGD

This expression leads to the following numerical solution:

2 vr1.tD+ 3 vr2.tD+ 2 vr3.tD ≤ 9.182 ms

When the reactive model is more complex (e.g., when the
control flow among the steps relies on fork, join, branch, or
merge relations), the previous restrictions described as
inequalities cannot be deduced directly, so the result of the
analysis would be a set of concrete n-tuples of deadline
attributes that make the application schedulable. These values
can be obtained using the MAST 2 model and the MAST
analysis tools.

The result of the analysis process of the real-time system is
the RR-model&constraints model, which it is the result of
adding to the previous RR-model the set of restrictions
between the attributes of the virtual resources obtained from
the analysis process. Again, it is important to notice that the
analysis process is made without knowing neither the physical
platform in which the application will be executed nor the other
applications that will share the same physical platform.

C. RT-Application negotiation

The negotiation process is executed as a step previous to
the deployment and execution of the application on the
physical execution platform. It is an online process performed
by the resource reservation service that must be provided by
the execution platform. This negotiation requires knowing the
RR-model&constraints of the application, the deployment plan,
and the current workload of the physical platform. This process
results in the assignment of values to the scheduling parameters
of the threads and mutexes of the application that is being
negotiated, and the reassessment of the threads and mutexes of
the workload that was already executing, in order to adapt it to
the new situation.

The deployment plan describes the assignment of the
virtual resources of the application to the processing resources
of the platform. Likewise, it includes the assignment of the
kind of scheduling parameters (fixed-priority, EDF deadline,
partition timetable, etc.) to the virtual resources, according to
the scheduling policy applied to the scheduler of the processing
resource assigned to them. The need to access this information
reveals the importance of modelling both the virtual resource of
the virtual platform and the schedulable resource of the final

WATERS 2011 37

resources model with a single element. Table II shows the
resources model of the ServoControl application.

TABLE II. RESOURCE MODEL AFTER NEGOTIATION

VirtualResource/
Schedulable Rsrc

Assigned
steps

R. Period/
priority

Budget/
scheduler

Deadline

VR_Central (vr1)
/centrThr

readGoal
evalControl

10 ms
/14

1.2 ms
/centrSch

2.51

VR_Bus (vr2)
/commChannel

sendReq
rtrnPosition
sendControl

10 ms
/146

576 bits
/busSch

0.83

VR_Remote (vr3)
/remiteThr

readSensors
setServos

10 ms
/22

0.125 ms
/rmtSch

0.5

When the virtual platform established in the RR-model has
all of its attributes assigned (i.e., in the case of complex
reactive models), the negotiation process consists in building a
timing behaviour model by gathering the application model and
the current workload model, and executing a schedulability
analysis. Different sets of values can be used until a
schedulable solution is found.

However, when the result of the analysis phase is a set of
restrictions among the virtual resources attributes (and not a set
of concrete values), there is a higher negotiation capacity. In
this case, the global model composed by the current workload
of the platform plus the virtual platform model is partially
specified, since the budgets and replenishment periods of the
virtual resources have their definitive values assigned, but the
deadlines do not have concrete values assigned yet. However,
these deadlines must satisfy the set of restrictions obtained in
the real-time analysis of the application. The negotiation task
consists of looking for a set of values for these deadlines that
not only satisfies the required restrictions, but also leads to a
final schedulable workload including the prior application
contracts together with the new one.

The online negotiation process requires a quick analysis of
possible priority assignments and of the schedulability of the
global model. The design strategy applied leads to global
models composed of several, although very simple, elements.
A typical model may be composed of hundreds of virtual
resources, each of them with a periodic triggering pattern, with
a period equal to the replenishment period, executing an
activity whose wcet is equal to the budget, and with a deadline
less than or equal to the period. If the platform relies on fixed-
priority schedulers, the priority assignment criterion consists in
assigning the maximum priority to the thread that implements
the virtual resource with the minimum deadline, and using
classical RMA for the shedulability analysis. The model is
more complex if the activities of the virtual resources use
mutual exclusion resources, although there are other known
RMA techniques for these cases. In our case, a simplified
version of the MAST analysis tool [4] is used. It makes it
possible to analyse the system with hundreds of virtual
resources in tenths of a second.

The negotiation process usually requires performing
hundreds of schedulability analysis because the deadlines of
the virtual platform have to be modified, keeping the imposed
restrictions caused by the timing requirements of the
application, until finding a schedulable global configuration.

In Table II, the results of the negotiation for a certain prior
workload are shown. The values of the deadlines attributes are
the output of this negotiation, and they are compatible with the
set of restrictions imposed by the timing requirements of the
application, and with the workload of the processing resources
of the physical platform. Likewise, the scheduling parameters
(priorities) of the threads of the physical platform with which
the timing resources are implemented are also assigned.

D. Execution of the RT-Application

Once the virtual resources are instantiated in the physical
execution platform (if the negotiation process has been
successful), the execution of the application is launched using
the resource reservation API of the middleware, binding the
threads of the application with the existing virtual resources.

IV. CURRENT STATUS AND FUTURE LINES

The MAST 2 metamodel has been recently proposed.
Therefore, updating the tools that form the complete modelling
and analysis suite will take some time. Taking advantage of the
fact that both MAST 2 and MAST 1 are defined as formal
metamodels, MDA strategies have been used to develop the
design and analysis tools that use the resource reservation
paradigm. These tools process complete MAST 2 models,
transforming them into other MAST 2 models that exclusively
use modelling elements compatible with MAST 1, to whom the
currently available MAST tools are applicable. Thus, the
application model is unique and supports the whole resource
reservation-based development cycle for real-time applications.
However, in each stage, temporary models suitable to the
current available MAST tools are generated by lightweight
model-to-model (M2M) tools implemented with the ATL
language.

As an example, we describe below the model
transformation that leads to a model that allows the search of a
solution by analysing the application using the MAST
schedulability analysis tools. This approach is required when
the application has a complex control flow and the timing
analysis cannot be performed analytically according to the
diagrams shown in Figure 5 and the equations derived from
them.

The schedulability analysis is accomplished by
transforming the MAST 2 model in such a way that each
VirtualSchedulable Resource or VirtualCommunication
Channel is replaced by a Thread or CommunicationChannel
respectively, executed by an independent ProcessingResource
where a given workload is also being executed. This load
introduces contention that forces the worst-case response time
in the activity scheduled by the virtual resource. Of course, this
worst-case response time value must be compatible with the
deadline and budget set in the virtual resource. Figure 8 shows
the response time of an activity of wcet equal to the budget as a
function of the period of the load activity. The wcet of the load
activity is chosen as the maximum value that makes both
activities (application and load) schedulable. We need to find a
value of the load period that leads to a response time equal to
the deadline of the virtual resource when the wcet of the
activity is tB. A load period of tD (see Figure 8) is the only one

WATERS 2011 38

also causing a worst-case response time when the activity
executed in the virtual resource has a duration ta<tB. This
period is the one used in the model transformation. Figure 9
shows the modelling elements that form the analyzable model
(compatible with MAST 1 tools) of the activity scheduled by
the virtual schedulable resource vrx. The elements vrxProc and
vrxSch are the processor and the scheduler where the vrx
thread, which executes the activity of the virtual resource in the
analysis model, is scheduled. RxThLoad is the higher-priority
thread that executes the load activity modelled by the vrxEtEF
EndToEndFlow.

Figure 10 shows the result of the schedulability analysis

corresponding to the ServoControl example carried out in this
work using the schedulability analysis tools currently available
in MAST. Apart from verifying the application schedulability,
it also assesses a set of worst-case response times that match
those previously obtained from the equations in Section 3.

This paper demonstrates the capacity of the models
conforming to MAST 2 to support in a uniform way the
different phases of development of a real-time application
based on a resource reservation paradigm. This contribution is
a starting point towards updating the MAST tools in order to

support the new advanced design paradigms for real-time
systems covered by MAST 2.

 The use of a formal UML metamodel to define MAST 2
allows it to cover in a unified manner the models
corresponding to different design strategies for real-time
systems. Likewise, MAST 2 represents a suitable environment
to build a new generation of lightweight tools based on model
transformation rules (instead of source code) that easily allow
dealing with the new development paradigms for real-time
systems recently appeared.

REFERENCES
[1] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves:

an abstraction of managing processor usage”, Proc. 4th Workshop on
Workstation Operating Systems (WWOS-IV), 1993.

[2] C. W. Mercer, R. Rajkumar, and J. Zelenka, “Temporal protection in
real-time operating systems”, Proc. 11th IEEE Workshop on Real-Time
Operating Systems and Software, 1994, pp. 79-83.

[3] R. Rajkumar, K.Juvva, A. Molano and S. Oikawa, “Resource kernels: A
resource-centric approach to real-time and multimedia systems” Proc.
SPIE/ACM Conf. on Multimedia Computing and Networking, 1998.

[4] M. González Harbour, J.J. Gutiérrez, J.C.Palencia and J.M.Drake,
“MAST: Modeling and Analysis Suite for Real-Time Applications”,
Proc. 22nd. Euromicro Conf. Real-Time Systems (ECRTS 2001), 2001.
MAST tool: http://mast.unican.es/

[5] Object Management Group. “UML Profile for Modeling and Analysis of
Real-Time and Embedded systems (MARTE)” version 1.0, OMG doc.
formal/2009-11-02, 2009.

[6] J.Medina and A. García Cuesta, “From composable design models to
schedulability analysis with UML and UML profile for MARTE”. Proc.
of CRTS 2010. 3rd Workshop on pompositional Theory and Technology
for Real-time Embedded Systems November 2010.

[7] C. Cuevas, J.M. Drake et all, “MAST 2 Metamodel”
http://mast.unican.es/simmast/MAST_2_0_Metamodel.pdf.

[8] J.P.Lehoczky, L.Sha and J.K.Strosnider, "Enhanced aperiodic
responsiveness in hard real-time enviroments",Proc. IEEE RTSS 1987.

[9] J. Strosnider, J. Lehoczky and L. Sha, “The Deferrable Server Algorithm
for Enhanced Aperiodic Responsiveness in Hard Real-Time
Environments”, IEEE Transactions on Computers , 44 (1), January 1995.

[10] B. Sprunt, L. Sha, J. Lehoczky, “Aperiodic task scheduling for hard real-
time systems”, Journal of Real-Time Systems, vol 1, July 1989.

[11] S. Saewong, R. Rajkumary J.P. Lehoczky M.H. Klein:"Analysis of
Hierarchical Fixed-Priority Scheduling" Proceedings of the 14 th
Euromicro Conference on Real-Time Systems (ECRTS.02).

[12] R.I. Davis and A. Burns: "An Investigation into Server Parameter
Selection for Hierarchical Fixed Priority Pre-emptive Systems" 16th
International Conference on Real-Time and Network Systems (RTNS
2008

Figure 10: Results of the analysis of ServoControl using MAST 1 tools

Figure 8: Selecting the load period for the virtual scheduling analysis

Virtual resource:
tB=10 ms
tD= 30 ms
tR= 100 ms

Load activity:
 -TLoad= tD

-taLoad= tD-tB

Figure 9: MAST 1 type model for the virtual scheduling analysis

vrx:VirtualSchedulableResource

budget=tB
replenismentPeriod=tR

deadline=tD

vrxProc:RegularProcessor

(Default attributes)

vrxSch:PrimaryScheduler

Host=vrxProc
Policy=FixedPriorityPolicy

vrx:Thread

Scheduler=vrxSch
Param=FixedPriorityParam(

 priority=1)

vrxThLoad:Thread

Scheduler=vrxSch
Param=FixedPriorityParam(

 priority=2)

vrxProc:EndToEndFlow

trg:PeriodicEvent
Period=tD

act:Step

Thread=vrxLoad
Operation= vrxOp

vrxOp:SimpleOperation

Wcet= tD-tB

WATERS 2011 39

SimTrOS: A Heterogenous Abstraction Level Simulator for
Multicore Synchronization in Real-Time Systems ∗

Jörn Schneider, Michael Bohn, Christian Eltges
Dept. of Computer Science

Trier University of Applied Sciences
Trier, Germany

{j.schneider, m.bohn, c.eltges}@fh-trier.de

Abstract—To provide a common ground for the comparison
of real-time multicore synchronization protocols we developed
a framework that supports heterogenous levels of abstraction
for simulated functionality and simulated timing. Our intention
is to make the simulator available to the real-time research
community and industrial users. For the latter we initially
focus on automotive real-time systems. This paper describes
the simulation framework and the novel idea of heterogenous
abstraction levels that lies at the heart of its design. Notwith-
standing the clear focus, we believe that the simulator itself as
well as the concept of heterogenous abstraction levels can be
useful in a significantly broader way.

Keywords-real-time, operating system, simulator, multicore,
abstraction, synchronization

I. INTRODUCTION

For real-time researchers it is important to demonstrate the
benefits of novel approaches in comparison to previous ones.
However, it can be a tedious job to achieve a comparison
on equal terms, since this usually requires implementing
concepts and evaluation infrastructures of other groups.
Moreover, the transferability of the evaluation results to an
industrial context is quite limited, as the original comparison
ignores the caveats of a particular product context for good
reasons. Unfortunately, important qualities (e. g. memory
consumption, temporal implementation overhead, or energy
demand) of a solution are often sensitive to the ignored
factors, thus rendering too general results useless.

We believe that many valuable concepts of our community
are due to the lack of scalable and transferable evaluations
not appreciated in the way they would deserve and the
adoption by industry is significantly smaller and slower than
it could be. As it is infeasible to investigate each solution
a priori in every potential industrial usage scenario, the
comparison approaches should allow for a fast re-exploration
considering a concrete product context.

We developed the simulation framework described in this
paper to tackle these issues for multiprocessor resource lock-
ing protocols, especially in the context of automotive real-
time systems. Notwithstanding this clear focus, we believe

∗This work was partly supported by the German Federal Ministry of
Education and Research (reference No. 17N1309)

that the simulator core itself can be used for any timing
evaluation of multicore real-time systems and moreover,
that the novel idea of heterogenous abstraction levels that
lies at the heart of its design can also be a key to fast
re-exploration when investigating further runtime properties
such as memory or energy consumption.

Efforts to migrate legacy applications to multicore sys-
tems, such as the one sketched in [1], which led to the
development of the described simulator, require sound mul-
ticore synchronization mechanisms. Moreover, automotive
industry identified in its AUTOSAR real-time operating
system standard the need for resource locking protocols in
future multicore systems [2]. However, none of the available
approaches (e. g. [3], [4], [5]) has been chosen so far, nor
was any suitable replacement incorporated into the standard.

Comparison studies such as the ones by Brandenburg, and
Anderson [6] and by Lakshmanan, Niz, and Rajkumar [7]
are of no help for the automotive industry as they come
to diverging conclusions. One result is in favor of spin-
based the other in favor of suspension based schemes. In
our opinion it is evident that the question which multicore
resource locking protocol is better can only be decided for
a given characteristic of an application and a given imple-
mentation of the protocol in a particular operating system,
e. g. AUTOSAR. Furthermore, we conjecture that the HW
characteristics of automotive systems such as low processing
power can have a significant effect on the outcome of this
question.

As briefly described in [8] our SimTrOS simulator is
designed to deliver detailed results about the suitability of
different protocols and their implementation overhead for
the specific characteristics of automotive applications. The
design of the simulator was driven by the following central
requirements:

1) Modelling of applications and operating system ser-
vices, e. g. multicore resource locking protocols, shall
be decoupled

2) The two simulation concerns functionality and tempo-
ral behavior shall be strictly separated

3) Any simulation result shall be deterministically repro-
ducible, i. e. even if a system with race conditions is

WATERS 2011 40

simulated, the simulator shall produce the same output
if it receives identical input. Otherwise incremental
changes of the simulated system might become indis-
tinguishable from random effects. Note that variability
of the simulation can be achieved by using different
seed values for pseudo random number generation.

II. RELATED WORK

Since the core of the simulator is a discrete event simula-
tion engine, it shares the basic characteristics of these types
of simulators. We investigated several of them and found two
crucial aspects that none of them addressed in the required
combination:

Temporal Granularity: Essential timing issues deter-
mining the efficiency of multicore synchronization lie at
the RTOS implementation level and even at HW level. A
suitable simulator has to support the investigation of these
properties, and many simulators do this.

Abstraction Level: The intended users of the simulator
shall model the functionality of applications or resource
locking protocols at convenient levels of abstraction.

The problem is that simulators that allow for fine grained
timing investigation require the user to specify all the func-
tional details at the corresponding low level of abstraction.
To address this issue we developed the idea of a simulation
framework with heterogenous abstraction levels as it is
explained in Section III.

Although we found no simulator that is comparable in
this respect, two simulators should be mentioned here.
RTSSim [9] is a close match regarding other aspects. It
uses a system model written in C-Code, where the actual
simulation is running the compiled code, similar to our
approach. The key differences are that we use an abstract
language instead of C, support multicore, and consequently
separate the two concerns simulated timing and functionality.
The other simulator RTSim [10] is also similar and accepts
definitions written as C-Code. The main difference to our
solution is again, that our simulator differentiates strictly
between timing and functionality.

III. NOVELTY OF THE SIMULATOR

The main contribution of this paper is describing a
simulation framework that consequently separates differ-
ent levels of abstraction. It is designed to compare the
performance of multicore resource locking protocols from
a research or an industrial perspective. Researchers can
utilize the simulator to quickly investigate crucial properties
of their multicore synchronization approaches such as the
question under which basic assumptions is one concept
better than another. Practitioners can benchmark different
multicore resource locking protocols against one another
for a particular application and operating system context in
a rapid prototyping fashion. The simulator is implemented

in Haskell but requires no user knowledge about functional
programming.

A major advantage of the simulator is that it provides
a fast and easy way to investigate the same protocol with
different underlying timing models and vice versa. This is
achieved by the simulators ability to strictly separate the
two concerns simulated functionality and simulated timing.
In other words, the simulator works with heterogenous
abstraction levels for model properties. The timing property
can be changed without altering the functional model and
the specification of the protocol algorithms can be modified
while keeping the same basic timing model.

The benefit of separating the concerns functionality and
timing can be illustrated by the following example. The
performance of the ready queue management of the sched-
uler could make a significant difference as it contributes
to the overhead of suspension-based schemes. In a normal
simulation environment investigating the difference between
algorithms maintaining a sorted or unsorted list of jobs
would require to implement a complete RTOS scheduler in
two versions. Our simulator allows to consider this by just
specifying a different temporal behavior while the scheduler
is described at a high level of abstraction with the same
standard queuing algorithm in any case. Consider how much
easier it is for an user of our simulator to evaluate different
protocols and implementation flavors of the same protocol in
comparison to the state-of-the-art simulation environments.

IV. SYSTEM MODEL

The simulator distinguishes between events and effects of
events. An event is a point in time and an effect is a state
change. Note that each event has one assigned effect, that an
effect can leave the current state unchanged, and that more
than one event can happen at the same time.

Periodic and one time events are supported. Periodic
events have two parameters: period (reoccurrence interval
of events), and phase (time offset for the event sequence).
One time events are periodic events with period = ∞.

Events are assigned to locations according to their origin.
The current framework implements cores and the envi-
ronment (anything outside of cores) as separate locations.
Events from the environment are referred to as external
events throughout the paper.

On top of the basic concepts of the simulator itself (i. e.
events, effects, and locations) an arbitrary model of the
simulated system can be established. So far we implemented
an AUTOSAR compliant system model with its inherent
restrictions. Note that these restrictions, such as a partitioned
fixed priority scheduler, are by no means limitations of the
simulator itself.

WATERS 2011 41

Application

API-calls

uses

Basic & Timing Functions

uses

Simulator Core

uses

Figure 1. Layered architecture of the simulator

V. ARCHITECTURE AND IMPLEMENTATION

A. Architecture

The architecture of the simulation framework is depicted
in figure 1. The top layer consists of tasks, interrupt service
routines (ISRs), and external events. We denote this set of
entities the application set.

The application layer uses functionality from the under-
lying API-call layer. The API-call layer provides two sets
of functionality. The first set consists of operating system
functionality of the simulated system, classically denoted
as system calls. The second set of functionality are helper
functions that are provided by the simulator.

As applications are composed of API-calls, API-calls are
again composed of more primitive functions, the basic func-
tions. Basic functions interface directly with the simulator
core and only they can directly manipulate the system state
of the simulator. Thus the basic functions are the foundation
of the simulated functionality. The temporal behavior is
specified separately by timing functions. By combining a
basic function and a timing function the functional and
temporal dimension of executing the simulated code can be
freely defined.

The lowest layer consists of the simulator core that is
responsible for the control of the simulation.

The first two layers are separated to ease the use by
two developer groups: Users specify applications on top
of predefined API-calls. Implementors create abstract imple-
mentations of real-time operating systems as API-calls for
users to operate with. The distinction between these two
groups is of course purely virtual, as one and the same
person could be interested in both aspects.

Although the simulator is implemented in Haskell and
running a simulation actually means executing compiled
Haskell code, users and implementors use only a small
subset of the Haskell language. The syntax of this abstract
programming language is quite simple and requires no
knowledge of the Haskell language.

B. Implementation of the Simulator Core

The simulator core is a discrete event simulation engine
that selects one event after another and skips time periods for

0 1 2 3 4 5 6 7

tasks

t

J1

ISR

basic function1,1

basic function2

basic function1,2

external event1
external event2

Figure 2. Events of a single job.

which no events occur. As the origin of an event is either a
processor core or the environment, there are two cases where
the system state of the simulator can be changed: finishing
the execution of a basic function or the occurrence of an
external event.

The simulator computes at which point in time the next
event occurs by considering all modeled locations that might
produce events. External events are explicitly defined, e. g.
every 10 time units event x occurs. The finishing time of a
basic function is calculated via the attached timing function.
If the nearest future event is the only one that happens at
this point in time the simulator selects it as next event to
be processed. We first describe an example for these simple
cases before considering the situation of two or more events
at the same time.

1) Single Events: Consider the single core scenario
shown in figure 2. We use the following notation

σ : SystemState

is the simulator internally used state of the system,

t : Time

is the simulated time,

bf1, bf2 : SystemState → SystemState

are basic function1 and basic function2, and

tf1, tf2 : SystemState → Time

are used to refer to the timing function attached to bf1 and
bf2, respectively. Note that although it is possible to combine
different timing functions with the same basic function at
different calling points we refrain from using this ability in
the examples of this paper.

The simulation starts with time t = 0. The next point in
time where something happens is t = 1 where an external
event occurs. The simulator advances t to 1 and derives
the effect of the external event (by computing the attached

WATERS 2011 42

function of type SystemState → SystemState). In this
example, the event causes J1 to be the new running job.
J1 executes bf1.

To determine the next event the simulator calculates the
nearest point in time when an event will happen. At time
3 an external event occurs and bf1 would finish execution
at time t + tf1(σ) = t + 4 = 5. Since the external event
occurs first, the simulator picks it and computes its effect
after setting t = 3. As the event represents an interrupt
request, the computed effect is starting an interrupt service
routine (ISR). The ISR (consisting of bf2) preempts bf1.
The simulator calculates tf2 for the current system state
and derives 2 time units as the execution time of bf2. Thus
the next time point for an event is minimum(5,∞) as no
further external events are specified.
t is advanced to 5 where bf2 finishes execution and the

simulator computes the effect of this basic function on the
system state, i. e. bf2(σ). The only effect of bf2 is to return
from the ISR, i. e. restoring the previously running job. bf1
therefore continues execution. As this basic function already
executed 2 time units, the simulator calculates the finishing
time to t + (tf1(σ) − 2) = t + (4 − 2) = 7. Note that tf1
is applied to the current system state and thus could deliver
a different execution time than beforehand, which is not the
case in this example.

Thus the next (and last) event that occurs in the simulation
happens at time 7 when bf1 finishes execution. The effect
of this basic function is applied to the system state. The
simulator stops, since the next point in time where something
happens is ∞.

2) Observations: As demonstrated in the example, effects
of external events and basic functions are always applied
atomically. This prevents race conditions in the simulator
data structures and simplifies the implementation of basic
functions. Furthermore, effects of events take zero time.

With the strict separation of basic functions and timing
functions, different basic function implementations can be
simulated without actually touching the implementation of
effects and by only changing the timing function. It is also
possible to simulate theoretical cases, where a basic function
would take no time at all, e. g. scheduling without scheduler
overhead.

Because the absolute time a basic function requires is
newly computed whenever the simulator calculates the next
event, it is possible that the time already executed on behalf
of this basic function, is greater than the newly computed
time. In this case the simulator finishes the basic function
at the current point in time. Consider for example a basic
function getSpinlock, which takes no time if the lock is
free, but infinite time if the lock is blocked. If a job tries
to acquire the lock, but the lock is not free, the job still
accumulates calculation time. When the lock is released,
the time needed to get the lock becomes 0 and the lock
is granted immediately, but is not retroactively granted in

the past.
3) Multiple Events at the same Time: Even in the spe-

cial case where only one core is simulated, two events
can happen at the same point in time. In order to fulfill
requirement 3 (deterministic execution) the order in which
the events are applied has to be the same for every execution
of the simulation. Therefore external events occurring at the
same time as the completion of a basic function are always
considered to happen before the basic function finishes, and
all external events have a strict order.

Now consider the case of a multicore system where sev-
eral basic functions could finish simultaneously on different
cores. To solve this problem, the implementor has to define a
function that decides which effect of a basic function should
be applied first. A simple decision function could apply the
basic function from the core with the lowest ID first.

The decision function can inspect all possible next system
states and return the new global system state. Setting a
system state as the new global system state triggers a new
calculation of the nearest effect in the simulator. In case
there is more than one effect remaining for this point of
time, the decision function is consulted again. Regardless
of the decision taken, a log message is written, indicating
that a potential race condition of the simulated system was
encountered.

Simulating a multicore system is not really different from
simulating a single core system. In the single core case
the simulator has to calculate the next point in time from
two locations, the environment and the one core. In the
multicore case the simulator has to consider n+1 locations,
where n is the number of cores that are simulated. Note
that it is possible that more than one basic function finishes
execution at the same time on one core, e. g. if two basic
functions execute in zero time. The simulator resolves this
automatically by the position of the basic function in the
task program, i. e. a basic function that was called before
another basic function on the same core always applies its
effect first.

VI. DEFINING A SIMULATION

In the following subsections we describe in more detail,
how constructs from the three topmost layers are defined.

A. Defining applications

An example for a task definition in the simulator is
depicted in listing 1. The most interesting property here is
taskProgram. A task program defines the behavior of a task
and is defined in the imperative language style mentioned
before. The program here is strictly sequential, but the
abstract task language also supports conditions and loops. A
task program is mainly a series of calls to functions provided
by the API-call layer.

The semantics of the abstract task programs depends on
the API-call implementation. As in a concrete RTOS, the

WATERS 2011 43

application developer only sees the interface to the operating
system and depends on a detailed description of its exact
behavior. The example uses an AUTOSAR based semantics.

A useful function to abstract arbitrary computations is the
API-call time. It consumes time without changing the state
of the simulated system.

Listing 1. Task Example
task i = autosarTask {

taskPeriod = 100,
taskPhase = 0 ,
taskPrior i ty = 1 ,
taskName = ”task i” ,
taskCore = 0 ,
taskProgram = do {

osGetResource ”R1” ;
time 33;
osReleaseResource ”R1” ;
time 5;
osTerminateTask ;

}
}

The task description template is a wrapper around the
primitives event and effect. The task definition in the exam-
ple is a shortcut for the definition of an event with period
100 and phase 0. The effect of the task definition is then to
start an ISR that activates the task on processor core 0.

The definition of an event is very similar to the definition
of a task. An example for an event definition is depicted in
listing 2 (in fact this example is an alternative way to activate
a task). Like a task, an event has a period, phase and a
name (but no priority and core ID). In the example, a unique
event that occurs at time 70 is defined. The main distinction
between a task and an event is the property eventEffect.
Where a taskProgram consists of a series of statements, an
eventEffect is more general and can be any Haskell function
from SystemState → SystemState .

Since we do not require Haskell knowledge from users, we
provide primitive functions that should cover the most basic
cases of system state manipulations due to events. In the
example an ISR on core 1 is started with the helper function
startISR. The second parameter can be an arbitrary, abstract
program that defines the behavior of the ISR. Another typical
case for the effect of an event is changing a variable in the
system state. The helper function updateGlobalVar can be
used to change the value of a global variable.

Listing 2. Event Example
event j = event {

eventPeriod = Infini ty ,
eventPhase = 70,
eventName = ”event j” ,
eventEffect = startISR 1 (do {

osActivateTask task3
}) −− interrupt on core 1

}

B. Defining API-calls
API-calls are defined in a similar syntax as task pro-

grams. Listing 3 shows an example for the definition of

osTerminateTask, which was used in listing 1. API-calls are
composed of basic functions or other API-calls. Note that
the function schedule is not a basic function, but a composite
API-call. Composite API-calls are defined like normal API-
calls. What distinguishes them from normal API-calls is that
they are only used internally and are not intended to be
used in task programs. To distinguish externally visible API-
calls, i. e. system calls, from internal API-calls, we prefix
the former with os. This is purely a convention and not
mandatory.

Listing 3. API-call Example
osTerminateTask = do {

setJobVar ” s ta te ” Suspended ; −−suspend task
schedule ; −−reschedule

}

schedule = do {
j <− getHighestPriorityJob ;
setRunningJob j ; −−execute highest pr ior i ty task

}

C. Defining basic functions

The layer below API-calls consists of two parts: functional
behavior (basic functions) and temporal behavior (timing
functions). The Basic function getHighestPriorityJob, used
in Listing 3, searches the ready queue for the job with the
highest priority and returns the corresponding job number
as a result.

For the function getHighestPriorityJob one can imagine
two implementation strategies: searching through an un-
sorted list or maintaining a priority ordered list of jobs. In
the first case getting the highest priority job would take O(n)
steps and in the second case it would take O(1) steps1. We
can capture these two different timing behaviors by defining
the timing functions depicted in Listing 4.

Listing 4. Timing Function Example
linearTime s = 10 + 5 ∗ length (getL readyQueue s)

constTime s = 10

Note that timing functions can use the complete state of
the simulated code to derive the proper execution time for
each calling context. This feature is used in Listing 4 to
consider the current length of the ready queue.

To combine a concrete pair of basic and timing functions
the primitive makeBasicFunction, as shown in listing 5 is
provided.

Listing 5. Basic Function Definition
getHighestPriorityJob = makeBasicFunction linearTime

getHighestPriorityJobImpl

1Choosing one or the other implementation has of course an impact on
the timing of the corresponding function addJobToReadyQueue. Adding a
job to an unsorted list takes O(1) steps, adding a job to a sorted list takes
at least O(log(n)) steps. Evaluating the impact of these kinds of decisions
was the motivation for the development of the simulator.

WATERS 2011 44

D. Simulating a system

As described above, a system definition consists of various
parts, which are possibly defined by different developers.
Such a system, including application code, is compiled
to a native executable in order to obtain a most efficient
simulator. Since all definitions are pure Haskell code, we use
the Glasgow Haskell Compiler (GHC) to create simulation
executables.

The compiled executable accepts different options to
control the simulation. It is possible to run a simulation
interactively, simulating one step after another. In non-
interactive mode a simulation is executed until completion
or up to a specified time limit. During the simulation each
call to a basic function and each occurrence of an external
event is written to a log file.

VII. CONCLUSION

We presented the design of a novel simulator. The key
idea of heterogenous abstraction levels allows to simulate a
system with different timing parameters, without changing
the functional behavior. This scheme was chosen to allow
for a fast exploration of multicore real-time synchroniza-
tion protocols in different implementation flavors for their
employability in industrial automotive systems. We conjec-
ture that the approach is equally suited to compare other
mechanisms such as scheduling regarding their sensitivity to
implementation overhead, e. g. context switches. Moreover,
the idea of strict separation of timing and functionality is,
as we believe, well suited to be used in many simulation ap-
proaches in the field of analysis of non-functional properties
apart from timing.

The modular design of the simulator and its separation in
application, i.e task sets and external events, and operating
system layer, i. e. API-calls, is another key feature aimed at
easy usage. We intend to provide the simulator as an open
tool to the research community and to successively build
up a repository of simulation code for real-time operating
systems and applications.

We started implementing different multicore resource
locking protocols on top of an AUTOSAR system model.
The next step is providing better ways to examine simula-
tion results such as a tool that extracts statistics from the
produced XML output of the simulator, e. g. average or ob-
served worst-case execution, or blocking times of jobs. For
visualization of simulator runs we plan to leverage existing
tools, e. g. translating the output of the simulator to the input
format of the Grasp tool [11]. A more remote goal could
be to generalize the principle of heterogenous abstraction
levels for the simultaneous investigation of multiple non-
functional run-time properties such as energy demand, or
memory consumption in addition to timing.

REFERENCES

[1] J. Schneider, M. Bohn, and R. Rößger, “Migration of auto-
motive real-time software to multicore systems: First steps
towards an automated solution,” in Proceedings Work-In-
Progress Session of the 22th Euromicro Conference on Real-
Time Systems, ser. ECRTS’10, July 6–9 2010, pp. 37–40.

[2] AUTOSAR Release 4.0 — Requirements on Multi-Core
OS Architecture, AUTOSAR Std. 408, Rev. 1, 11 2009,
http://www.autosar.org/download/R4.0/AUTOSAR\ SRS\
MultiCoreOS.pdf.

[3] R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-time synchro-
nization protocols for multiprocessors,” in IEEE Real-Time
Systems Symposium, 1988, pp. 259–269.

[4] P. Gai, G. Lipari, and M. D. Natale, “Minimizing memory
utilization of real-time task sets in single and multi-processor
systems-on-a-chip,” in In Proceedings of the 22nd IEEE Real-
Time Systems Symposium. Society Press, 2001, pp. 73–83.

[5] A. Block, H. Leontyev, B. B. Brandenburg, and J. H. Ander-
son, “A flexible real-time locking protocol for multiproces-
sors,” in RTCSA ’07: Proceedings of the 13th IEEE Interna-
tional Conference on Embedded and Real-Time Computing
Systems and Applications. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 47–56.

[6] B. B. Brandenburg and J. H. Anderson, “A comparison of the
M-PCP, D-PCP, and FMLP on LITMUSRT,” in OPODIS ’08:
Proceedings of the 12th International Conference on Princi-
ples of Distributed Systems. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 105–124.

[7] K. Lakshmanan, D. d. Niz, and R. Rajkumar, “Coordinated
task scheduling, allocation and synchronization on multipro-
cessors,” in RTSS ’09: Proceedings of the 2009 30th IEEE
Real-Time Systems Symposium. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 469–478.

[8] J. Schneider and C. Eltges, “Towards an evaluation infras-
tructure for automotive multicore real-time operating sys-
tems,” in Proceedings of the 4th international conference on
Leveraging applications of formal methods, verification, and
validation - Volume Part II, ser. ISoLA’10. Springer-Verlag,
October 18–20 2010, pp. 483–486.

[9] J. Kraft, “RTSSim - a simulation framework for
complex embedded systems,” Mälardalen University,
Technical Report, March 2009. [Online]. Available:
http://www.mrtc.mdh.se/publications/1629.pdf

[10] L. Palopoli, G. Lipari, L. Abeni, M. D. Natale, P. Ancilotti,
and F. Conticelli, “A tool for simulation and fast prototyping
of embedded control systems,” in LCTES/OM, 2001, pp. 73–
81.

[11] M. Holenderski, M. M. van den Heuvel, R. J. Bril, and
J. J. Lukkien, “Grasp: Tracing, visualizing and measuring
the behavior of real-time systems,” in Proceedings of the 1st
International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems, 2010.

WATERS 2011 45

Grasp: Visualizing the Behavior of Hierarchical
Multiprocessor Real-Time Systems

Mike Holenderski, Reinder J. Bril and Johan J. Lukkien
Department of Mathematics and Computer Science

Technische Universiteit Eindhoven (TU/e)
Den Dolech 2, 5600 AZ Eindhoven, The Netherlands

Abstract—Trace visualization is a viable approach for gaining
insight into the behavior of complex distributed real-time systems.
Grasp is a versatile trace visualization toolset. This paper presents
its unique visualization capabilities for hierarchical multipro-
cessor systems, including partitioned and global multiprocessor
scheduling with migrating tasks and jobs, communication between
jobs via shared memory and message passing, and hierarchical
scheduling in combination with multiprocessor scheduling. Its
flexible plugin infrastructure allows for easy extension with
custom visualization and analysis techniques for automatic trace
verification. Grasp is freely available on the web1.

I. INTRODUCTION

Modern real-time systems are becoming increasingly more
complex, with many tasks executing concurrently on many
processors, making it difficult to understand the system be-
havior. A popular trend in coping with the vast number of
tasks and the resulting interferences between them is to hide
tasks inside components and to integrate the system from those
components. This approach requires hierarchical scheduling,
which has been covered extensively in the literature for unipro-
cessor systems. Recently, the real-time literature has been in-
vestigating applying hierarchical scheduling to multiprocessor
platforms. In this paper we address the problem of how to
provide insight into complex interaction patterns between jobs
executing in a hierarchical multiprocessor system.

Several approaches are available for tackling the complexity
of modern software systems. Ideally, every system would
be meticulously documented, providing a formal yet concise
description of the emergent system behavior. However, this is
a long and costly process without immediate effects (such as
additional functionality) and is therefore not common in prac-
tice. Examples of poorly documented code and system designs
are abundant. The description of the dynamic system behavior
therefore needs to be extracted from existing systems. There
are modeling and verification tools available, which rely on the
developers analyzing the implementation and constructing its
model. These tools then employ formal methods to verify the
behavior of the extracted model against an abstract model. The
state of the art modeling and verification techniques, however,
are not scalable and therefore can be applied to verify only a
small portion of the entire system.

1The work presented in this paper was supported in part by
the European ITEA2-CANTATA project. The Grasp toolset together
with example traces is available for Linux, Mac and Windows at
http://www.win.tue.nl/∼mholende/grasp.

Visualization tools offer an interesting alternative. Existing
systems can be instrumented to generate runtime traces, which
can then be analyzed by engineers and researchers, leveraging
their expertise and human capacity to recognize patterns, to
gain insight into the system behavior. The challenge here lies
in presenting the information in an intuitive way, enabling the
user to extract the essential properties of the analyzed system.

Grasp is a toolset for tracing and visualizing the behavior of
complex real-time systems. Its main strength lies in providing
many different visualizations for various real-time primitives
and scheduling techniques in a consistent and intuitive way.
Its flexible architecture allows to easily extend it with new
visualization and analysis techniques.

We have been using Grasp extensively within our group
during our research of embedded real-time systems and the
development of various extensions of a commercial real-time
operating system µC/OS-II, including a hierarchical scheduling
framework and slot shifting. The usage of Grasp has also been
reported in [1], [2], [3] where it was used to gain insights
into new approaches for hierarchical scheduling in Linux and
VxWorks operating systems.

Contributions
In this paper we build on top of our previous work presented

in [4], and present Grasp’s unique capabilities for visualizing
the timing of job execution and communication in the context
of:

• partitioned and global multiprocessor scheduling,
• migrating tasks and jobs,
• communication between jobs via shared memory and

message passing,
• hierarchical scheduling in combination with multiproces-

sor scheduling.

Outline
Section II summarizes the related work, followed by an

overview of the Grasp toolset in Section III. Grasp’s support
for multiprocessor scheduling is presented in Section IV and
its support for hierarchical multiprocessor scheduling is pre-
sented in Section V. Concluding remarks and future work are
presented in Section VI.

II. RELATED WORK

Existing visualization tools for real-time systems are spe-
cialized to visualize a fixed set of behaviors. For example,

WATERS 2011 46

the Tracealyzer [5] and TimeDoctor [6] are targeting only
non-hierarchical uniprocessor systems. Making a step towards
distributed systems is not trivial. Grasp, on the other hand,
supports multiprocessor systems with two level virtualization.

There are several trace visualization tools which support
the development of parallel programs on uniform parallel-
processor platforms, such as VAMPIR [7], Paje [8], or Jedule
[9]. They illustrate the execution of parallel jobs and communi-
cation between them, but they are limited to flat systems. To the
best of our knowledge no visualization tools currently support
the visualization of hierarchical scheduling in a uniprocessor
or multiprocessor setting.

Traces accepted by most tools are lists of timed events, often
in a binary format. Grasp, on the other hand, has adopted the
idea of treating the trace as a script, allowing for large degree
of flexibility, which was exploited during the development of
Grasp’s various visualization and analysis features.

There are several tracing tools available, mainly for the
Linux platform, which generate traces. Examples include the
Data Stream Kernel Interface (DSKI) [10], Ftrace [11], and
Dtrace [12]. DSKI is a platform independent interface standard
to support collection of a variety of performance data from
the operating system internals. It has been implemented on
Linux. Ftrace and Dtrace are integrated in many Linux dis-
tributions. They exhibit low performance overhead and low
memory footprint. In order to leverage their popularity, we
have implemented a converter from the sched switch tracer
output of Ftrace, allowing to use Grasp in many Linux and
Unix environments.

III. GRASP OVERVIEW

The Grasp toolset is composed of three entities: the Grasp
Recorder, the Grasp Trace and the Grasp Player, as shown in
Figure 1.

Target System

Grasp
Recorder

Grasp
Trace

Grasp
Player

Fig. 1. Overview of the Grasp archictecture.

The Grasp Recorder is embedded in the target system and is
responsible for generating a trace. The generated Grasp Trace
contains the raw data from a particular system run. The Grasp
Player reads in a trace and displays it in an intuitive way.

A. Grasp Recorder

The Grasp Recorder is implemented as a library providing
functions to initialize the recorder, log events, and finalize the
recorder. Calls to the event logging methods are inserted at

several places inside the kernel to log common events, such as
context switches, arrival of tasks, or server replenishment. The
recorder also provides a function to log custom events, which
programmers may call inside their applications.

Designing and implementing an instrumentation infrastruc-
ture which exhibits low performance and memory overheads
can be a daunting task. Therefore, rather than designing a
custom Grasp Recorder and integrating it within the target
system, one can implement a converter for existing trace
format, leveraging existing instrumentation and tracing tools,
as we have done for the sched switch tracer output of Ftrace.

B. Grasp Trace
The Grasp Trace is a Tcl [13] script. The decision for treating

the Grasp Trace as a script results in large degree of flexibility.
The Grasp Player basically provides a set of functions which
can be called from within a Grasp Trace. A trace can therefore
be a simple list of commands, but it can also be a complete
system simulator, or anything in between. This allows to embed
various extensions (or plugins) inside a trace, resulting in a self-
contained trace which can be visualized by any Grasp Player,
independent of the plugins it provides. It can also be used to
reduce the size of very large traces, by automatically generating
or factoring out common or repeating parts. Also, a trace may
call methods in the player’s public API to override its default
settings, making sure that the trace is visualized as intended
by its creator. The greatest benefit of the trace being a script,
however, is the simple plugin infrastructure discussed in the
next section.

A typical Grasp Trace event has the following structure:
plot time event arguments

which means that event has occurred at time time. The
arguments parameter is a list and describes the instance of
the event. Every event defines its own signature, i.e. the
number and the semantics of the arguments which it accepts.
Usually an event accepts a list of required arguments followed
by a list of -key value pairs for optional arguments. In the
remainder of this paper we will often ignore the plot time

part, as it is common for many events. Also, we will ignore
optional arguments for customizing the trace visualization, such
as assigning names or colors to events.

There are several basic events for tracing job execution:
• newTask task creates a new task, where task is a new

identifier used in later events.
• jobArrived job task indicates that job belonging to
task has arrived, where job is a new identifier used in
later events, and task is the identifier of a task created
previously with newTask.

• jobStarted job indicates that job has started.
• jobPreempted job indicates that job has been pre-

empted.
• jobBlocked job indicates that job has been blocked (e.g.

trying to access a locked shared resource).
• jobResumed job indicates that job has been resumed.
• jobCompleted job indicates that job has completed.

An example trace is shown in Figure 2.

WATERS 2011 47

newTask task1 -priority 7 -name "Task 1"
newTask task2 -priority 8 -name "Task 2"
plot 5 jobArrived job2.1 task2
plot 5 jobResumed job2.1
plot 20 jobArrived job1.1 task1
plot 20 jobPreempted job2.1 -target job1.1
plot 20 jobResumed job1.1
plot 35 jobCompleted job1.1 -target job2.1
plot 35 jobResumed job2.1
plot 50 jobCompleted job2.1

Fig. 2. Example of a Grasp Trace.

C. Grasp Player

The Grasp Player is the main contribution of Grasp. It
basically provides an execution environment for the script
inside of a Grasp Trace. As the Grasp Player is also written
in Tcl, its operation is very simple: it loads the definitions
of all methods which can be called inside a trace, and then
evaluates the trace script. Figure 3 shows an example of a trace
of a video processing algorithm. The visualization correlates

Fig. 3. Example illustrating a video processing application comprised of
several tasks (including Network, Decoder and Renderer tasks) executing on a
single processor and communicating individual frames of an MPEG video via
two shared buffers. As the mouse cursor moves across the trace, the contents
of the buffers changes. The figure shows the contents of the buffers at time
614, including the sequence number and the kind of the video frames.

the contents of the frame buffers with the system execution,
allowing to inspect their content at different times in relation
to the dynamic events occurring during runtime.

The Grasp Player comes with a powerful set of features,

including the visualization of task execution in flat and hier-
archical systems, uni- and multiprocessor scheduling, intervals
in slot shifting, measurement of execution and response times,
automatic verification of certain trace properties, command line
interface, and exporting to postscript (useful for creating high
quality figures for research articles, e.g. Figures 4,5,6, and 8).

Plugins: The Grasp Player provides a simple yet versatile
infrastructure for extending it with custom visualization and
analysis plugins. For example, the Grasp Recorder extension
and Grasp Player visualization plugin for intervals in slot
shifting was implemented by a student within hours, extending
the budget visualization for servers in hierarchical scheduling.

A plugin has three interfaces at its disposal:
(i) A plugin can define and implement its own methods

which can be called within a trace. The Buffer visualization
in Figure 3 is an example of such a plugin. It defines methods
for tracing the content of buffers via events for adding and
removing messages from a buffer:

• newBuffer buffer creates a new buffer, where buffer is
a new identifier used in later events.

• bufferplot time write buffer message indicates
that message was added at buffer ’s tail at time time.

• bufferplot time read buffer indicates that a message
was removed from the buffer ’s head at time time.

(ii) Alternatively, a plugin can register handlers for a set
of virtual events, which are generated when the traced events
are processed. The Grasp Player provides a method allowing a
plugin to register a script which will be evaluated whenever a
particular event occurs. For example, the Measurement plugin
registers a handler for the jobArrived and jobCompleted

events, to compute the response time of jobs.
(iii) The Grasp Player also provides a set of player events.

For example, a plugin can register a script which will be called
upon the TimeChanged event, which is generated when the
mouse cursor is moved across the trace. This player event is
used by the Buffer plugin to illustrate the buffer content at the
time pointed to by the mouse cursor (e.g in Figure 3).

The simple plugin infrastructure is made possible by the
Grasp Trace being a script. Other visualization tools rely on a
“dispatch” method which is called for each event in the trace
to dispatch the corresponding event handler. Extending such
tools with new events requires to modify the dispatch method
(or to limit the syntax of traced events). As the the Grasp Trace
simply calls methods provided by the Grasp Player, there is no
need for a dispatch method. Extending the Grasp Player with
a plugin requires simply to place the plugin script inside of the
plugins directory (which is automatically included when the
player starts).

Automatic verification: The plugin infrastructure can be
leveraged to implement various verification tools for automati-
cally analyzing the system behavior in a trace. For example, the
BudgetCheck plugin shows a warning when a server exceeds
its budget, and the MutexCheck plugin verifies proper nesting
of mutex locking events inside a trace.

For any given target system, if a particular behavior is
expected, then a “test-suite” plugin may be implemented to

WATERS 2011 48

verify that for a specific scenario the target system satisfies the
desired properties, e.g. after a maintenance activity.

IV. MULTIPROCESSOR VISUALIZATION

In this section we present Grasps support for multiprocessor
systems. The multiprocessor support is implemented by ex-
tending a subset of events for tracing job execution with an
optional -processor argument.

Our goal was to support various concepts commonly found
in multiprocessor scheduling. Grasp supports partitioned as
well as global multiprocessor scheduling with task and job
migration, and communication between jobs on shared and
distributed memory platforms. In this section we discuss each
of these features in more detail.

A. Creating a processor

Similar to other objects in a trace, such as tasks or servers,
a processor needs to be created before it can be referred to in
other trace events.

• newProcessor processor creates a new processor, where
processor is an identifier which can be added to other
trace events to support multiprocessor visualization.

B. Partitioned and global scheduling

In partitioned scheduling, each task is assigned to a particular
processor and during runtime all of its jobs execute on that
processor. In global scheduling, different jobs of the same task
may execute on different processors.

Partitioned scheduling: When a task is created, it can be
assigned to a particular processor:

• newTask task -processor processor creates a new
task and assigns it to the processor.

All subsequent job events will be mapped to the processor
(unless the processor argument is overridden, as discussed in
the next section). Figure 4 shows an example of a trace on
partitioned multiprocessor platform.

0 10 20 30 40 50 60 70

Core 1

Core 2

Tasks: Task 1 Task 2 Task 3 Task 4

Fig. 4. Example illustrating the execution of five tasks on a partitioned
multiprocessor platform consisting of two cores.

Figure 4 shows the system behavior in a collapsed view,
where the execution of all tasks is collapsed on a single time-
line. Alternatively, the Grasp Player also supports an expanded
view, where each processor is shown in a separate window
illustrating the interactions between the local tasks, as shown
for a single processor in Figure 3.

Note that the Grasp Player provides many details upon a
mouse click. For example, when the mouse is clicked on top of
a downward pointing arrow, a message is shown telling which
task has arrived. These features are difficult to visualize in a
paper.

Global scheduling: In global scheduling we can distinguish
between task and job migration (also referred to as restricted-
and full-migration scheduling, respectively [14]). When only
task migration is allowed, then tasks are allowed to migrate be-
tween processors, however, each job must execute on one pro-
cessor. When job migration is allowed, then jobs may migrate
between processors, i.e. they can halt on one processor and
resume on another. Grasp supports both task and job migration
by having the jobArrived, jobStarted, and jobResumed

events accept an optional -processor argument. In a trace
containing only task migration only the jobArrived event
will specify the -processor argument. In a trace containing
job migration also the jobStarted and jobResumed events
will specify the -processor argument. Figure 5 illustrates job
migration by having the first job of task 1 arrive at time 15 on
core 2 and later at time 22 migrate to core 1.

newProcessor core1 -name "Core 1"
newProcessor core2 -name "Core 2"
newTask task1 -name "Task 1" -color orange3
...
plot 15 jobArrived job1.1 task1 -processor core2
plot 15 jobPreempted job4.1
plot 15 jobResumed job1.1
...
plot 22 jobPreempted job1.1 -processor core1
plot 22 jobPreempted job3.1
plot 22 jobResumed job1.1 -processor core1
plot 22 jobResumed job4.1
...

0 10 20 30 40 50 60 70

Core 1

Core 2

Tasks: Task 1 Task 2 Task 3 Task 4

Fig. 5. Example showing a partial trace and the corresponding visualization,
illustrating the migration of a job. At time 22 the first job o task 1 migrates
from core 2 to core 1, indicated by the dashed arrow.

C. Communication between jobs

Depending on the memory architecture in a multiprocessor
system, jobs can communicate via shared memory or via
message passing.

Shared memory: When jobs executing on different proces-
sors communicate via shared memory, it is critical to maintain
the data consistency of the shared data structures. A common
approach is using mutexes. Grasp provides events for acquiring

WATERS 2011 49

and releasing a mutex, as shown in the example in Figure 6.
The relevant events are:

• jobAcquiredMutex job mutex indicates that job has
acquired mutex .

• jobReleasedMutex job mutex indicates that job has
released mutex .

The arguments job and mutex are identifiers for a previously
created job and mutex, respectively.

0 10 20 30 40 50 60 70

Core 1

Core 2

Tasks: Task 1 Task 2 Task 3 Task 4

Mutexes: Mutex 1

Fig. 6. Example showing tasks 2 and 4 using a mutex to communicate via
shared memory.

Figure 6 shows an example of two tasks communicating via
shared memory. At time 12 task 2 locks Mutex 1 guarding a
shared memory location. When task 4 arrives at time 15 it finds
the shared mutex in a locked state and is suspended. At time
17, when task 2 unlocks the mutex, task 4 is able to resume
and lock Mutex 1 to read the data communicated from task 2.

Message passing: On a distributed memory platform jobs
communicate via message passing. A popular example is the
Message Passing Interface (MPI) [15]. We reuse the Buffer
plugin [4] for this purpose. Depending on the communication
paradigm (one to one, broadcast, multicast), we create the
appropriate message buffers.

When the mouse cursor is dragged inside of the Grasp Player
window, the contents of the buffers is animated, reflecting their
state at the current time, indicated by the long vertical red line.
Clicking on a buffer element reveals more message details (in
case they were provided in the trace).

Figure 7 shows an example of tasks 1 and 2 communicating
via message passing. At time 12, there are 2 messages A and
B from task 2 inside of a message buffer, waiting for task 1 to
read them.

D. Merging traces from different processors

A Grasp Trace can list the events in (nearly) any order. In a
distributed multiprocessor system this allows to record traces
on each processor individually, and then to simply concatenate
the traces to form a single system trace, without the need for
interweaving them.

Notice that the traced event times are local to the processor
where the events occur. This means that in a multiprocessor
setting, for the events on different processors to align properly,
Grasp relies on the time being synchronized between the
processors. We plan to alleviate this restriction in future work.

Fig. 7. Example showing tasks 1 and 2 using a buffer to communicate via
message passing.

V. HIERARCHICAL MULTIPROCESSOR VISUALIZATION

In [4] we have introduced Grasp’s support for hierarchical
scheduling in uniprocesor systems. The events for tracing the
budget of a server are:

• serverReplenished server budget indicates that
server’s remaining budget was replenished to budget.

• serverResumed server indicates that a task has started
consuming server’s budget.

• serverPreempted server indicates that a task has
stopped consuming server’s budget.

• serverDepleted server budget indicates that server’s
remaining budget has been depleted.

In this section we elaborate on the combination of hierarchical
and multiprocessor scheduling.

Using the standard hierarchical scheduling support, the
Grasp Player is not aware of the task-to-server mapping, nor of
the desired behavior of particular server types (such as periodic-
idling or deferrable server). The hierarchical scheduling events
pertain only to the replenishment, depletion and consumption of
server’s budget. The target system is responsible for generating
the correct behavior. However, the Grasp Player can be easily
extended with a verification plugin, making sure that the server
behavior is according to its specification, e.g. that only tasks
assigned to the server consume its budget, or that a periodic
idling server always idles its budget away.

The fact that Grasp is not aware of the mapping between
servers and tasks allows to easily trace systems where tasks
consume budgets from several servers, and systems where
a server is serving its budget to several tasks executing at

WATERS 2011 50

the same time on different processors [16]. The latter is
accomplished by allowing several serverResumed events to
occur in a trace without a corresponding serverPreempted

event in between. This provides a very simple way for tracing
budget consumption in a multiprocessor setting: whenever a
task assigned to a budget is resumed on any processor, the
corresponding server is also resumed. Similarly, a server is
preempted whenever a task consuming its budget is preempted
on any processor.

0 10 20 30 40 50 60 70

Core 1

Core 2

0

10

20

Deferrable
server

Tasks: Task 1 Task 2 Task 3 Task 4

Fig. 8. Example showing a trace visualization of a hierarchical multiprocessor
system, where a deferrable server with period 30 and capacity 20 is serving
its budget to tasks 1 and 2.

Figure 8 shows an example visualization of such a system,
where a deferrable server with period 30 and capacity 20 is
serving its budget to tasks 1 and 2. Tasks 3 and 4 are not
bound to any server. At time 10, when task 2 arrives, it starts
consuming server’s budget. At time 15, when task 1 arrives, it
also starts consuming server’s budget. The budget is consumed
at twice the rate until task 2 completes at time 20.

VI. CONCLUSIONS

Grasp is a visualization toolset aiming to provide insight into
the behavior of complex real-time systems. In this paper we
have presented its unique features for visualizing hierarchical
multiprocessors scheduling. It provides various visualizations
for partitioned and global multiprocessor scheduling with mi-
grating tasks and jobs, communication between jobs via shared
memory and message passing, and hierarchical scheduling in
combination with multiprocessor scheduling.

Future work

Currently, Grasp relies on time synchronization between the
processors for proper alignment of tasks and servers executing
on different processors. This is sufficient for multicore plat-
forms which have synchronized clocks between their cores.
However, in a more general distributed setting, where the
time skews may become significant, the events on different
processors may be shifted in time. As future work, we would

like to address such systems by for example introducing syn-
chronization events allowing the Grasp Player to synchronize
the traces from different processors, e.g. using the approach
in [17].

REFERENCES

[1] M. Åsberg, J. Kraft, T. Nolte, and S. Kato, “A loadable task execution
recorder for linux,” in International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), July
2010.

[2] M. Åsberg, T. Nolte, and S. Kato, “Towards hierarchical scheduling in
linux/multi-core platform,” in IEEE International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), September 2010.

[3] M. van den Heuvel, R. Bril, and J. Lukkien, “Protocol-transparent
resource sharing in hierarchically scheduled real-time systems,” in IEEE
International Conference on Emerging Technologies and Factory Au-
tomation (ETFA), September 2010.

[4] M. Holenderski, M. M. H. P. van den Heuvel, R. J. Bril, and J. J.
Lukkien, “Grasp: Tracing, visualizing and measuring the behavior of
real-time systems,” in International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), July
2010.

[5] M. I. Mughal and R. Javed, “Recording of scheduling and communication
events on telecom systems,” Master’s thesis, Mälardalen University, 2008.

[6] TimeDoctor. http://sourceforge.net/projects/timedoctor/.
[7] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchenbach,

“Vampir: Visualization and analysis of MPI resources,” Supercomputer,
vol. 12, pp. 69–80, 1996.

[8] J. C. D. Kergommeaux, B. D. O. Stein, and M. S. Martin, “Paje: An ex-
tensible environment for visualizing multi-threaded program executions,”
LNCS 1900, 2000.

[9] S. Hunold, R. Hoffmann, and F. Suter, “Jedule: A tool for visualizing
schedules of parallel applications,” in International Conference on Par-
allel Processing Workshops (ICPPW), 2010, pp. 169–178.

[10] B. Buchanan, D. Niehaus, S. Sheth, and Y. Wijata, “The data stream ker-
nel interface,” University Of Kansas, Tech. Rep. ITTC-FY98-TR11510-
04, June 1998.

[11] Ftrace. https://rt.wiki.kernel.org/index.php/ftrace.
[12] Dtrace. http://www.sun.com/bigadmin/content/dtrace/.
[13] B. Welch, K. Jones, and J. Hobbs, Practical Programming in Tcl and

Tk. Prentice Hall, 2003.
[14] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and

S. Baruah, Handbook of Scheduling: Algorithms, Models, and Perfor-
mance Analysis. Chapman and Hall/CRC, 2004, ch. A Categorization
of Real-Time Multiprocessor Scheduling Problems and Algorithms, pp.
30–1 – 30–19.

[15] P. Pacheco, Parallel Programming with MPI. Morgan Kaufmann, 1996.
[16] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling framework

for virtual clustering of multiprocessors,” in Euromicro Conference on
Real-Time Systems (ECRTS), July 2008, pp. 181 –190.

[17] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” SIGOPS Operating Systems Review,
vol. 36, pp. 147–163, December 2002.

WATERS 2011 51

Abstract1

Switched networks have an increasingly important role in
real-time communications. The IEEE ethernet standards
have defined prioritized traffic (802.1p) and other QoS
mechanisms (802.1q). The Avionics Full-Duplex Switched
Ethernet (AFDX) standard defines a hard real-time network
based on switched ethernet. In the process of defining the
new MAST2 model, the network elements have been
enhanced to include switches and routers. This paper
introduces the schedulability model that will enable an
automatic schedulability analysis of an application using
switched networks.

1. Introduction

MAST (Modeling and Analysis Suite for Real-Time
Applications) [2][4] defines a model to describe the timing
behavior of real-t ime systems designed to be analyzable
via schedulability analysis techniques. MAST also pro-
vides an open-source set of tools to perform schedulability
analysis or other timing analysis, with the goal of assessing
whether the system will be able to meet its timing require-
ments, and, via sensitivity analysis, how far or close is the
system from meeting its timing requirements.

The model defined in MAST is very si milar to the
model defined in the standardized UML profile for real-
time embedded systems called MARTE [5]. A new
enhanced model is cu rrently being defined as a p roject
called MAST2, t rying to incorporate new m odelling
elements that can be found in real systems. It is expected
that the ideas introduced in MAST2 will contribute to the
future evolution of the MARTE standard.

Some of the new elements being defined in MAST2 are
network switches and routers. Switched networks are being
used increasingly to bui ld real-time systems, as new
network switches incorporate the real-time mechanisms
being defined in standards such as IEEE 80 2.1p with
prioritized traffic, 802.1q with various QoS mechanisms
[6], or th e Avionics Full-Duplex Switched Ethernet
(AFDX) [1] that defines a hard real-time network based on
switched ethernet.

This paper introduces the model elements required to
add network switches and routers into the MAST mo del.
These elements will allow an aut omatic schedulability
analysis of applications using switched networks.

The paper is or ganized as follows. In Section 2 we
present a general overview of the MAST2 model, and we
focus on the network modelling elements in Section 3. The
new elements introduced to model network switches are
presented in Secti on 4, and si milarly in Section 5 for
network routers. Section 6 introduces the new m odelling
elements for AFDX networks and switches together with a
simple example using these elements. Finally, Section 7
gives our conclusions.

2. Overview of the MAST2 Model

A real-time system is mo delled in MAST2 usin g
different independent views for descri bing the ex ecution
platform, the software modules and messages exchanged
through the networks, the concurrent architecture, and the
workload and flow of events for a particular configuration
of the app lication. This in dependence among the various
elements of the model is ideal for building a full model
through the com position of partial models developed
independently.

The execution pla tform view contains
Processing_Resources such as Processors and Networks,
together with their Schedulers and associated
Scheduling_Policy elements. Each of these elements
contains attributes that describe their timing behavior
including overheads such as context switching, interrupt
service, or system timers. Processors have a relative speed
and Networks have a bandwidth expressed in bits per time
unit. MAST2 also defines elemen ts to describe clock
synchronization mechanisms.

The operations view contains the elements that describe
the usage of the processing resources, through Operations.
Code_Operations model the execution of sequential code
with a g iven execution time distribution, while
Message_Operations represent data of a given size that is
sent through a network. The Code_Operation abstract class
is specialized with Simple_Operation and Composite_-
Operation, while Message_Operation is s pecialized with
Message and Composite_Message.

1. This work has been f unded in part by the Spanish Ministry of
Science and Technology under grant number TIN2008-06766-C03-03
(RT-MODEL), and by the European Commission under project FP7/NoE/
214373 (ArtistDesign).

Modeling Real-Time Networks with MAST2

Michael González Harbour, J. Javier Gutiérrez, J. María Drake, Patricia López, and J. Carlos Palencia

Computers and Real-Time Group, Universidad de Cantabria, 39005-Santander, SPAIN
{mgh, gutierjj, drakej, lopezpa, palencij}@unican.es

WATERS 2011 52

The concurrent architecture view contains the
Schedulable_Resources that represent schedulable entities
in a Processing_Resource. The Thread models a unit of
concurrent execution in a processor (a task, single-threaded
process, thread, or interrupt service routine) while the
Communication_Channel models a mess age stream
transmitted through a network with specific scheduling
parameters. Schedulable_Resources have a reference to the
Scheduler where they a re scheduled, and the associated
Scheduling_Parameters that a re used by the scheduler to
arbitrate access to the processing resource.

The real-time situation view represents a particula r
mode of operation of a real-time system. It is modelled as a
set of concu rrent End_To_End_Flows (previously called
transactions) that compete for the resources offered by the

platform. Each end-to-end flow is activated from one or
more Workload_Events, and contains a sequence of Steps
that are executed in the system. Each Step represents the
execution of an Operation (Code_Operation for a
processor or Message_Operation for a net work) by a
Schedulable_Resource. When a Step finishes its execution
it generates an Internal_Event that may, in turn, activate
other Steps. Special Event_Handlers exist in the model to

Concurrent architecture view

Real-Time situation view

Platform view

Operations view

CAN_Bus: Packed_Based_Network

Throughput = 1.0e6

...

CPU1_Sched: Primary_Scheduler

Policy = Fixed_Priority_Policy

...

CPU2_Sched: Primary_Scheduler

Policy = Fixed_Priority_Policy

...

CAN_Sched: Primary_Scheduler

Policy = FP_Packet_Based_Policy

...

Send: Simple_Operation

WWorst_Case_Execution_Time = 1.23e-3

...

Receive: Simple_Operation

WWorst_Case_Execution_Time = 3.45e-3

...

Message_Stream: Communication_Channel

...

RP: Fixed_Priority_Params

Priority = 14

...

SP: Fixed_Priority_Params

Priority = 12

...

CPU1: Regular_Processor

Speed_Factor = 1.0

...

CPU2: Regular_Processor

Speed_Factor = 0.5

...

M: Fixed_Priority_Params

Priority = 1200

...

TR: Hard_Global_Deadline

Deadline = 0.8e-2

...

Data: Message

Max_Message_Size = 1600

...

E1: Periodic_Event

Period = 1.0e-2

...

E3: Internal_Event

...

E4: Internal_Event

...

E2: Internal_Event

...

Receiver: Thread

...

Sender: Thread

...

Data_Step: Step

...

Recvr: Step

...

Sndr: Step

...

Host

Input_Event

Host

Output_Event

Scheduler

Input_Event

Scheduler

Output_Event

Scheduling_Parameters

Input_Event

Scheduling_Parameters

Step_Operation

Scheduling_Parameters

Step_Operation

Scheduler

Step_Operation

Observer_List

Step_Schedulable_Resource

Host

Step_Schedulable_Resource

Output_Event

Step_Schedulable_Resource

pkg Component View

Figure 1. MAST2 elements of the simple distributed example

Sender
Data Receiver

CPU1 CPU2CAN Bus

Figure 2. Example with a simple distributed application

Task TaskMessage

WATERS 2011 53

handle events in special ways. Internal_Events may have
Observers associated with them , and rep resenting timing
requirements or other requirements that must be observed.

We will use the example with a simple distributed
application depicted in Figure 2 t o show the MAST2
elements related to the networks. The application has a
periodic task sending a message through a CAN bus to a
second task executing in a different processor, and its
model is shown in Figure 1. In the real-time situation view
we can see th e single end-to-end flow consisting of three
steps joined through the corresponding events, with the
first event defining the periodicity, and the last one with a
hard end-to-end deadline.

3. Networks

A Network is a ki nd of Processing_Resource that
models a communication system specialized in the
transmission of messages among processors or net work
switches.

Figure 3 show s the class diag ram of t he networks in
MAST2. The main element th at represents a real-time
network is the Packet_Based_Network, which models a
network that uses some kind of real-time protocol based on
non-preemptible packets for sending mes sages. This
element can represent a network that supports priorities in
its standard protocol, such as th e CAN bus, and other
networks with no priorities such as the point-to-point
ethernet links tha t are used to connect CPUs to/from
network switches.

Other priority-based networks may need more complex
models. For instance, the RTEP_Network represents a
network that uses the RTEP protocol [3], which is a token-
passing protocol with prioritized messages, that uses a two-
phase mechanism to send each information packet: a
priority arbitration phase and the transmission phase.

Network switches were not part of the original MAST
model, neither are defined in the MA RTE standard. We
will now introduce modelling elements to represent the
network switches and the cont ention inside them. To
support the A FDX networks we wi ll need to introduce a
special AFDX_Switch and the AFDX_Link, as a new kind
of network. Both will be described in Section 6.

4. Network Switches

A network switch is a communications subsystem that is
capable of establishing simu ltaneous connections between
a number of input networks and output networks. These
connections are establ ished on a per-message basis. In a
store and forward switch each message arriving at an input
port is stored in the switch’s internal memory. As t he
message carries information on its dest ination port, the
switch forwards this message to the output port, or to the
specified output ports in case of a multicas t or broadcast
message. The switch is capable of managing multiple such
connections simultaneously, through replicated hardware.
This ability allows a full usage of the available network
bandwidth, depending on the traffic source and destination
addresses.

AFDX_Link

Max_Packet_Size:Bit_Count=MAXIMUM

Min_Packet_Size:Bit_Count=MAXIMUM

Max_HW_Tx_Latency:Time=MAXIMUM

Min_HW_Tx_Latency:Time=MAXIMUM

Avg_HW_Tx_Latency:Time=MAXIMUM

Max_HW_Rx_Latency:Time=MAXIMUM

Min_HW_Rx_Latency:Time=MAXIMUM

Avg_HW_Rx_Latency:Time=MAXIMUM

Ethernet_Overhead:Bit_Count=160

Protocol_Overhead:Bit_Count=376

RTEP_Network

Number_Of_Stations:Positive=MAXIMUM

Token_Delay:Time=0.0

Failure_Timeout:Time=MAXIMUM

Token_Transmission_Retries:Natural=0

Packet_Transmission_Retries:Natural=0

Arbitration_Token_Size:Bit_Count=MINIMUM

Transmit_Token_Size:Bit_Count=MINIMUM

Packed_Based_Network

Transmission_Kind:Transmision_Type=HALF_DUPLEX

Max_Blocking:Normalized_Execution_Time=0.0

Max_Packet_Size:Bit_Count=MAXIMUM

Min_Packet_Size:Bit_Count=MAXIMUM

Processing_Resource

Speed_Factor:Float=1.0

...

<<enumeration>>

Transmision_Type

SIMPLEX

HALF_DUPLEX

FULL_DUPLEX

Network

Throughput:Throughput=0

Clock_Synchronization_Object

Driver

Driver_List

*

Synchronization_Source
0..1

pkg Model_Elements

Figure 3. Network modelling elements

WATERS 2011 54

Contention may occur in the switch when several
messages need to be forwarded to the same output port
concurrently. The switch usually manages a queue of
messages addressed at a specific output port. Some
switches manage this queue in FIFO order, and others may
use information contained in the message to prioritize the
queue.

New modelling elements ar e introduced in MAST2 to
model the timing effects introduced by network switches,
and in particular the worst-case behavior of the contention
in the output ports.

The Network_Switch (Figure 4) is an abstract
Processing_Resource that models a communication system
specialized in the transfer of messages among networks. It
is capable of delivering messages arriving at an input port
to one or more output ports.

The delivery of a m essage inside a switch is specified
through new sp ecial-purpose Message_Event_Handlers,
described in Figure 5. The Message_Delivery element rep-
resents a simple port-to-port delivery, while the
Message_Fork handler enables modelling multicast mes-
sages. The destination port or ports are implied in the mes-
sage stream.

The Message_Delivery may contain scheduling parame-
ters to define the priority used to res olve the contention at
the output port queue in the switch.

The attributes of the Network_Switch allow calculating
the overheads associated with the message delivery. Max/
Min/Average overheads are defi ned for t he delivery of a
message to a single destination port, and for the delivery to
multiple destinations through a Message_Fork handler.
This latter overhead has a fixed part and a variable part that
depends on the number of output ports.

A Regular_Switch is a concrete and sim ple switch in
which the output queues are assumed to work according to
the policy associated with the scheduling parameters of the
message delivery elements allocated to the switch. For
instance, priority-based in case o f fixed-priority
parameters, or FIFO when no schedu ling parameters are
specified. The switch is assumed to have rou ting
information preconfigured, so there is no need for
additional network traffic originated by the switch.

MAST2 does not require defining the network topology,
since it is implicitly defined in the end-to-end flows.

5. Network Routers

A Network_Router is an abstra ct specialization of the
Network_Switch that models a communication system
specialized in routing me ssages among networks. In
addition to the capabilities of a switch, the router is able to
route a message through a destination port that may be
dynamically obtained.

Routers support a new Message_Branch event handler,
which is capable of delivering a message to one output port
chosen form of a set of p ossible outputs. The overhead
model for t he Message_Branch handlers is similar to the
model for message fork. It contains a fixed latency and a
variable latency that d epends on the n umber of po ssible
output ports.

The class Regular_Router is a concrete and simple
router in which the outp ut queues are assum ed to work
according to the policy associated with the scheduling
parameters of the allocated message delivery elements.

6. Modelling AFDX Networks

AFDX (Avionics Full Duplex Switched Ethernet) is a
communications network defined in the ARINC-644, Part

Network_Switch

Max_Fixed_Fork_Latency:Normalized_Execution_Time=0.0

Avg_Fixed_Fork_Latency:Normalized_Execution_Time=0.0

Min_Fixed_Fork_Latency:Normalized_Execution_Time=0.0

Max_Variable_Fork_Latency:Normalized_Execution_Time=0.0

Avg_Variable_Fork_Latency:Normalized_Execution_Time=0.0

Min_Variable_Fork_Latency:Normalized_Execution_Time=0.0

Max_Delivery_Latency:Normalized_Execution_Time=0.0

Avg_Delivery_Latency:Normalized_Execution_Time=0.0

Min_Delivery_Latency:Normalized_Execution_Time=0.0

Network_Router

Max_Fixed_Branch_Latency:Normalized_Execution_Time=0.0

Avg_Fixed_Branch_Latency:Normalized_Execution_Time=0.0

Min_Fixed_Branch_Latency:Normalized_Execution_Time=0.0

Max_Variable_Branch_Latency:Normalized_Execution_Time=0.0

Avg_Variable_Branch_Latency:Normalized_Execution_Time=0.0

Min_Variable_Branch_Latency:Normalized_Execution_Time=0.0

Processing_Resource

Speed_Factor:Float=1.0

...

Clock_Synchronization_Object

Regular_Switch

Regular_Router

AFDX_Switch

Synchronization_Source

0..1

pkg Model_Elements

Figure 4. Network switches and routers

WATERS 2011 55

7 standard [1] and based on the use of point to point full
duplex ethernet links and special purpose switches. The
routing of messages is p reconfigured so that there is n o
delay in the discovery of ro uting addresses through
network protocols that could interfere with the
transmission of application messages.

The AFDX network provides traffic regulation at the
sending end vi a Virtual Links, defined as conceptual
communication objects to establish a logical unidirectional
connection from one source end system to one or mo re
destination end system s having a dedicated maximum
bandwidth. Each virtual link (VL) is characterized by two
parameters used for traffic regulation: the largest Ethernet
frame (Lmax) in bytes, and the Bandwidth Allocation Gap
(BAG), a power of the value 2 in the range [1,128]. The
BAG represents the minimum interval in milliseconds
between Ethernet frames transmitted on the VL.

Each virtual link has a FIFO queue for all the
fragmented packets to be transmitted through it. This queue
introduces contention that needs to be modelled and
analyzed to determine real-time schedulability.

The AFDX network is modelled in MAST2 through two
new elements: The AFDX_Link network, and the
AFDX_Switch.

An AFDX_Link (see Figure 3) represents a link between
a processor and/or a switch, allowing full duplex
communications. When a me ssage originated in a

processor traverses this link, it uses the new AFDX_Policy
scheduling policy. The Schedulable_Resources that may be
used on this link need to specify as Scheduling_Parameters
an object of the AFDX_Virtual_Link class, which describes
the corresponding Lmax and BAG parameters as it is shown
in Figure 6.

An AFDX_Switch is a concrete and simple switch
working according to the AFDX specification. The output
queues in the switch have two priorities. The priority may
be assigned in the model by specifying it in the scheduling
parameters of the Message_Delivery operation executed
inside the switch.

Figure 7 shows a partial view of the example described
in Figure 2 and Fi gure 1, focussing only on th e network
part, and assuming that instead of a CAN Bus we are using

Message_Branch

Delivery_Policy:Delivery_Policy_Type=RANDOM

...

EventMessage_Fork

...
<<enumeration>>

Delivery_Policy_Type

SCAN

RANDOM

Event_Handler

Message_Delivery

...

M essage_Event_Handler

...

Scheduling_ParametersNetwork_Switch

Network_Router

<<primitive>>

Float

Sw itch

1

Input_Event

1

1..*

1

Input_Event

Input_Event

1

1

Sw itch

1 {redefines Sw itch}

1..*

Output_Event

Output_Weight_List*

Output_Event_List

Output_Event_List

Sched_Params

0..1

pkg Model_Elements

Figure 5. Message event handlers

AFDX_Virtual_Link

LMax:Bit_Count=0

BAG:Time=MAXIMUM

Scheduling_Parameters

pkg Model_Elements

Figure 6. Virtual Link Scheduling Parameters

WATERS 2011 56

an AFDX netwo rk with a switch and two AFDX links
communicating each CPU with the switch. No priority is
specified.

7. Conclusions

In this paper we propose new modelling elements to
support network switches and routers and AFDX real-time
networks in th e timing models used to assess the
schedulability of real-time distributed applications. These
elements, together with their associated analysis techniques
are being implemented in MAST2, and wil l be proposed
for a future versi on of the MARTE UML profile for real-
time embedded systems.

References
[1] Airlines Electronic Engineering Committee, Aeronautical

Radio INC., “ARINC Specification 664P7: Aircraft Data
Network, Part 7 - A vionics Full Duplex Switched Ethernet
(AFDX) Network,” June 27, 2005.

[2] M. González Har bour, J.J. Gu tiérrez García, J.C. Palencia
Gutiérrez, and J.M. Drake Moyano. “MAST: Modeling and

Analysis Suite for Real Time Applications”. Proceedings of
13th Euromicro Conference on Re al-Time Systems, Delft,
The Netherlands, IEEE Compu ter Society Press, pp. 125-
134, June 2001.

[3] J.M. Martínez, and M. González Harbour. “RT-EP: A Fixed-
Priority Real Time Communication Protocol over Standard
Ethernet”. Proc. of th e 10th International Conference on
Reliable Software Technologies - Ada-Europe 2005, Y ork
(UK), in LNCS, Vol. 3555, Springer (2005).

[4] MAST: Modelling and Anal ysis Suite for Real-Time
Systems. Home page: http://mast.unican.es

[5] Object Management Group. “A UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded systems”.
MARTE specification version 1.0 (formal/2009-11-02).

[6] Xu, Lei. “Industry Network QoS Approach Based on New
Ethernet Standards”. Proceedings of 2009 4th International
Conference on Computer Science & Education.

Real-Time situation view

Platform view

Operations view

Concurrent architecture view

DEFAULT_COMMUNICATION_CHANNEL: Communication_Channel

...

Net_Sched2: Primary_Scheduler

Policy = AFDX_Policy

...

Net_Sched: Primary_Scheduler

Policy = AFDX_Policy

...

Switch: AFDX_Switch

Max_Delivery_Latency = 10e-6

...

Stream: Communication_Channel

...

M1: AFDX_Virtual_Link

LMax = 1200

BAG = 4e-3

Data: Message

Max_Message_Size = 1600

...

Link1: AFDX_Link

Throughput = 1e8

...

Link2: AFDX_Link

Throughput = 1e8

...

MD: Message_Delivery

...

E22: Internal_Event

...

E23: Internal_Event

...

E2: Internal_Event

...

E3: Internal_Event

...

S2: Step

...

S1: Step

...

Host

Output_Event

Scheduling_Parameters

Input_Event

Step_Operation

Scheduler

Step_Operation

Host

Output_Event

Step_Schedulable_Resource

Output_Event

Step_Schedulable_Resource

Input_Event

Sw itch

Input_Event

Scheduler

pkg Component View

Figure 7. Partial view of an end-to-end flow using an AFDX switch

WATERS 2011 57

Continuous Constant-Memory Monitoring of
Embedded Software Timing

Johan Kraft and Thomas Nolte
School of Innovation, Design and Technology

Mälardalen University
Västerås, Sweden

{johan.kraft, thomas.nolte}@mdh.se

Abstract—A method is presented for generating statistical
models of timing data continuously over very long monitoring
sessions. This method is intended for memory-efficient runtime
modeling of timing properties in embedded software systems,
such as execution times or inter-arrival times, but is a quite
generic method that should be applicable for other purposes
and domains as well. Specifically, we intend to use this method
as a component in automatic generation of simulation models
for probabilistic timing analysis of complex embedded software
systems. Given a stream of data as input, this method gradually
builds up a statistical model capturing the approximate distribu-
tion of the data. The method uses a modest and fixed amount of
on-target RAM, decided by the desired accuracy of the model,
and allows for long monitoring sessions covering billions of data
points. The paper presents the motivation, algorithm, a prototype
implementation and evaluation using real execution time data
from an ARM7 microcontroller.

I. INTRODUCTION

If developers of embedded software systems were able to
predict runtime properties related to timing and resource usage
before implementing new software designs, they could identify
and avoid unsuitable software designs at an early stage and
thereby also avoiding the associated costs and delays as a
result of having to redesign the software when the system
verification (hopefully) detects the problems. Predicting task
response times is possible for many systems using established
methods for schedulability and response time analysis [1],
[2], [3] or tools for formal verification using model checking,
such as UPPAAL [4] and KRONOS [5]. However, there are
embedded systems in industry today which have real-time
and performance requirements, but hardly can be analyzed
using such methods. An example is the industrial robot control
system IRC 5 developed by ABB Robotics which contains
some 3 million lines of code and 50-100 tasks. Model checking
tools do not come near to scaling to systems of this size.
The existing analytical methods for schedulability or response-
time analysis are not suitable for the IRC 5 system, due to
the complex runtime behavior which does not comply with
the system assumptions required to use these methods. In the
IRC 5 system, tasks trigger each other using asynchronous
messages and the contents of the messages often have a
major impact on the temporal behavior of the receiver. The
telecom domain poses similar even greater analysis chal-
lenges, for instance the radio base stations and radio network
controllers developed by Ericsson. Such systems are event

triggered, massively parallel, contain many millions lines of
code, thousands of processes and also has several layer of fault
tolerance which together gives very high system complexity.
An alternative for analysis of complex embedded systems is
to use simulation-based timing analysis [6]. This approach
is more related to testing than formal verification as it is
only possible to show the presence of potential errors, not
their absence. However, simulation has the advantage of not
posing restrictions regarding the design of the software system.
Moreover, simulation allows for analysis of any measurable
run-time property, in contrast to the analytical methods for
schedulability and response time analysis [1], [2], [3] which
have strict assumptions and focus on specific properties. Since
a simulation model can be much more abstract than the
modeled system, and since a PC is typically much faster than
embedded hardware, many thousands of simulations can often
be performed in short time where each simulation is given
more or less random variations in execution times and other
parameters. This way, many scenarios are explored which
otherwise might be hard to generate on a real system. Note
that the type of simulation in focus is not cycle-accurate low-
level simulation like, e.g., Simics from Wind River, which
are much slower than normal execution. In the perspective
of analyzing an existing software system, simulation does not
require manual modeling, since a simulation model typically is
implemented using common programming languages and can
be automatically extracted from the system implementation,
either using a combination of program analysis and runtime
measurements [6] or using runtime measurements [7] alone.
This paper focuses on a specific problem in enabling automatic
model generation: how to obtain execution time data for
simulation models from recordings, without storing each data
point individually. This is specifically in the context of the
RTSSim simulation framework presented in Section II. The
specific contribution of this paper is the proposed algorithm
and a brief evaluation on real timing data, with diagrams
visualizing the results. The algorithm has been implemented
in an offline trace visualization tool, which feeds the algorithm
one data point at a time, like when used in runtime monitoring.
A proper implementation on an embedded system is planned
in future work. As the session length is only limited by counter
overflows, for 32-bit CPUs a session may cover at least 232−1
(4.294.967.295) observations of each specific property, since

WATERS 2011 58

each interval may hold up to 232− 1 data points. If assuming
a data production rate of 100 Hz per measured property, this
solution allows for at least 30 years of continous monitoring
before wrapping occurs. This is in practice unlimited.

This solution is presented in Section III, and we present an
implementation and evaluation of the method in Section IV.
Section V puts this paper in perspective of related work, and
Section VI concludes the paper and outlines future work.

II. RTSSIM AND TRACEALYZER

RTSSim [6] is a simulation environment which emulates
a generic real-time operating system on a PC. It works as a
“sandbox” with respect to timing. All time-triggered events in
RTSSim are driven by an integer simulation clock incremented
by explicit Execute calls, using timing data recorded from the
modeled system. The timing of the modeled system is thereby
preserved in the simulation even though it runs on a PC instead
of the embedded hardware. The simulated timing is however
approximate, it is not guaranteed to be 100 % identical to
the real timing when executing the code on the intended
hardware, since the simulation model abstracts from the details
of instruction-level timing. It instead describes the execution
times between relevant program points, in a probabilistic man-
ner. RTSSim focuses on the timing and resource usage of tasks,
i.e., threads in a real-time operating system. An RTSSim task
is a C function which is registered in the RTSSim scheduler
together with attributes such as priority. An RTSSim task
contains at least one Execute statement, which models CPU
time usage. A simulation model can be specified at different
abstraction levels. In one extreme is the most basic RTSSim
task containing a single Execute statement only, i.e., only
execution time is specified, no behavior. In the other extreme
is to include the full source code of the analyzed software
system, extended with Execute statements. Our intention of
the RTSSim framework is however to use it together with
a model extraction tool, which produces an abstraction of
the implementation focusing on behavior of relevance for
timing and resource usage. The tasks of an RTSSim simulation
model are by default scheduled using fixed priority preemptive
scheduling, and are assumed to share a single CPU core. In
future work we intend to extend RTSSim to support parallel
systems as well. RTSSim can produce two kinds of output,
a detailed simulation trace focusing on the scheduling and
other logged events, and a text file with selected statistics
on task timing, such as highest response time observed for
the selected task. The simulation trace is produced using a
trace recorder described in Kraft et al. [8], which outputs
a simulation trace for the Tracealyzer tool, including task
scheduling, task communication and synchronization events.
Tracealyzer is trace visualization tool for studying scheduling,
resource usage and interaction of tasks and interrupts in
embedded software. This tool originated in a research project
back in 2004, performed in collaboration with ABB Robotics.
They have used it since then in every industrial robot, and
the Tracealyzer is now product in the author Johan Kraft’s

company Percepio AB1. Tracealyzer is today sold by Quadros
Systems, Inc. as RTXCview and is the official trace tool for
the real-time operating system RTXC Quadros. A description
of the trace recorder used in RTXC Quadros is found in Kraft
et al [8].

III. STATISTICAL RUNTIME MODELING

Classic theoretical distributions are often hard to fit to
timing data from software systems, since the distributions
often are discontinuous and complex. Even linear code may
result in discontinuities due to hardware effects such as cache
misses, and if the measurements cover code with conditional
jumps that is another cause of discontinuities in the resulting
distribution. The most exact method of logging timing data
from a program is to store every observation separately, i.e.,
an empirical distribution. However, over a long monitoring
session this would consume vast amounts of RAM. Another
approach is to only store watermarks (lowest and highest
value) and use them as bound for a uniform distribution, but
this way the shape of the distribution is lost which may result
in incorrect simulations.

We suggest to use an established statistical approach known
as stratification, where the data points are divided into intervals
and where each such interval has a counter attribute, which
is incremented at each matching data point. The individual
observations are attributed to an interval (or used to create a
new interval), and then forgotten. Each interval represents a
uniform distribution, so the shape of the distribution within
each interval still is lost, but given enough intervals this may
give a sufficiently accurate statistical model, using a modest
amount of memory.

The amount of RAM needed for a particular measurement
is 3wi, where i is the number of intervals used and w is the
width of the variables, measured in bytes. In many cases w = 2
is sufficient, otherwise w = 4 allows for over four billion
observations per interval. The constant (3) corresponds to the
number of properties stored per interval, i.e., lower bound,
upper bound and count. When using this simulation model for
replay of timing data in a simulation, a two step sampling
approach is used. At first the interval is selected, with the
probability indicated in its count property, i.e., the number of
observations in the interval divided by the total number of
intervals. Once the interval has been selected, its bounds are
used as a uniform distribution from which the final value is
sampled.

A. Modeling Algorithm

The proposed algorithm takes as input a sequence of integer
values, and produces as output a set of intervals, where each
interval I has:

• I.min: the lower interval bound
• I.max: the upper interval bound, and
• I.count: the number of inputs x observed matching the

interval, i.e., where I.min ≤ x ≤ I.max.

1http://www.percepio.se

WATERS 2011 59

Fig. 1. The Modeling Algorithm

If there is no existing interval that match a specific input x and
the maximum number of intervals has not yet been reached,
a new interval I is created where

I.min = I.max = x

I.count = 1

If the maximum number of intervals has been reached, an
analysis is performed in order to find and merge the two
most similar adjacent intervals, in order to make room for
a new interval according to above. The overall algorithm is
illustrated in Figure 1. Initially there are no intervals and the
first input thus result in the first interval created. Most early
inputs will produce new intervals (until the maximum number
of intervals have been reached), unless a specific input value
is repeated. The merging of intervals will cause them to grow,
which increases the probability of later inputs falling within
the bounds of the interval. When merging two intervals A and
B, they are replaced by a new interval C where

C.min =Min(A.min,B.min)

C.max =Max(A.max,B.max)

C.count = A.count+B.count

Only neighbor intervals are merged and intervals never over-
lap. The crucial aspect of this algorithm is how to select what
intervals to join. We propose the following selection heuristics:
Calculate a fitness value for each interval apart from the first,
indicating its suitability for a merge with the lower neighbor
interval. Then find the interval with best fitness value and
merge it, i.e., with its lower neighbor. We suggest to base
the fitness value on three properties:

• Proximity
• Density
• Count

Proximity is the absolute distance between the intervals of
the candidate pair, i.e., the size of the gap in between the
intervals. The smaller the gap, the more suitable merge.

Density indicates the number of observations in relation to
the width of the interval. A “spike”, where many observations
have been made in a narrow band, should not be merged with
a “plateau” with lower density, i.e., where observations are
more sparse. This is indicated by a density measure

I.density = I.count/(I.max− I.min)

The density fitness value of two merge candidate intervals
A and B, a value between 0 and 1, indicates the similarity
in density. The closer to 1, the better fitness for merge. The
density fitness is calculated by

Min(A.density,B.density)/Max(A.density,B.density)

Finally, Count is the absolute number of observations ac-
counted to the interval, i.e., I.count. If this is very low,
the density becomes very sensitive to random variations in
I.count. We therefore skip the density comparison if the count
is below a certain threshold for either of the two intervals, we
have used 5 as minimum in the prototype evaluation. Only
if both intervals have at least 5 data points is the density
property used, otherwise the fitness is based on proximity
only. The density property is the dominant one when used,
the proximity only matters in case the densities of two pairs
are identical. To relax this a bit, we represent the density using
an 8-bit integer in order to allow minor differences in actual
density. We do not claim this to be the optimal merge selection
heuristic, but the overall method proposed is however quite
generic and can be used with different heuristics. In future
work we plan evaluate the accuracy of this approach in greater
depth and probably develop improved methods for selecting
what intervals to merge.

B. Suggested Implementation

When implemented in an embedded system, we envision a
solution where the intervals are stored in a linked list and
kept sorted using insertion sort. The input is read from a
circular RAM buffer which the measurements probes (code
instrumentation) writes to. The modeling algorithm runs peri-
odically on a low priority thread. This means that the modeling
computations do not interfere with higher priority processes,
but may cause loss of data if the system is under high load over
a longer period of time. This might however be acceptable,
since it is easaly detectable and can be compensated by
increasing the rate of the modeling task, the size of the
buffer, or both. The buffering will cause some additional
RAM usage, but should typically only need to hold a few
thousand observations. Consider a system with 100 tasks, each
producing on average 100 observations per second. Assuming
4 bytes per observation, this would require about 40 KB for
one second of execution. The buffer can however be eliminated
by processing each data point when captured, i.e., the code
instrumentation would update the statistical model directly,
without buffering. This will cause CPU overhead at higher
priority levels, thereby decreasing system performance, but
might be an option for systems with severely limited amount

WATERS 2011 60

of RAM and where a few percent lower system performance
can be tolerated.

IV. EVALUATION

An implementation of the algorithm has been made within
the Tracealyzer tool; a trace visualization tool developed by Jo-
han Kraft in his company Percepio AB. Note that the proposed
algorithm has not yet been implemented in the embedded
software recorder, but has been added as a prototype feature
in the Tracealyzer tool itself, i.e., in the offline analysis of the
recorded trace. However, the prototype implementation works
in the same way as intended when integrated in an embedded
software recorder; it gradually constructs and updates the
statistical model for each data point given as input.

In our prototype implementation, Tracealyzer has also been
extended to visualize the resulting timing models (i.e., the in-
tervals) together with a plot of the raw data. Figure 2 show four
diagrams generated using the prototype implementation, on a
specific task using different configurations of the algorithm;
2, 4, 6 or 8 intervals allowed. The horizontal axis represents
the value domain and the vertical axis the relative frequency
of the different values. The rectangles represent the resulting
intervals of the generated timing model, i.e., the output of the
modeling algorithm, while the thin vertical bars (some are very
short) represent the individual data points used as input, i.e.,
the recorded execution times of the analyzed task. The height
of the interval rectangles correspond to the relative number of
matching data points, and the absolute number of matching
inputs of the interval (the count property) is shown on the top
of the rectangle.

The execution time data used in the evaluation comes from
a demo trace for RTXCview provided by Quadros Systems,
Inc, which has been recorded on a development board with
a microcontroller using the ARM7 core. The four diagrams
of Figure 2 illustrate how the interval merging is affected by
the interval limit. The most significant gap is around 120 µs,
when allowing only two intervals, only this gap survives the
merging of intervals. When allowing four intervals, a second
major gap is recognized at around 135 µs, which is divided
in two parts by an interval of size 1. The reason this single
data point is not merged with the large interval to the right, is
since it was not forced to by the interval limit, as four intervals
were allowed. When increasing to six and eight intervals,
additional larger gaps are recognized as the merging process is
less aggressive. Figure 3 show diagrams from two other tasks
from the same trace file (TMR0ISR is actually an interrupt
service routine). In this case, four intervals are allowed in both
cases, a relatively aggressive setting but which represents the
distributions fairly well. In future work we plan to evaluate
the accuracy of this method by running simulations using the
statistical model as base for generating execution times and
compare the resulting distribution with the real distribution
used as input for the modeling. Such a comparison can be
made using established statistical methods, such as the two-
sample Kolmogorov-Smirnoff test [9], or KS test for short.
A good overview of this test can be found at the U.S. NIST

website [10]. The KS test is non-parametric and makes no
assumptions on the underlying distribution of the data, which
is important for this type of data. As a basic verification of
the correctness of the implemented algorithm, traces have been
generated using RTSSim, with a known distribution, and given
as input to the algorithm. The resulting diagrams are shown
by Figure 4. The distribution of the input data in the first case,
for the task TEST, is uniformly distributed in two intervals,
30% between 200–300 µs and 70% between 400–450 µs.
If allowing for two intervals only, the generated intervals
fits exactly. The right diagram of Figure 3 shows a similar
experiment using a different reference distribution.

V. RELATED WORK

Several methods have been proposed for stochastic represen-
tation of task execution time. Bernat et al. [11] use Execution
Profiles (EPs) to represent execution times of sections of
a task. The EPs can then be combined to Joint Execution
Profiles (JEPs) which represents the execution time of a
whole task. This work resulted in the founding of Rapita
Systems, Ltd. [12] and their RapiTime tool for execution time
profiling. They use a hardware recorder device, the RTBx, to
log execution times, which uses a large hard drive to store
very long traces of execution time data. This is however fairly
large and expensive equipment which hardly can be deployed
in the field.

Hansen et al. [13] presented an approach for probabilistic
estimation of the worst-case execution time (WCET) of tasks
using extreme value theory, based on earlier work by Edgar
and Burns [14]. They divide the sample data into blocks, take
the maximum of each block (an independent random variable)
and use these maximas to derive a Gumbel distribution, which
essentially have a skewed bell-shape. Such an approach could
possibly be combined with the statistical model proposed
in this paper; instead of modeling the intervals as uniform
distributions, we could fit the data within each interval to a
theoretical distribution such as the Gumbel distribution. If this
is possible in a memory efficient manner during continuous
runtime monitoring remains to be investigated in future work.

RTSSim is not claimed a novel contribution conceptually,
several similar simulation frameworks have been proposed.
The most similar ones are Virtual Time, from Rapita Systems,
Ltd. [12], ARTISST [15] and DRTSS [16]. An earlier result
is STRESS [17], which inspired our first simulator implemen-
tation ART-ML back in 2002.

Nolte et al. [18] outlined how execution-time profiles can
be used for probabilistic timing analysis in general and in the
context of component-based software engineering. The idea
was to let components keep track of their own execution times
and they highlighted the problem of how to generate execution
time profiles, which is effectively solved by this paper.

Kraft et al. [19] (at the time named Andersson) made a
case study of practical application of simulation-based timing
analysis in collaboration with ABB Robotics, and studied in
particular how to model execution time data measured in
runtime. A concept of instance equivalence classes, or IECs,

WATERS 2011 61

Fig. 2. COMODRV execution times, using 2, 4, 6 and 8 intervals

Fig. 3. ECHOTASK and TMR0ISR execution times, using 4 intervals

was introduced which is very similar to the statistical model
proposed in this paper, and an algorithm was presented for
offline identification of IECs. This was however not designed
for use during continuous monitoring, but was intended for
offline analysis of scheduling trace files.

VI. CONCLUSIONS

We have presented an approach for constant-memory moni-
toring of embedded systems, intended for continuous profiling
of execution times and other runtime properties, which allows

for profiling of systems in live operation over extended pe-
riods of time, possibly for years, using no hardware tracing
equipment but only onboard software mechanisms. Due to the
modest memory requirements, this approach is feasible even
for microcontrollers with limited amounts of RAM. We have
presented a prototype implementation of the algorithm and an
evaluation which indicates that the method performs satisfac-
torily, although improvements in the selection heuristics most
likely are possible. In future work we intend to implement,

WATERS 2011 62

Fig. 4. Verification cases from RTSSim

evaluate and refine the modeling method using industrial cases;
the ABB Robotics control system and the Ericsson telecom
platform CPP.

ACKNOWLEDGMENT

This work is supported by the Artemis-JU project CHESS,
performed in collaboration with Ericsson AB and ENEA AB,
and the Swedish Foundation for Strategic Research.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multipro-
gramming in hard-real-time environment,” Journal of the Association
for Computing Machinery, vol. 20, no. 1, pp. 46–61, 1973.

[2] M. Joseph and P. K. Pandya, “Finding Response Times in a Real-Time
System,” The Computer Journal, vol. 29, no. 5, pp. 390–395, 1986.

[3] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and A. J. Wellings,
“Fixed priority pre-emptive scheduling: An historical perspective,” Real-
Time Systems Journal, vol. 8, no. 2/3, pp. 173–198, 1995.

[4] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi, “Uppaal
– a tool suite for automatic verification of real-time systems,” in 4th
DIMACS Workshop on Verification and Control of Hybrid Systems, 1995.

[5] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine,
“Kronos: A Model-Checking Tool for Real-Time Systems,” in 10th Intl.
Conf. on Computer Aided Verification, vol. 1427, 1998, pp. 546–550.

[6] J. Kraft, “Enabling timing analysis of complex embedded software
systems,” Ph.D. dissertation, Mälardalen University Press, August 2010.

[7] J. G. Huselius, J. Andersson, H. Hansson, and S. Punnekkat, “Auto-
matic generation and validation of models of legacy software,” in 12th
IEEE Intl. Conf. on Embedded and Real-Time Computing Systems and
Applications (RTCSA’06), Aug. 2006, pp. 342–349.

[8] J. Kraft, A. Wall, and H. Kienle, “Trace recording for embedded systems:
Lessons learned from five industrial projects,” in Proceedings of the First
International Conference on Runtime Verification (RV 2010). Springer-
Verlag (Lecture Notes in Computer Science), November 2010.

[9] I. M. Chakravarti, J. Roy, and R. G. Laha, Handbook of methods of
applied statistics. Wiley, New York, 1967.

[10] “U.S. National Institute of Standards and Technology (NIST) e-
Handbook of Statistical Methods, Section 1.3.5.16: Kolmogorov-
Smirnov Goodness-of-Fit,” http://www.itl.nist.gov/div898/handbook.

[11] G. Bernat, A. Colin, and S. M. Petters, “WCET analysis of probabilistic
hard real-time systems,” in 23rd IEEE Real-Time Systems Symposium
(RTSS’02), Dec. 2002, pp. 289–300.

[12] “Rapita Systems, Ltd.” http://www.rapitasystems.com.
[13] J. Hansen, S. Hissam, and G. Moreno, “Statistical-based WCET esti-

mation and validation,” in 9th Intl. Workshop on Worst-Case Execution
Time Analysis (WCET’09), Jun. 2009, pp. 123–133.

[14] S. Edgar and A. Burns, “Statistical analysis of wcet for
scheduling,” in Proceedings of the 22nd IEEE Real-Time
Systems Symposium, ser. RTSS ’01. Washington, DC, USA:
IEEE Computer Society, 2001, pp. 215–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=882482.883802

[15] D. Decotigny and I. Puaut, “Artisst: An extensible and modular sim-
ulation tool for real-time systems,” in Proceedings of the Fifth IEEE
International Symposium on Object-Oriented Real-Time Distributed
Computing, Washington D.C., 2001.

[16] M. Storch and J.-S. Liu, “DRTSS: A Simulation Framework for Com-
plex Real-Time Systems,” in Proceedings of the 2nd IEEE Real-Time
Technology and Applications Symposium (RTAS’96). Dept. of Computer
Science, Illinois Univ., Urbana, IL, USA, 1996.

[17] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings,
“STRESS: A Simulator for Hard Real-Time Systems,” Software-Practice
and Experience, vol. 24, no. 6, pp. 543–564, June 1994.

[18] T. Nolte, A. Möller, and M. Nolin, “Using components to facilitate
stochastic schedulability analysis,” in WIP at 24th IEEE Real-Time
Systems Symposium (RTSS’03), Dec. 2003, pp. 7–10.

[19] A. Wall, J. Andersson, J. Neander, C. Norström, and M. Lembke,
“Introducing Temporal Analyzability Late in the Lifecycle of Complex
Real-Time Systems,” in 9th Intl. Conf. on Real-Time and Embedded
Computing Systems and Applications (RTCSA’03), 2003.

