
Response Time Analysis for G-EDF and G-DM Scheduling
of Sporadic DAG-Tasks with Arbitrary Deadline ∗

Andrea Parri
Scuola Superiore Sant’Anna

Pisa, Italy
andrea.parri@sssup.it

Alessandro Biondi
Scuola Superiore Sant’Anna

Pisa, Italy
alessandro.biondi@sssup.it

Mauro Marinoni
Scuola Superiore Sant’Anna

Pisa, Italy
m.marinoni@sssup.it

ABSTRACT

New programming models have been proposed to exploit the
parallelism of modern computing architectures. Also in the
real-time domain more detailed task models are under eval-
uation to provide a tighter analysis of parallel application
with precedence and timing constraints.

This paper presents two schedulability tests based on Re-
sponse Time Analysis for determining whether a set of spo-
radic DAG-tasks with arbitrary deadlines can be scheduled
by G-EDF or G-DM on a platform consisting of m iden-
tical processor. The first test is a simple polynomial time
test, while the second one is a pseudo-polynomial time test.
Our tests exploit the combinatorial properties of the DAGs
by considering the interference experienced by each vertex.
We describe a set of simulations showing that our tests out-
perform the tests described in [7] in terms of schedulability
ratio and running time. We also provide resource augmenta-
tion bounds for our polynomial time test when considering
single-DAG systems.

1. INTRODUCTION
High-performance computing, cloud-based technologies,

and real-time embedded systems are only some of the ar-
eas where execution parallelism is a crucial factor that can
impact performance. In the embedded domain, the presence
of stringent timing constraints poses new challenges in the
development of predictable and efficient systems that must
be compliant with the standards. In many web-based ap-
plications, the system can handle multiple requests at the
same time, each one characterized by a deadline imposed
by the requirement of guaranteeing to the clients a bounded
response time.

Providing a schedulability analysis for these kind of sys-
tems requires to accurately model the intrinsic parallelism
within the task and to consider the dependency constraints
between different parts of the task. Several models have
∗This work has been partially supported by the FP7 JUNIPER
project (FP7-ICT-2011.4.4), founded by the European Commu-
nity under grant agreement n. 318763.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RTNS 2015, November 04-06, 2015, Lille, France

c⃝ 2015 ACM. ISBN 978-1-4503-3591-1/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2834848.2834864

been proposed in the literature to represent recurrent real-
time tasks (e.g., [18, 25, 5, 10, 17, 4]). In this paper, we
study the sporadic DAG model introduced in [5] and [24].
This model describes every jobs of a recurrent sporadic task
with a Directed Acyclic Graph (DAG). Each vertex in this
graph represents a sequence of instructions to be sequentially
executed, while each edge represents an execution prece-
dence constraint: vertices that are not related by an edge
can be executed in parallel; on the other hand, vertices which
are related by an edge must respect the sequential order im-
posed by the DAG structure.

This work deals with the problem of performing a schedu-
lability analysis of DAG-tasks with arbitrary deadline un-
der both G-EDF and G-DM scheduling, proposing an ap-
proach based on Response Time Analysis (RTA). Following
this approach, we estimate the response time of a task using
the notion of interference; due to the complexity intrinsic in
computing the exact interference, we provide upper-bounds
characterized by a tractable complexity. However, contrary
to previous works, our analysis explicitly considers the inter-
ference experienced by each component/vertex of the task,
thus systematically exploiting its internal structure (i.e., the
combinatorial properties of the corresponding DAG).

Related work. Most prior work considers a restricted class
of task-sets than the general class of sporadic DAG-tasks
with arbitrary deadline considered in this paper. We can
broadly classify these results into three subcategories: (i)
those based on resource augmentation, (ii) those based on
capacity augmentation, and (iii) those based on RTA.

(i) Andersson and de Niz [1] proved a resource augmenta-
tion bound of 2 for G-EDF scheduling of synchronous (paral-
lel) tasks (a subcategory of general DAGs) with constrained
deadline; they also proposed a schedulability test“attaining”
their bound. Nelissen et al. [19] proved a resource augmenta-
tion bound of 2 for a class of scheduling algorithms (includ-
ing U-EDF, PD2, DP-Wrap and LLREF) on synchronous
tasks with constrained deadline. Baruah et al. [5] proved
a resource augmentation bound of 2 for G-EDF schedul-
ing of a single DAG-task with arbitrary deadline; they also
proposed sufficient polynomial and pseudo-polynomial time
schedulability tests attaining their bound. Bonifaci et al. [7]
proved a resource augmentation bound of 2 − 1/m (resp.,
of 3 − 1/m) for G-EDF (resp., for G-DM) scheduling of
DAG-tasks with arbitrary deadline; they also proposed suffi-
cient polynomial and pseudo-polynomial time schedulability
tests attaining their bound. Baruah [3] proposed a sufficient
pseudo-polynomial time test for G-EDF scheduling of DAG-
tasks with constrained deadline, and showed that this test
strictly dominates the schedulability test defined in [7]. Sai-

205

fullah et al. [23] proved a resource augmentation bound of 4
for G-EDF scheduling of decomposed DAG-tasks with im-
plicit deadline and extended their result to non-preemptive
G-EDF.

(ii) Lakshmanan et al. [12] proved a capacity augmen-
tation bound of 3.42 for partitioned DM scheduling of fork-
join tasks (a subcategory of synchronous tasks) with implicit
deadline. Saifullah et al. [24] proved a capacity augmenta-
tion bound of 4 (resp., of 5) for G-EDF scheduling (resp.,
for partitioned DM scheduling) of synchronous tasks with
implicit deadline. Kim et al. [11] proved a capacity augmen-
tation bound of 3.73 for G-DM scheduling of synchronous
tasks with implicit deadline. Li et al. [13] proved a capacity
augmentation bound of 4 − 2/m for G-EDF scheduling of
DAG-tasks with implicit deadline, and a resource augmen-
tation bound of 2−1/m for G-EDF scheduling of DAG-tasks
with arbitrary deadline. Li et al. [14] proved a capacity aug-
mentation bound of 2.62 (resp., of 3.73) for G-EDF (resp.,
for G-DM) scheduling of DAG-tasks with implicit deadline.

(iii) Chwa et al. [8] proposed a RTA-based schedulabil-
ity test for G-EDF scheduling of synchronous tasks with
constrained deadline. Axer et al. [2] proposed a RTA-based
schedulability analysis for fork-join tasks with arbitrary dead-
lines and applied it to the Romain framework. Qamhieh et
al. [21] proposed a schedulability test for G-EDF schedul-
ing of DAG-tasks with constrained deadline and a study of
its sustainability. Maia et al. [15] proposed a RTA-based
schedulability analysis for G-FP scheduling of synchronous
tasks with constrained deadline. Nogueira et al. [20] pro-
posed a scheduling approach for DAG-tasks combining re-
source reservation with work-stealing; this work addresses
soft real-time guarantees. Qamhieh et al. [22] proposed
a stretching algorithm for DAG-tasks with implicit dead-
line and proved a resource augmentation bound of 2.62 for
G-EDF scheduling of stretched tasks.

Contributions of this paper. This work provides the
following novel contributions:

1. it proposes a polynomial time schedulability test, based
on Response Time Analysis, for G-EDF and G-DM
scheduling of sporadic DAG-tasks with arbitrary dead-
line and arbitrary vertex utilization (i.e., vertices can
have utilization greater than 1);1

2. it proposes a pseudo-polynomial time schedulability
test, based on Response Time Analysis, for G-EDF
and G-DM scheduling of sporadic DAG-tasks with ar-
bitrary deadline and arbitrary vertex utilization;

3. it presents a set of simulation results to evaluate the
performance of the proposed schedulability tests in
comparison to existing works in the case of G-EDF;

4. it provides resource augmentation bounds for the poly-
nomial time schedulability test in (1) in the case of
single-DAG systems.

Paper structure. The remainder of this paper is organized
as follows. Section 2 describes the system model. Section 3
introduces our schedulability tests, while Section 4 presents
the simulation results. Finally, Section 5 provides the con-
cluding remarks.

1We notice that the runtime efficiency of this test makes it a valid
candidate solution to the problem of online admission control of
parallel tasks with arbitrary utilization presented in [16].

2. SYSTEM MODEL
In the sporadic DAG model described in [5], a task τi (i =

1, . . . , n) is specified by a 3-tuple (Gi, Di, Ti), where Gi is a
vertex-weighted Directed Acyclic Graph (DAG), and Di, Ti

are natural numbers (i.e., positive integers).

• The DAG Gi is specified as Gi = (Vi, Ei), where Vi

is a set of vertices and Ei a set of directed edges be-
tween these vertices; it is required that these edges
do not form any oriented cycle. Each v ∈ Vi repre-
sents an abstract sequential operation (i.e., a type of
“job”). Each vertex v ∈ Vi is characterized by a weight
ev ∈ N, that is the worst-case execution time (WCET)
of all jobs of (type) v. The edges represent dependen-
cies between jobs as described in the next paragraph.
For v ∈ Vi, we define τ (v) := i and we set Gv := Gτ(v),
Dv := Dτ(v), Tv := Tτ(v).

• The period Ti ∈ N. A release of a DAG-job of the
task at time-instant t means that a job of v is released
at time-instant t for each v ∈ Vi; t is called the re-
lease date of both the DAG-job and the jobs that com-
pose it. The period denotes the minimum amount of
time that must elapse between the release of successive
DAG-jobs: if a DAG-job is released at t, then the next
DAG-job of the same task can not be released prior
to time-instant t + Ti. Notice that we do not require
ev ≤ Tv in this work. For a possible “realization” S of
the sporadicity constraints, we denote the release date
of the j-th job of v (j ∈ N) by rj, Sv . We identify S with
the ordered set (r1, Sv1 , r1, Sv2 , . . . , r2, Sv1 , r2, Sv2 , . . .) (all the
vertices in the system, arbitrarily ordered), and we re-
fer to S as the “sequence of release dates”. The edges
represent dependencies between jobs belonging to the
same DAG-job: if (v1, v2) ∈ Ei, then each job of v1
must complete execution before the job of v2 in the
same DAG-job can begin execution; we call this job
of v1 a predecessor job of the job of v2. Any groups of
jobs that are not constrained (directly or indirectly) by
this kind of precedence constraint may execute in par-
allel, whenever enough processing resource is available
for them (e.g., there is no “intra-vertex” precedence
constraint). A job (that has been released and has not
yet completed execution) is enabled at time-instant t
if all its predecessor jobs have completed execution at
time-instant t.

• The deadline Di ∈ N. If a DAG-job is released at time-
instant t, then all |Vi| jobs that were released at t must
complete execution by time-instant t+Di. We assume
that each of these jobs is discarded from the system at
time-instant t + Di + 1.2 For a possible sequence of
release dates S, we denote the time-instant by which
the j-th job of v completes execution (j ∈ N) by f j, S

v

(≥ rj, Sv). The task τi is said to have a constrained
deadline if Di ≤ Ti. In this paper, we consider tasks
with unconstrained or arbitrary deadline, that is we
make no assumption on the relation existing between
the deadline and the period of a task. Notice that
a task with arbitrary deadline may release a DAG-
job prior to the completion of its previously-released
DAG-job.

2This is a “harmless” (since we will consider hard real-time
schedulability problems) but technically useful assumption (see,
e.g., the proof of Lemma 1).

206

In this paper, we consider a task-set T = {τ1, . . . , τn}
representing a collection of n sporadic DAG-tasks. The
jobs of the task-set are executed on a platform Π consist-
ing of m ≥ 1 identical processors.

Some additional notation and terminology:

• A path in the sporadic DAG-task τi is a sequence of
vertices (v1, v2, . . . , vk) such that (vj , vj+1) is an edge
of Gi, 1 ≤ j < k; the length of this path is defined to
be the sum of the WCETs of all its vertices:

∑k
j=1 evj .

• We say that the vertex v′ is a predecessor of the ver-
tex v if there exists a path (v′, . . . , v) in Gv; we de-
note by Pv the set of immediate predecessors of v, i.e.,
v′ ∈ Pv if and only if (v′, v) ∈ Eτ(v).

• We denote by len(Gi) the length of the longest path
in Gi; len(Gi) can be computed in time linear in the
number of vertices and the number of edges of the
DAG Gi, by first obtaining a topological order of its
vertices and then running a straightforward dynamic
program.

• We define vol(Gi) :=
∑

v∈Vi
ev; vol(Gi) can be com-

puted in time linear in the number of vertices of the
DAG Gi.

• We define ui :=
vol(Gi)

Ti
and U :=

∑n
i=1 ui; ui (resp., U)

is called the utilization of the DAG-task τi (resp., the
total utilization of the task-set).

In the following sections, it will be useful to consider in-
dices over the set of all vertices in the task-set T ; for this
reason, we introduce the notations

v ∈ T ,
∑

v∈T

as abbreviations for, respectively,

v ∈
n⋃

i=1

Vi,
n∑

i=1

∑

v∈Vi

.

We denote by |T | the cardinality of the set
⋃n

i=1 Vi. More-
over, we fix an ordering of the vertices v ∈ T and we adopt
the vector notation

a := (av)v∈T ∈ Z
|T |,

where av ∈ Z for each v ∈ T .

The task-set T is A-schedulable on the platform Π with
respect to a scheduling algorithm A if all its jobs meet their
deadlines when scheduled according to A, i.e.,

f j, S
v − rj, Sv ≤ Dv ∀v ∈ T , ∀S, ∀j ∈ N

or, equivalently, if

Rv := sup
S

sup
j∈N

(
f j, S
v − rj, Sv

)
≤ Dv ∀v ∈ T .

Rv ≥ ev is called the response time of the vertex v ∈ T .3

The task-set T is feasible if it is A-schedulable with respect
to a scheduling algorithm A.

In this paper, we adopt the discrete-time concept, i.e., any
time value is an integer. This is based on the assumption
that all events in the system happen only at clock ticks.
3For simplicity of notation, we omit to specify the dependence of
Rv (and fj, S

v) on the underlying system (T ,Π,A).

3. INTERFERENCE
We begin by introducing a notion of “interference” for

the sporadic DAG model w.r.t. a generic scheduling algo-
rithm A.

Definition 1. Let (T ,Π,A) be a system.

(i) Let v ∈ T be a vertex, S a sequence of release dates
(compatible with the sporadic DAG model) and let j
be a natural number. We define the function Ij, S

v ,

Ij, S
v : N → Z

Xv '→ Ij, S
v (Xv) ,

where Ij, S
v (Xv) equals the amount of time the j-th

job of v from S is either not enabled or enabled but
not executing in the time-interval [rj, Sv , rj, Sv + Xv) of
length Xv . More formally:

Ij, S
v (Xv) :=

rj, Sv +Xv−1∑

t=r
j, S
v

χj, S
v (t),

where χj, S
v (t) equals 1 if the j-th job of v from S is

either not enabled or enabled but not executing at
time-instant t, and it equals 0 otherwise.4

(ii) We define the function I,

I : N|T | → Z
|T |

X '→ (Iv (X))v∈T ,

according to

Iv(X) := max
S

max
j∈N

{
Ij, S
v (Xv)

}
.

I is called the interference associated with (T ,Π,A).5

It follows from the above definition that all jobs meet their
deadlines if

ev + Iv(D) ≤ Dv ∀v ∈ T ,

or equivalently (in vector notation) if

e+ I(D) ≤ D.

Unfortunately, we are not able to efficiently compute the
interference for all possible systems (this is true even when
limiting to the case A = G-EDF or A = G-DM). Instead,
we adopt an approach (to be described in this section) based
on RTA and relying on an upper-bound on the interference.
We can summarize our approach as follows.

1. We start by considering a “parameter”Y ∈ N
|T | such

that

Y ≥ min {D+ 1,R} (1)

(i.e., Yv ≥ min {Dv + 1, Rv} for each v ∈ T).

2. For each Y as in step 1, we define a function I(−,Y),

I(−,Y) : N|T | → Z
|T |

X '→
(
Iv (X,Y)

)
v∈T

,

representing a (point-wise) upper-bound on the inter-
ference, i.e., I(X,Y) ≥ I(X) for each X ∈ N

|T |.
4Remark that the time is discrete (c.f., Section 2).
5For simplicity of notation, we omit to specify the dependence
of I (and I

j, S) on the underlying system (T ,Π,A).

207

3. We prove that any vector X ∈ N
|T | satisfying the in-

equality

e+ I(X,Y) ≤ X (2)

must also satisfy X ≥ R (c.f. Theorem 1).

4. Step 3 allows us to define a schedulability test by first
“finding” a parameter Y and a vector X satisfying (2),
and by then simply checking if X ≤ D.

Intuitively, we consider Yv as the (known) upper-bound to
the response time of v, and we consider Xv as the“unknown”
(to be defined using (2)) representing the same upper-bound.

From now on, we assume A = G-EDF or A = G-DM
unless stated otherwise.

3.1 Upper-bounds
In this subsection, we define the upper-bound I(−,Y)

(Definition 5), and we show how it can be used to estimate
the response times (c.f. Theorem 1). The main idea under-
lying this result is to estimate the interference “by walking
through a so called (j, S)-critical path”, as defined next.

Definition 2. Let A be arbitrary. Let v ∈ T be a vertex,
S a sequence of release dates and let j be a natural number.
We recursively define the path (vK , vK−1, . . . , v1), called the
(j, S)-critical path of v, as follows:

(i) first, set v1 := v;

(ii) for k > 1, let vk denote the first vertex u ∈ Pvk−1

(w.r.t. the ordering on T) such that f j, S
u ≥ f j, S

u′ for
each u′ ∈ Pvk−1

, if such a vertex exists (i.e., if Pvk−1
̸=

∅); otherwise, set K := k − 1 and exit the recursion.

Intuitively, the (j, S)-critical path of v is built, starting
with v, by going “backward” to the immediate predecessor
of the current vertex whose j-th job from S completed last;
an example of (j, S)-critical path is illustrated in Figure 1.

The notion of (j, S)-critial path allows us to “split” the
interference (estimate) into the sum of two distinct terms;
this result is formally established by Proposition 1. We first
introduce the following fundamental notation.

Definition 3. Let A be an arbitrary scheduling algorithm.
Let v ∈ T be a vertex, S a sequence of release dates and let j
be a natural number. We define the function Wj, S

v : N → Z,
Xv '→ Wj, S

v (Xv), where Wj, S
v (Xv) equals the amount of

time the j-th job of v from S is enabled but not executing
in the time-interval [rj, Sv , rj, Sv + Xv) of length Xv. More
formally:

Wj, S
v (Xv) :=

rj, Sv +Xv−1∑

t=r
j, S
v

ζj, Sv (t),

where ζj, Sv (t) equals 1 if the j-th job of v from S is enabled
but not executing at time-instant t, and it equals 0 other-
wise. (Wj,S

v (Xv) ≤ Ij, S
v (Xv) for each Xv ∈ N.)

Proposition 1. Let A be an arbitrary scheduling algorithm.
Let v ∈ T be a vertex, S a sequence of release dates and
let j be a natural number. Moreover, let (vK , vK−1, . . . , v1)
denote the (j, S)-critical path of v and let Xv ∈ N be arbi-
trary. The following inequality holds:

Ij, S
v (Xv) ≤

K∑

k=2

evk +
K∑

k=1

Wj, S
vk

(Xv). (3)

2 4 70 t

t
v1

v1

v2

v2

v3

v3

v4

v4

v5

v5

v6

v6

Processor 1

Processor 2

Figure 1: Example illustrating the (j, S)-critical path of
vertex v6 on a platform with m = 2 processors. Vertices
have WCETs e1 = 2, e2 = 2, e3 = 1, e4 = 1, e5 = 2, e6 = 3; the
jobs shown in the schedule all belong to the j-th DAG-job
of the task from the given sequence S of release dates,
and are labeled with the symbol of the corresponding
vertex. The (j, S)-critical path of v6 is (v3, v4, v6); notice
that this path does not coincide with a “critical path
reaching” v6 (i.e., with either (v1, v4, v6) or (v2, v4, v6)).

Proof. The proof is by induction on K ∈ N. The base case
of the induction (K = 1) holds trivially, since in this case
vertex v has no predecessors and Ij, S

v (Xv) = Wj, S
v (Xv).

We now consider the induction step. By the induction
hypothesis (applied for v2), we know that

Ij, S
v2 (Xv) ≤

K∑

k=3

evk +
K∑

k=2

Wj, S
vk

(Xv). (4)

Since f j, S
v2 ≥ f j, S

u for each u ∈ Pv1(= Pv), by construction,
it follows from (4) that we can upper-bound the amount of
time in which the j-th job of v from S is not enabled in the
considered time-interval with the value

K∑

k=2

evk +
K∑

k=2

Wj, S
vk

(Xv)
(
≥ ev2 + Ij, S

v2 (Xv)
)
.

Finally, we upper-bound Ij, Sv (Xv) by adding W j, S
v (Xv) =

W j, S
v1 (Xv) to the above value, thus obtaining (3).

Our next step towards the identification of a “safe” upper-
bound on the interference will be to upper-bound the term∑K

k=1 W
j, S
vk

(Xv) in equation (3). We provide these upper-
bounds in Lemmas 1 and 2 for the case of G-EDF and G-DM
scheduling, respectively. Some preliminary notations:

Definition 4. Let v, v′ ∈ T be arbitrary.

(i) Define the functionW
g-edf

v′,v : N|T |×N
|T | → Z as follows:

W
g-edf

v′,v (X ,Y) :=

(⌈
Yv′+min{Dv−Dv′ ,Xv}

Tv′

⌉

0

− γv′,v

)
ev′ ,

where

⌈a⌉0 :=

{
⌈a⌉ if a ≥ 0

0 otherwise,

γv′,v :=

{
1 if v precedes v′

0 otherwise.

208

(ii) Define the function W
g-dm

v′,v : N|T |×N
|T | → Z as follows:

W
g-dm

v′,v (X ,Y) :=

{(⌈
Yv′+Xv

Tv′

⌉
− γv′,v

)
ev′ , if Dv′ ≤ Dv

0 otherwise,

where γv′,v is as defined above.

Lemma 1 (G-EDF). Consider the case A = G-EDF. Let
v ∈ T be a vertex, S a sequence of release dates and let
j be a natural number. Let (vK , vK−1, . . . , v1) denote the
(j, S)-critical path of v. Finally, let Y ≥ min{D+1,R} and
let X ∈ N

|T | be arbitrary. The following inequality holds:

m ·

(
K∑

k=1

Wj, S
vk

(Xv)

)

≤
∑

v′∈T

W
g-edf

v′,v (X ,Y)−
K∑

k=1

evk . (5)

Proof. Consider a time-instant t, rj, Sv ≤ t ≤ rj, Sv +Xv − 1,
when the j-th job of vk from S is enabled but not executing
(i.e., ζj, Svk

(t) = 1). Since our scheduling algorithm is work-
conserving, this job can be delayed from execution only if all
processors are busy with“higher priority”jobs that preempt6

the job of vk; in other words, for each t such that ζj, Svk
(t) = 1,

the processors must performm units of work to execute some
jobs preempting the job of vk. Moreover, due to precedence
constraints, the equality ζj, Svk

(t) = 1 implies ζj, Svk′
(t) = 0

for each k′ ̸= k (1 ≤ k′ ≤ K). As a consequence, we can
upper-bound the left-hand term in (5) by determining an
upper-bound on the total work performed by the processors
to execute the jobs which preempt (any of) the j-th jobs
of v1, . . . , vK from S in the considered time-interval.

With this in mind, let us now consider an arbitrary ver-
tex v′ ∈ T . Notice that:

(i) every job of v′ released before or at time-instant rj, Sv −
Yv′ can not preempt the jobs of v1, . . . , vK in the time-
interval [rj, Sv , rj, Sv +Xv), since this job must have com-
pleted execution by time-instant rj, Sv (if Yv′ ≥ Rv′) or
it must have been discarded from the system by that
time-instant (if Yv′ ≥ Dv′ + 1), by definition of Yv′ ;

(ii) every job of v′ released after time-instant rj, Sv +Dv −
Dv′ has lower priority than the jobs of v1, . . . , vK , and
thus can not preempt them in the considered time-
interval; moreover, every job of v′ released after (or
at) time-instant rj, Sv + Xv can not preempt the jobs
of v1, . . . , vK in the given time-interval.

Thus there are at most
⌈

Yv′+min{Dv−Dv′ ,Xv}
Tv′

⌉

0

(6)

jobs of v′ which can preempt the j-th jobs of v1, . . . , vK
from S in the time-interval [rj, Sv , rj, Sv +Xv).

Notice that if v precedes v′ (γv′,v = 1) or if v′ belongs
to the (j, S)-critical path of v, then we have Dv = Dv′ (v
and v′ belong to the same DAG, in this case) and expres-
sion (6) reduces to ⌈Yv′/Tv′⌉ ≥ 1. This number can be
further reduced to ⌈Yv′/Tv′⌉ − 1, because the job of v′ re-
leased at time-instant rj, Sv (that has been certainly counted
in (6)) can not preempt the jobs of v1, . . . , vK in the case
under consideration, due to precedence constraints.
6More formally, we say that the job J ′ preempts the job J at
time-instant t if J is enabled but not executing at time-instant t
while J ′ is executing at that time-instant; notice that a job J ′

could be “interfering” with a job J without preempting it (e.g.,
J ′ could be preempting a predecessor job of J).

In conclusion, inequality (5) can be obtained by remarking
that each of the “preempting jobs” of v′ can contribute to
the total work with at most ev′ time-units and, finally, by
summing over all vertices v′ ∈ T .

Lemma 2 (G-DM). Consider the case A = G-DM. Let
v ∈ T be a vertex, S a sequence of release dates and let
j be a natural number. Let (vK , vK−1, . . . , v1) denote the
(j, S)-critical path of v. Finally, let Y ≥ min{D+1,R} and
let X ∈ N

|T | be arbitrary. The following inequality holds:

m ·

(
K∑

k=1

Wj, S
vk

(Xv)

)

≤
∑

v′∈T

W
g-dm

v′,v (X ,Y)−
K∑

k=1

evk .

Proof (sketch). The proof follows the same argument in the
proof of Lemma 1 with the exceptions that no preemption
“from v′ to v” is possible if Dv′ > Dv (W

g-dm

v′,v (X ,Y) = 0)
and that the first part of item (ii) above does not apply.

As emerged from the proof of Lemmas 1 and 2, the func-

tion W
A
v,v′ could be interpreted as an “interfering workload”

(e.g., [17, 15]) of the vertex v′ on the vertex v. We stress
that the assumption Y ≥ min{D+1,R} is essential to the
proofs of the lemmas reported above.

We now define the anticipated interference upper-bound.

Definition 5. We define the function I,

I : N|T | × N
|T | → Z

|T |

(X,Y) '→
(
Iv (X,Y)

)
v∈T

,

according to

Iv(X,Y) := ℓ+v − ev +

⌊
1
m

(
∑

v′∈T

W
A
v′,v(X ,Y)− ℓ+v

)⌋

,

where

ℓ+v := max

{
k∑

j=1

evj

∣∣∣∣∣
(v1, . . . , vk) a path in Gv

s.t. vk = v

}

is the length of the critical path reaching v.

Notice that the summation in the definition of Iv(X,Y)
extends, in particular, over the vertex v and over all the
vertices in v’s DAG; that is, we are accounting for a “self-
interference” (e.g., [9]) on v and on v’s DAG.

We are finally ready for the main result in this section.

Theorem 1. Let Y ≥ min{D+ 1,R}, and let X ∈ N
|T | be

arbitrary. For every v ∈ T ,

ev + Iv (X,Y) ≤ Xv =⇒ Xv ≥ Rv.

In particular, the inequality

e+ I (X,Y) ≤ X (7)

implies X ≥ R.

Proof. We will prove the contrapositive: for every v ∈ T ,

Xv < Rv =⇒ Iv(X,Y) > Xv − ev.

Let us suppose Xv < Rv for some vertex v ∈ T , and let
us fix a sequence S of release dates and a natural number j
such that f j, S

v − rj, Sv > Xv (S and j exist, by definition
of Rv). This means that the j-th job of v from S has not yet

209

completed execution at time-instant rj, Sv +Xv; in particular,
we deduce

Ij, S
v (Xv) > Xv − ev. (8)

Let (vK , vK−1, . . . , v1) denote the (j, S)-critical path of v.
We have7

Iv(X,Y) ≥
K∑

k=2

evk +

⌊
1
m

(
∑

v′∈T

W
A
v′,v(X ,Y)−

K∑

k=1

evk

)⌋

≥
K∑

k=2

evk +
K∑

k=1

Wj, S
vk

(Xv) (by Lemmas 1 and 2)

≥ Ij, S
v (Xv) (by Proposition 1)

> Xv − ev (by (8)),

as desired.

Remark 1. We remark that the argument presented in
the proof of Theorem 1 could be applied without modifica-
tion to any work-conserving scheduling algorithm A, once
a “suitable” expression for the interfering workload is avail-

able, that is, once a function W
A
v′,v satisfying analogous to

Lemmas 1 and 2 has been determined.

Remark 2. The upper-bounds established by Lemmas 1
and 2 when A = G-EDF and A = G-DM, respectively, can
be tightened if additional assumptions are imposed on the
DAG model (e.g., if ev ≤ Tv for all v ∈ T). In this paper we
adhere to the (more general) model described in Section 2,
thus leaving this analysis for future work.

3.2 Schedulability tests
Theorem 1 allows us to define a simple schedulability test

by first setting the parameter Y := D+ 1 and then testing
a “tentative” vector X ≤ D against inequality (7).

Definition 6 (RTA-P). We denote by RTA-P the schedu-
lability test defined according to the following steps: given
an input system (T ,Π,A),

1. return true, if e+ I(D,D+ 1) ≤ D;

2. return false.

The running time of RTA-P is polynomial in the input size.
We refer to Section 3.3 for an analysis of the resource aug-
mentation of RTA-P for single-DAG systems.

In the rest of this subsection, we describe an iterative
procedure to construct both the parameter Y and the test
vector X ≤ D. Definition 7 provides the basic notation.

Definition 7. Let Y ≥ min{D + 1,R}. We recursively
define the sequence (X[µ])µ∈N

in N
|T | by

X[µ] :=

{
e if µ = 1,

min
{
D+ 1, e+ I(X[µ− 1],Y)

}
if µ > 1.

(9)

It follows directly from Definition 7 that the equalityX[µ̃+
1] = X[µ̃] (µ̃ ∈ N) implies X[µ] = X[µ̃] for each µ ≥ µ̃.
Proposition 2 establishes that such a µ̃ does indeed exist.

7For the first inequality remark that the WCETs are integers, so
these can be carried in (and factorized within) the “floor” sign.

Proposition 2. The sequence (X[µ])µ∈N
defined by (9) has

a fixed-point, i.e., there exists a natural number µ̃ such that

X[µ̃+ 1] = X[µ̃],

and such a X[µ̃] can be computed in time pseudo-polynomial
in the sizes of the system (T ,Π,A) and of the parameter Y.

Moreover, denoted by X̃(Y) the (unique) fixed-point of
(X[µ])µ∈N

, the following property holds: for every v ∈ T ,

πv
(
X̃ (Y)

)
≤ Dv =⇒ πv

(
X̃ (Y)

)
≥ Rv, (10)

where πv : N|T | → N denotes the projection onto the v-th
component.

Proof. The existence of a fixed-point follows immediately
from the (componentwise) monotonicity and from the bound-
edness of (X[µ])µ∈N together with the discrete-time assump-
tion.

We now prove that the fixed-point can be computed in
pseudo-polynomial time. Notice that equation (9) is separa-
ble w.r.t. its components: that is, πv(X[µ]) is independent

from (the value of) πv′

(X[µ′]) for v′ ̸= v and µ′ < µ, by
definition of I. In particular, every components of X[µ]
must stabilize (i.e., equal a constant value) after at most
max{2, Dmax − emin + 2} iterations of equation (9), where
Dmax := max{Di | 1 ≤ i ≤ n} and emin := min{ev | v ∈ T }.
To conclude, it is thus enough to remark that each of these
iterations can be run in polynomial time in the sizes of the
system (T ,Π,A) and of the parameter Y.

For the last part of the proposition notice that, if X[µ̃] is
the fixed-point of (X[µ])µ∈N

and πv (X[µ̃]) ≤ Dv , then

(Dv ≥) πv (X[µ̃]) = πv (X[µ̃+ 1])

:= min
{
Dv + 1, ev + Iv(X[µ̃],Y)

}

= ev + Iv(X[µ̃],Y);

thus, by Theorem 1, we have πv (X[µ̃]) ≥ Rv, as desired.

As emerged from the proof, a fixed-point X̃(Y) ≤ D sat-
isfies inequality (7); thus we have defined a procedure that,

given a parameter Y, returns the “ideal” test vector X̃(Y).
It is now a matter of selecting the parameters.

Definition 8 (RTA). Let ξ ∈ N be fixed. We denote by
RTA(ξ) the schedulability test defined according to the fol-
lowing steps: given an input system (T ,Π,A),

1. set ν := 1 and Y[1] := D+ 1;

2. iteratively compute X[µ] according to equation (9) un-

til a fixed-point X̃(Y[ν]) as in Proposition 2 is reached;

return true, if X̃(Y[ν]) ≤ D;

3. update ν := ν + 1 and

Y[ν] := min
{
Y[ν − 1], X̃(Y[ν − 1])

}
;

return false, if ν > ξ or Y[ν] = Y[ν−1]; go to step 2.

Informally, RTA(ξ) starts with a “safe” parameter Y and

then constructs the test vector X̃(Y) as in Proposition 2;

if X̃(Y) can not guarantee the schedulability, RTA(ξ) uses
this vector to construct a “better” parameter and iterates.

Theorem 2. RTA(ξ) is well-defined (that is, it is a schedu-
lability test); its running time is pseudo-polynomial in the
input size.

210

The proof uses the following lemma.

Lemma 3. For every (computed) ν ∈ N, the following in-
equalities are satisfied: (i) Y[ν] ≤ D + 1, and (ii) Y[ν] ≥
min{D + 1,R}.

Proof. (i) This follows immediately (e.g., by induction on ν)
from the definition of Y[ν] in steps 1 and 3.

(ii) The proof is by induction on ν. The base case of the
induction (ν = 1) follows trivially from step 1. The inductive
step follows by combining the definition of Y[ν] (in step 3)
together with equation (10) of Proposition 2.

Proof (of Theorem 2). We start showing that RTA(ξ) runs
in pseudo-polynomial time. Each of the three steps of RTA(ξ)
can be executed at most ξ times. By Proposition 2, the run-
ning times of every steps are pseudo-polynomial in the sizes
of (T ,Π,A) and of Y[ν] (ν ∈ N). Thus, Lemma 3 concludes
this part of the proof.

The well-definiteness of RTA(ξ) follows immediately from
Lemma 3(ii) together with equation (10) of Proposition 2
(c.f. the “return” statement in step 2).

Remark 3. RTA(ξ) dominates RTA(ξ′) for every ξ′ < ξ. It
is possible to remove the halting condition ν > ξ in Defini-
tion 8 without compromising the termination of the test; this
is due to the monotonicity and boundedness of (Y[ν])ν∈N

(and the remaining halting condition in step 3). Notice,
however, that the proof of pseudo-polynomiality presented
above does not extend to the resulting schedulability test;
we refer to Section 4 for considerations related to our simu-
lations.

Remark 4. In Definition 8, we have presented a concise
(formally correct) description of RTA(ξ). Of course, an ac-
tual implementation of this test should exploit the “paral-
lelism” implicit in this description and, in particular, in equa-
tion (9). For example, due to separability (see the proof of
Proposition 2), there is no need to iterate this equation on
components which have already stabilised. For reason of
space, we will not discuss these (and other) optimizations
further in the present paper.

3.3 Augmentation bounds
In this subsection, we restrict the domain of each schedu-

lability test to be the set X of systems of the form

x := ({τ}, Π, G-EDF),

where τ := (G, D, T) is a sporadic DAG-task with D > T
and the number of processors m in Π is arbitrary (not fixed).

We recall the following definition to fix the notation.

Definition 9. The (integer) resource augmentation σ(B) ∈
N∪{∞} of a schedulability test B is the infimum of the σ ∈ N

which satisfies the following property: for every x ∈ X ,

B returns false on x =⇒ x(σ) is not feasible,

where x(σ) denotes the system obtained after multiplying
x’s WCETs by a factor of σ.8

Proposition 3. σ(RTA-P) ≤ 3.

8Resource augmentation (or “speedup”) in the presence of
fractional-time has been considered in the literature (e.g., [5, 7]);
Definition 9 maintains the discrete-time assumption, consistently
with the model described in Section 2.

Proof. We will prove the contrapositive: for every x ∈ X ,

x(3) is feasible =⇒ RTA-P returns true on x.

Let us consider a (generic) system x such that x(3) is fea-
sible; in particular, we have

len(G) ≤ 1
3D

vol(G) ≤ 1
3mT.

Then, for v ∈ T , we compute

ev+Iv(D,D+ 1)

≤ len(G) +
1
m

(⌈
D + 1
T

⌉
· vol(G)− len(G)

)

< 1
3D +

1
m

(
2
D + 1
T

· 1
3mT − 1

3D

)

= D
(
1− 1

3m

)
+ 2

3 < D + 1; (11)

since the left-hand term in equation (11) is an integer num-
ber, we conclude ev + Iv(D;D + 1) ≤ D and thus, due to
the arbitrariness of v, RTA-P returns true on x.

Remark 5. It is possible to modify the proof of Proposi-
tion 3 and to “include” the case A = G-DM by replacing the
first inequality in (11) with

ev+Iv(D,D+ 1)

≤ len(G) +
1
m

(⌈
2D + 1

T

⌉
· vol(G)− len(G)

)
.

By reasoning as in the proof of Proposition 3, we could then
obtain σ(RTA-P) ≤ 5.

4. SIMULATION RESULTS
In this section, we present a set of simulation results eval-

uating the performance of RTA-P and RTA with respect to
the schedulability tests described in [7], in terms of both
schedulability ratio and running time. To the best of the
authors’ knowledge, these are the only currently available
tests for G-EDF or G-DM scheduling of (multiple) sporadic
DAG-tasks with arbitrary deadline. In this paper, we restrict
the comparison to these kind of tests, since our analysis were
specifically targeted to the (general) model described in Sec-
tion 2 (see also Remarks 1 and 2).

The notation used to refer to the schedulability tests is
reported in Table 1. We remark that BON(δ) estimates
the maximum “workload density” by approximating it up to
an ε-error, ε := 2−δ; for values of ε tending to zero, this
test performs more accurately but it is also computationally
more demanding.9 All tests have been implemented as se-
quential algorithms and executed on an 8-core Intel Xeon
running at 3.5GHz.

In each simulation, task-sets have been generated starting
from a given “configuration”,

(n,U, Tmin, Tmax,αmin,αmax, Nmin, Nmax, pedge) ∈ N
9,

according to the following steps:

9The (worst-case) running time of BON(δ) grows linearly
with 1/ε := 2δ ; this explains the different scales of the parame-
ters ξ and δ chosen in the simulations (remark that the running
time of RTA(ξ) grows linearly with ξ).

211

RTA(ξ) The test described in Definition 8.

RTA-P The test described in Definition 6.

BON(δ) The test proposed in [7], Section IV.

BON-P The test proposed in [7], Section V.

Table 1: Schedulability tests in the simulations.

1. the utilization ui of the DAG-task τi (1 ≤ i ≤ n) is
randomly generated by using the UUniSort algorithm
on n and U (see [6]);

2. the period Ti is uniformly chosen in [Tmin, Tmax]; the
deadline Di is uniformly chosen in [αminTi,αmaxTi];

3. the number of vertices |Vi| of the DAG Gi is uniformly
chosen in the range [Nmin, Nmax]; WCETs are ran-
domly generated by using UUniSort on |Vi| and uiTi;

4. for any two vertices v, v′ of Gi such that v < v′, we
add the edge (v, v′) with percent probability pedge.

For each configuration, we generated P := 10000 task-
sets. We evaluated more than 800 different configurations,
including the case of implicit deadlines (αmin = αmax = 1);
our results were consistent across all of them; due to space
constraints, we report results for some representative con-
figurations only. Moreover, we limit our report to the case
of G-EDF scheduling; similar considerations can be made,
according to our results, for the case of G-DM scheduling.

4.1 Simulation I
In this simulation, we aim at studying the behavior of

RTA(ξ) and BON(δ), in terms of schedulability ratio and
running time, for different values of ξ and δ respectively.
This simulation is mainly intended to “justify” the selection
of these parameters that we will make in order to perform
the actual comparison between RTA(ξ) and BON(δ) (c.f.
Simulation II).

The results for this simulation are all reported in Fig-
ures 1-4 and in Tables 2-5, at page 9 in this paper.

(i) Figures 1 and 3 report the schedulability ratio of the
tests as a function of the total utilization U of the task-
sets for a platform composed of 16 processors. The
values of the configurations (except for the value of the
total utilization, that is determined by the abscissa) are
written in the figure captions. Tables 2 and 4 report
the corresponding minimum, maximum and average
running times of the tests.

(ii) Figures 2 and 4 report the schedulability ratio of the
tests as a function of the number of processors m com-
posing the platform; again, the values of the config-
uration are written in the figure captions. Tables 3
and 5 report the corresponding minimum, maximum
and average running times of the tests.

We make the following observations.

1. RTA(64) and RTA(16) are indistinguishable with re-
spect to the schedulability ratio (Figures 1 and 2). As
expected from the (worst-case) analysis, the maximum
running time of RTA(ξ) grows linearly with ξ (Tables 2
and 3); the fact that RTA(64) and RTA(16) present
identical average running times (up to a millisecond
precision) suggests that the halting condition Y [ν] =

Y [ν − 1] from Definition 8(3) is satisfied with ν ≤ 16
for “almost every” task-sets.

2. BON(10) and BON(6) are indistinguishable with re-
spect to the schedulability ratio (Figures 3 and 4).
We remark that, according to our results, BON(6)
and BON(δ), with δ = 8, 10, 12, 14, have been al-
ways found to be indistinguishable with respect to the
schedulability ratio on all tested configurations. The
maximum and average running time of BON(δ) grows
exponentially with δ (Tables 4 and 5).

3. BON(δ) presents a schedulability threshold of m/U ∼
2−1/m+2−δ (that is, no task-set with m/U less than
about 2−1/m+2−δ is deemed schedulable by BON(δ))
and a schedulability saturation (that is, the schedu-
lability ratio for BON(δ) reaches its maximum value
at m/U ∼ 2 − 1/m + 2−δ and then remains constant
or even decreases).

4.2 Simulation II
In this simulation, we aim at comparing the behavior of

RTA(16), BON(6), RTA-P and BON-P in terms of schedula-
bility ratio and running time. The values ξ := 16 and δ := 6
for RTA(ξ) and BON(δ), respectively, have been selected
(“following” the results presented in Simulation I) in the at-
tempt to “maximize” the schedulability ratios of these tests
on the given configurations.

The results for this simulation are all reported in Fig-
ures 5-6 and in Tables 6-7, at page 10 in this paper.

(i) Figure 5 reports the schedulability ratio of the tests
as a function of the total utilization U of the task-
sets for a platform composed of 16 processors. The
values of the configurations are written in the figure
caption. Table 6 reports the corresponding minimum,
maximum and average running times of the pseudo-
polynomial time tests.

(ii) Figure 6 reports the schedulability ratio of the tests
as a function of the number of processors m compos-
ing the platform; the values of the configuration are
written in the figure caption. Table 7 reports the cor-
responding minimum, maximum and average running
times of the pseudo-polynomial time tests.

We make the following observations.

1. RTA(16) outperforms BON(6) in terms of both schedu-
lability ratio (Figures 5-6) and running time (Tables 6-
7).10 The number of task-sets which are deemed schedu-
lable by RTA(16), in Figure 5, is about 275% the cor-
responding number for BON(6).

2. RTA-P outperforms BON-P in terms of schedulability
ratio (Figures 5-6). RTA-P and BON are incompara-
ble w.r.t. the dominance quasi-order, but the number
of task-sets which are deemed schedulable by RTA-P,
in Figure 5, is about the corresponding number for
BON(6).

3. Figures 5-6 and Figures 1-2 suggest that RTA(1) ≡
RTA-P, as boolean functions. Our results did not
break this equivalence but we were unable to formally
derive it.

10In fact, according to our results, RTA(16) is already superior
to BON(4) in terms of both maximum and average running times.

212

5 10 15
0

0.2

0.4

0.6

0.8

1

U

S
ch

ed
u
la
b
il
it
y
ra
ti
o

m = 16

RTA(64)

RTA(16)

RTA(4)

RTA(1)

Figure 2: n = 20, Tmin = 100, Tmax = 1000, αmin = 1,
αmax = 5, Nmin = 5, Nmax = 20, pedge = 25 (P = 10000).

Min Max Avg
(s) (s) (s)

RTA(64) 0.001 0.397 0.014

RTA(16) 0.001 0.225 0.014

RTA(4) 0.001 0.050 0.009

RTA(1) 0.001 0.014 0.005

Table 2: Running times, in seconds, for the simulations
of Figure 2.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

m

S
ch

ed
u
la
b
il
it
y
ra
ti
o

RTA(64)

RTA(16)

RTA(4)

RTA(1)

Figure 3: n = 20, U = 10, Tmin = 100, Tmax = 1000,
αmin = 1, αmax = 5, Nmin = 5, Nmax = 20, pedge = 25
(P = 10000).

Min Max Avg
(s) (s) (s)

RTA(64) 0.001 0.487 0.016

RTA(16) 0.001 0.236 0.016

RTA(4) 0.001 0.054 0.011

RTA(1) 0.001 0.013 0.007

Table 3: Running times, in seconds, for the simulations
of Figure 3.

5 10 15
0

0.2

0.4

0.6

0.8

1

U

S
ch

ed
u
la
b
il
it
y
ra
ti
o

m = 16

BON(10)

BON(6)

BON(4)

BON(2)

Figure 4: n = 20, Tmin = 100, Tmax = 1000, αmin = 1,
αmax = 5, Nmin = 5, Nmax = 20, pedge = 25 (P = 10000).

Min Max Avg
(s) (s) (s)

BON(10) 0.000 17.855 3.357

BON(6) 0.000 1.160 0.214

BON(4) 0.000 0.292 0.051

BON(2) 0.000 0.142 0.012

Table 4: Running times, in seconds, for the simulations
of Figure 4.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

m

S
ch

ed
u
la
b
il
it
y
ra
ti
o

BON(10)

BON(6)

BON(4)

BON(2)

Figure 5: n = 20, U = 10, Tmin = 100, Tmax = 1000,
αmin = 1, αmax = 5, Nmin = 5, Nmax = 20, pedge = 25
(P = 10000).

Min Max Avg
(s) (s) (s)

BON(10) 0.000 19.495 4.684

BON(6) 0.000 1.284 0.292

BON(4) 0.000 0.316 0.053

BON(2) 0.000 0.069 0.009

Table 5: Running times, in seconds, for the simulations
of Figure 5.

213

5 10 15
0

0.2

0.4

0.6

0.8

1

U

S
ch

ed
u
la
b
il
it
y
ra
ti
o

m = 16

RTA(16)

BON(6)

RTA-P

BON-P

Figure 6: n = 20, Tmin = 100, Tmax = 1000, αmin = 1,
αmax = 5, Nmin = 5, Nmax = 20, pedge = 25 (P = 10000).

Min Max Avg
(s) (s) (s)

RTA(16) 0.001 0.191 0.010

BON(6) 0.000 1.312 0.134

Table 6: Running times, in seconds, for the simulations
of Figure 6.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

m

S
ch

ed
u
la
b
il
it
y
ra
ti
o

RTA(16)

BON(6)

RTA-P

BON-P

Figure 7: n = 20, U = 10, Tmin = 100, Tmax = 1000,
αmin = 1, αmax = 5, Nmin = 5, Nmax = 20, pedge = 25
(P = 10000).

Min Max Avg
(s) (s) (s)

RTA(16) 0.001 0.208 0.012

BON(6) 0.000 1.306 0.330

Table 7: Running times, in seconds, for the simulations
of Figure 7.

5. CONCLUSIONS
We have studied the schedulability problem for sporadic

DAG-tasks with arbitrary deadline on multiprocessor plat-
forms proposing an approach based on Response Time Anal-
ysis. In particular, a novel upper-bound on the interference,

specifically targeted to the considered task model, has been
defined for the case of G-EDF and G-DM and two schedula-
bility tests have been derived. The first test is a simple
polynomial time test, while the second one is a pseudo-
polynomial time test. Simulation results have shown that
our tests outperform the tests described in [7] in terms of
both schedulability ratio and running time. We also derived
resource augmentation bounds for our polynomial time test
on single-DAG systems.

6. REFERENCES
[1] B. Andersson and D. de Niz. Analyzing global-EDF for

multiprocessor scheduling of parallel tasks. OPODIS 2012.
[2] P. Axer, S. Quinton, B. Döbel, and H. Härtig. Response-time

analysis of parallel fork-join workloads with real-time
constraints. ECRTS 2013.

[3] S. Baruah. Improved multiprocessor global schedulability
analysis of sporadic DAG task systems. ECRTS 2014.

[4] S. Baruah, V. Bonifaci, and A. Marchetti-Spaccamela. The
global EDF scheduling of systems of conditional sporadic DAG
tasks. ECRTS 2015.

[5] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie,
and A. Wiese. A generalized parallel task model for recurrent
real-time processes. RTSS 2012.

[6] E. Bini and G. C. Buttazzo. Measuring the performance of
schedulability tests. RTS 2005.

[7] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese.
Feasibility analysis in the sporadic DAG task model.
ECRTS 2013.

[8] H. S. Chwa, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin.
Global EDF schedulability analysis for synchronous parallel
tasks on multicore platforms. ECRTS 2013.

[9] J. Fonseca, V. Nélis, G. Nelissen, and L. M. Pinho. Analysis of
self-interference within dag tasks. RTSOPS 2015.

[10] J. Fonseca, V. Nelis, G. Raravi, and L. M. Pinho. A multi-DAG
model for real-time parallel applications with conditional
execution. SAC 2015.

[11] J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar. Parallel
scheduling cyber-physical systems: analysis and case study on a
self-driving car. ICCPS 2013.

[12] K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel
real-time tasks on multi-core processors. RTSS 2010.

[13] J. Li, K. Agrawal, C. Lu, and C. Gill. Analysis of global EDF
for parallel tasks. ECRTS 2013.

[14] J. Li, J.-J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah.
Analysis of federated and global scheduling for parallel
real-time tasks. ECRTS 2014.

[15] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho.
Response-time analysis of synchronous parallel tasks in
multiprocessor systems. RTNS 2014.

[16] C. Maia, L. Nogueira, and L. M. Pinho. Online admission of
parallel real-time tasks. RTSOPS 2015.

[17] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela,
and G. Buttazzo. Response-time analysis of conditional DAG
tasks in multiprocessor systems. ECRTS 2015.

[18] A. K. Mok and D. Chen. A multiframe model for real-time
tasks. TSE 1997.

[19] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic.
Techniques optimizing the number of processors to schedule
multi-threaded tasks. ECRTS 2012.

[20] L. Nogueira and L. M. Pinho. Server-based scheduling of
parallel realtime tasks. EMSOFT 2012.

[21] M. Qamhieh, F. Fauberteau, L. George, and S. Midonnet.
Global EDF scheduling of directed acyclic graphs on
multiprocessor systems. RTNS 2013.

[22] M. Qamhieh, L. George, and S. Midonnet. A stretching
algorithm for parallel real-time DAG tasks on multiprocessor
systems. RTNS 2014.

[23] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. Gill.
Parallel real-time scheduling of DAGs. TPDS 2014.

[24] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill. Multi-core
real-time scheduling for generalized parallel task models.
RTSS 2011.

[25] M. Stigge, P. Ekberg, and W. Yi. The fork-join real-time task
model. ACM SIGBED Review 2013.

214

