
Linux Scheduler Internals

Luca Abeni

luca.abeni@santannapisa.it

May 5, 2020

Multiprocessor Scheduling

Advanced Kernel Programming Scheduler Internals

• UniProcessor Systems

• A schedule σ(t) is a function mapping time t into
an executing task σ : t→ T ∪ {τidle} where T is
the set of tasks running in the system

• τidle is the idle task

• For a multiprocessor system with M CPUs, σ(t) is
extended to map t in vectors τ ∈ (T ∪ {τidle})

M

• Scheduling algorithms for M > 1 processors?

• Partitioned scheduling
• Global scheduling

The Quest for Optimality

Advanced Kernel Programming Scheduler Internals

• UP Scheduling:

• N periodic tasks with Di = Ti: (Ci, Ti, Ti)
• Optimal scheduler: if

∑ Ci

Ti
≤ 1, then the task set

is schedulable
• EDF is optimal

• Multiprocessor scheduling:

• Goal: schedule periodic task sets with
∑ Ci

Ti
≤M

• Is this possible?
• Optimal algorithms

Partitioned Scheduling - 1

Advanced Kernel Programming Scheduler Internals

• Reduce σ : t→ (T ∪ {τidle})
M to M uniprocessor

schedules σp : t→ T ∪ {τidle}, 0 ≤ p < M

• Statically assign tasks to CPUs
• Reduce the problem of scheduling on M CPUs to

M instances of uniprocessor scheduling
• Problem: system underutilisation

CPU CPU CPU CPU

M

Partitioned Scheduling - 2

Advanced Kernel Programming Scheduler Internals

• Reduce an M CPUs scheduling problem to M single
CPU scheduling problems and a bin-packing
problem

• CPU schedulers: uni-processor, EDF can be used
• Bin-packing: assign tasks to CPUs so that every

CPU has load ≤ 1

• Is this possible?

• Think about 2 CPUs with
{(6, 10, 10), (6, 10, 10), (6, 10, 10)}

Global Scheduling

Advanced Kernel Programming Scheduler Internals

• One single task queue, shared by M CPUs

• The first M ready tasks are selected
• What happens using fixed priorities (or EDF)?
• Tasks are not bound to specific CPUs
• Tasks can often migrate between different CPUs

• Problem: schedulers designed for UP...
M

CPU CPU CPU CPU

{M

Global Scheduling - Problems

Advanced Kernel Programming Scheduler Internals

• Dhall’s effect: U lub for global multiprocessor
scheduling can be 1 (for RM or EDF)

• Pathological case: M CPUs, M + 1 tasks. M
tasks (ǫ, T − 1, T − 1), a task (T, T, T).

• U = M ǫ
T−1 + 1. ǫ→ 0⇒ U → 1

• Global scheduling can cause a lot of useless
migrations

• Migrations are overhead!
• Decrease in the throughput
• Migrations are not accounted for...

Global Scheduling for Soft Tasks

Advanced Kernel Programming Scheduler Internals

• Dhall’s Effect→ global EDF and global RM have
U lub = 1

• With U > 1, deadlines can be missed
• Global EDF / RM are not useful for hard tasks

• However, global EDF can be useful for scheduling
soft tasks...

• When U ≤M , global EDF guarantees an upper
bound for the tardiness!

• Deadlines can be missed, but by a limited
amount of time

SCHED DEADLINE

Advanced Kernel Programming Scheduler Internals

• New SCHED DEADLINE scheduling policy

• Foreground respect to all of the other policies

SCHED DEADLINE and CBS

Advanced Kernel Programming Scheduler Internals

• Uses the CBS to assign scheduling deadline to
SCHED DEADLINE tasks

• Assign a (maximum) runtime Q and a
(reservation) period P to SCHED DEADLINE tasks

• Additional parameter: relative deadline D
• The “check if the current scheduling deadline can

be used” rule is used at task wake-up

• Then uses EDF to schedule them

• Both global EDF and partitioned EDF are
possible

• Configurable through the cpuset mechanism

SCHED DEADLINE Design: Flexibility

Advanced Kernel Programming Scheduler Internals

• Supports both global and partitioned scheduling

• For partitioned scheduling, use cpusets

• Flexible utilization-based admission control

•
∑

j
Qj

Pj
≤ UL

• UL configurable, ranging from 0 to M

• /proc/sys/kernel/sched rt {runtime, period} us

• Can leave CPU time for non-deadline tasks
• Bounded tardiness; hard respect of deadlines for

partitioned scheduling

• Even supports arbitrary affinities!

• But admission control must be disabled...

Setting the Scheduling Policy

Advanced Kernel Programming Scheduler Internals

• No sched setsched()← new syscalls (and data
structures added to be extensible)

• Maybe even too extensible!

int sched_setattr(pid_t pid, const struct sched_attr *attr,
unsigned int flags);

int sched_getattr(pid_t pid, struct sched_attr *attr,
unsigned int size, unsigned int flags);

struct sched_attr {
__u32 size;

__u32 sched_policy;
__u64 sched_flags;

...
__u64 sched_runtime;
__u64 sched_deadline;
__u64 sched_period;

};

Using sched setattr()

Advanced Kernel Programming Scheduler Internals

• pid: as for sched setscheduler()

• flags: currently unused (for future extensions!)
• attr: scheduling parameters for the task

• size: must be set to sizeof(struct

sched attr)

• sched policy: set to SCHED DEADLINE!
• sched runtime: Q
• sched deadline: D
• sched period: P
• sched flags: will see later (set to 0 for now)

libdl

Advanced Kernel Programming Scheduler Internals

• So, can we use SCHED DEADLINE in our user
programs?

• sched setattr() & friends are in the kernel since
3.14...

• But the user-space side of things is still missing in
many Linux distributions

• No support in glibc, no definition of struct
sched attr, etc...

• Solution: small user-space library providing the
sched *attr() system calls and related data
structures

• libdl, released by Juri Lelli under GPL

Example

Advanced Kernel Programming Scheduler Internals

#include "libdl/dl_syscalls.h"
...
struct sched_attr attr;
attr.size = sizeof(struct attr);
attr.sched_policy = SCHED_DEADLINE;
attr.sched_runtime = 30000000;
attr.sched_period = 100000000;
attr.sched_deadline = 100000000;
...
res = sched_setattr(0, &attr, 0);
if (res < 0)

perror("sched_setattr()");
...

Admission Control

Advanced Kernel Programming Scheduler Internals

• sched setattr() might fail if admission control
fails

• Sum of reserved utilizations exceed the limit UL

• Affinity of the task is different from its root domain

• Why the check on the affinity?

•
∑

j
Qj

Pj
≤M guarantees bounded tardiness for

global scheduling!
• Arbitrary affinities need a different analysis...

• So, how to use arbitrary affinities?

• Disable admission control!
• echo -1 > /proc/sys/kernel/sched rt runtime us

Partitioned Scheduling

Advanced Kernel Programming Scheduler Internals

• cpuset: mechanism for assigning a set of CPUs to
a set of tasks

• Exclusive cpuset: CPUs not shared

• Tasks migrate inside scheduling domains⇐
cpusets can bee used to create isolated domains

• Only one CPU⇒ partitioned scheduling

The next 3 lines are not needed in many Linux distributions
mount -t tmpfs cgroup_root /sys/fs/cgroup
mkdir /sys/fs/cgroup/cpuset
mount -t cgroup -o cpuset cpuset /sys/fs/cgroup/cpuset

mkdir /sys/fs/cgroup/cpuset/Set1
echo 3 > /sys/fs/cgroup/cpuset/Set1/cpuset.cpus
echo 0 > /sys/fs/cgroup/cpuset/Set1/cpuset.mems
echo 0 > /sys/fs/cgroup/cpuset/cpuset.sched_load_balance
echo 1 > /sys/fs/cgroup/cpuset/Set1/cpuset.cpu_exclusive
echo $PID > /sys/fs/cgroup/cpuset/Set1/tasks

Warning!

Advanced Kernel Programming Scheduler Internals

• sched setaffinity() on SCHED DEADLINE

tasks can fail

• Again, disable admission control to use
something different from global scheduling

• SCHED DEADLINE tasks cannot fork

• Which scheduling parameters would be
inherited?

• Remember: runtimes and periods are in
nanoseconds (not microseconds)

Task Affinities in Linux

Advanced Kernel Programming Scheduler Internals

• Linux scheduler: more generic than “simple”
partitioned or global schedulers

• Every task has an affinity mask
• Bitmask describing all the CPU cores on which

the task can be scheduled

• Mask == all cores→ global scheduling
• Mask == 1 core→ partitioned scheduling

• Also, cpuset mechanism to impose constraints on
the tasks affinity masks

• Remember the previous example with
SCHED DEADLINE

• When migrating a task, the scheduler has to look at
its affinity mask

Affinity Masks in the Task Structure

Advanced Kernel Programming Scheduler Internals

• The task struct structure has a cpus mask field,
of type cpumask t

• Bitmask containing CPU cores, accessible
through the cpumask ... functions and macros

• Example: cpumask weight(...) returns the
number of bits set to 1

• cpumask weight(t->cpus mask) returns the
number of cores on which task t can be
scheduled

• Cached in t->nr cpus allowed

• The cpus ptr field caches the cpus mask

address

• Can be set with sched setaffinity()

Affinity Masks and SCHED DEADLINE

Advanced Kernel Programming Scheduler Internals

• The SCHED DEADLINE policy is subject to
admission control

• Remember? sched setattr() can fail even if
you are administrator!!!

• See sched setscheduler() returning
-EPERM...

• The admission control assumes global scheduling

• So, the affinity mask must contain all the CPU
cores!

• See the check “!cpumask subset(span,

p->cpus ptr)”
• Here, “span” is a bitmask containing all the cores

available to the scheduler

Affinity Masks, Again

Advanced Kernel Programming Scheduler Internals

• If admission control is disabled, then generic
affinities can be used

• How are affinities used?

• Example based on SCHED DEADLINE (as usual)
• rt.c (implementing SCHED FIFO and

SCHED RR) is similar

• The “push” and “pull” functions look at “pushable dl
tasks” (stored in an RB tree)

• Tasks are stored in such an RB tree only if
nr cpus allowed > 1

• If the affinity mask contains all cores, then push and
pull implement global scheduling

• With generic affinities, things are more complex

A Partitioned SCHED DEADLINE

Advanced Kernel Programming Scheduler Internals

• !cpumask subset(span, p->cpus ptr) implies
global scheduling...

• ...How to modify it to have partitioned scheduling?

• Hint: each task should be affine to only 1 CPU...

• Then, other related changes are needed...

• Cope with SCHED DEADLINE tasks trying to
change their affinity...

• Cope with changes in the cpuset configuration...

• The admission test (see dl overflow()) also
needs to be modified

• After that, push and pull functions become
useless/unused!

Coping with Changes in Affinity Masks

Advanced Kernel Programming Scheduler Internals

• Current SCHED DEADLINE: the task’s affinity mask
must contain all the CPU cores that can be used by
the scheduler

• See the check in sched setscheduler()

• What happens if cpus allowed changes after
the task has become SCHED DEADLINE?

• The kernel must prevent changes in the tasks’
affinity masks that break this property

• See the check in sched setaffinity()

• Special case of affinity change: moving between
different cpusets

• See deadline.c::set cpus allowed dl()

Coping with Changes in cpusets

Advanced Kernel Programming Scheduler Internals

• Current SCHED DEADLINE: the task’s affinity mask
must contain all the CPU cores that can be used by
the scheduler

• Remember “span”? (from rq->rd->span)

• The kernel must prevent changes in cpusets that
break this property (or break admission control)

• Look at
kernel/cgroup/cpuset.c::validate change()

• This must be modified if SCHED DEADLINE does not
enforce global scheduling

Admission Control

Advanced Kernel Programming Scheduler Internals

• Not present in SCHED {FIFO,RR}
• Currently based on global scheduling

• Considers the cpuset’s (root domain’s)
utilization

• Remember: utilization U =runtime/period

• See struct dl bw *dl b in dl overflow()

• Member of the “root domain” structure
• Contains a maximum bw field and a current bw

field

• Must be changed to a per-rq admission control

• The rq utilization is already tracked by this bw

The Root Domain Utilization

Advanced Kernel Programming Scheduler Internals

• Root domain (isolated cpuset): contains all the
information about the CPU cores usable by the
scheduler

• rq->rd->dl bw: utilization of the dl tasks in the
root domain

• See
kernel/sched/deadline.c::dl bw of()

and related stuff

• The root domain utilization is updated when a task
switch to/from SCHED DEADLINE and when a dl task
ends

• Search for TASK DEAD in
kernel/sched/deadline.c

	Multiprocessor Scheduling
	The Quest for Optimality
	Partitioned Scheduling - 1
	Partitioned Scheduling - 2
	Global Scheduling
	Global Scheduling - Problems
	Global Scheduling for Soft Tasks
	SCHED_DEADLINE
	SCHED_DEADLINE and CBS
	SCHED_DEADLINE Design: Flexibility
	Setting the Scheduling Policy
	Using sched_setattr()
	libdl
	Example
	Admission Control
	Partitioned Scheduling
	Warning!
	Task Affinities in Linux
	Affinity Masks in the Task Structure
	Affinity Masks and SCHED_DEADLINE
	Affinity Masks, Again
	A Partitioned SCHED_DEADLINE
	Coping with Changes in Affinity Masks
	Coping with Changes in cpusets
	Admission Control
	The Root Domain Utilization

