
Linux Memory Management

Luca Abeni

luca.abeni@santannapisa.it

May 20, 2020



Memory Management in the Kernel

Advanced Kernel Programming Memory Management

• In user space, we are used to malloc(), new and
friends

• What we see is virtual memory
• Easy to allocate arbitrary amounts of memory
• Lazy memory allocation and advanced features,

...

• The OS kernel is the one generally implementing
virtual memory

• For the sake of simplicity, let’s forget µ-kernels
and hypervisors

• How is virtual memory implemented?



Physical Memory and Virtual Memory

Advanced Kernel Programming Memory Management

• The kernel directly accesses the hardware

• It manages physical memory

• The kernel provides functionalities to user-space

• It manages virtual memory too
• It handles the translation of virtual addresses into

physical addresses

• MMU configuration, page faults handling,
etc...

• So, the kernel contains both a virtual memory and a
physical memory manager!



Paging

Advanced Kernel Programming Memory Management

• Translation of virtual addresses into physical
addresses is generally performed using paging

• The MMU uses a page table for the translation

• Can be a complex data structure (hierarchical
paging)

• The kernel is responsible for managing the page
table

• Physical memory allocator: allocates physical pages
of memory

• Virtual memory allocator: allocates virtual memory
ranges



Memory Allocator

Advanced Kernel Programming Memory Management

• Goal: allow to allocate memory buffers of specified
size

• Simplest idea: list of free memory fragments

• Ordered by size: makes allocation easier
• Ordered by memory address: makes deallocation

(compacting adiacent fragments) easier

• In general, a single list of free memory fragments is
not a good idea...

• Better idea: multiple lists (for different fragment
sizes)



Multiple Free Memory Lists: Buddies

Advanced Kernel Programming Memory Management

• Constraints: memory fragments have sizes power of
2

• Multiple lists, containing fragments with different
sizes

• The ith queue contains fragments of size 2b+i

• Allocation of buffer of size s:

• Find the smallest i such that 2b+i > s

• If the ith queue is not empty, return a memory
fragment from it

• Otherwise, split a fragment from the (i+ 1)th

queue, and insert 2 fragments in the ith queue.
Then allocate one of them

• Might split a fragment from the (i+ 1)th queue
if needed (and so on)



Buddy Allocator: Deallocation

Advanced Kernel Programming Memory Management

• When a fragment from the (i+ 1)th queue is split in 2
fragments of the ith queue, such fragments are
named buddies

• Generally, when a fragment is split one of the two
buddies is used

• When it is released, the two buddies can be
recompacted

• On free, it is easy to see if the buddy of the freed
fragment is in a list

• Need to compute the buddy address...



Buddy Allocator and Pages

Advanced Kernel Programming Memory Management

• The ith list contains fragments of 2i pages

• i: order of the allocation

• At the beginning, only the highest-order list (say, list
m) is not empty

• When a i-order allocation is requested, a fragment
from list m is split in two buddies

• One is inserted in list m− 1, the other one is split
in 2 buddies...

• ...And so on, until buddies are inserted in list i.
• Then, a memory fragment composed by 2i pages

is allocated (and the other one remains in the ith

list



Buddy and Pages: Deallocation/Merging

Advanced Kernel Programming Memory Management

• When a memory fragment is freed, need to check if
its buddy is free too

• In this case, they can be merged!

• Order i deallocation: the fragment is composed by 2i

pages...

• Look at the page number of the first page of the
freed segment: the i rightmost bits are 0

• Then look at bit i: the buddy will have this bit
swapped

• So, buddy_number = page_number ˆ (1 << i)

• The merged fragment has order i+ 1 (so, it has the
rightmost i+ 1 bits set to 0)

• merged_number = page_number & buddy_number



Physical Memory Allocator in Linux

Advanced Kernel Programming Memory Management

• Allocates fragments composed by contiguous
physical pages

• A physical page is sometimes known as page
frame

• It is not possible to allocate arbitrary amounts of
memory

• Only fragments composed by 2i pages
• i is the allocation order
• Special case: allocate 1 physical memory page

(0-order allocation)

• Linux uses a buddy allocator for physical pages



Allocating Physical Pages

Advanced Kernel Programming Memory Management

• 2i pages can be allocated with
struct page *alloc_pages(gfp_t m, unsigned int i)

• i is the order of the allocation
• m indicates which kind of pages to allocate, and

how

• The return value is a pointer to a struct page,
describing the first physical page of the fragment

• Each physical page is described by a page

structure, also identified by a page frame number
(pfn)

• There are functions to convert a pointer to frame

structure into its pfn, and vice-versa
• The conversion depends on the memory model



Allocating Physical Pages — 2

Advanced Kernel Programming Memory Management

• alloc pages() returns the pointer to a struct

page

• What to do to actually access the content of the
page?

• We need to know the virtual address where the
page is mapped...

• Can be computed with
void * page_address(struct page *page)

• get free pages() combines alloc pages()

and page address()...
• ...Casting the result (a pointer to void) to unsigned

long



Allocating One Single Physical Page

Advanced Kernel Programming Memory Management

• Two functions specialized for 0-order allocations:

• struct page *alloc_page(gfp_t gfp_mask)

•

unsigned long __get_free_page(gfp_t gfp_mask)

• They end up invoking alloc pages() and
get free pages() with second parameter equal

to 0



Memory Zones

Advanced Kernel Programming Memory Management

• Linux organizes the physical memory pages in zones

• Zone: set of pages with similar properties
• Which properties? Can be used by DMA devices,

can lack a mapping to virtual pages, ...

• DMA and DMA32 zones: the pages can be accessed
by DMA/bus mastering devices

• HIGHMEM zone: the pages are not always mapped in
the virtual address space

• What? A physical page not mapped in a virtual
page??? 32bit systems (4GB virtual address
space) with more than 4GB of RAM

• Possible on 32bit x86 CPUs by Intel, thanks to
something called “PAE”



Get Free Pages Flags

Advanced Kernel Programming Memory Management

• All the allocation functions have an argument of type
gfp t: the gfp mask

• gfp stands for get free pages

• This is a bitmask that can contain multiple flags
• Some flags specify where to allocate the memory

from

• GFP DMA, GFP DMA32, GFP HIGHMEM

• Some other flags specify constraints for the allocator

• GFP WAIT, GFP IO, GFP NOFAIL, ...

• Some constants combine important gfp flags:

• GFP ATOMIC, GFP NOWAIT, GFP NOIO, ...
GFP KERNEL, GFP USER, ...



Virtual Memory Allocator in Linux

Advanced Kernel Programming Memory Management

• kmalloc()/kfree() and vmalloc()/vfree()
allow to allocate arbitrary amounts of memory in the
virtual address space

• Difference: kmalloc() allocates contiguous
physical memory, while vmalloc() allocate
fragments of virtual memory that might be
non-contiguous in physical memory

• They are based on
get free pages()/get free page() at the lower
level

• Upper layer to support allocation of memory
fragments with size different from 2i pages



Details on kmalloc()

Advanced Kernel Programming Memory Management

• If the size of the memory to be allocated is larger
than a KMALLOC MAX CACHE SIZE, then round it up
to 2i pages and call get free pages()

• See check in
include/linux/slab.h::kmalloc()

• Otherwise, allocate memory from a cache of
allocated objects (slab)

• In any case, the allocated memory is contiguous in
both physical and virtual memory!

• A “linear mapping” can be used to convert
between virtual and physical addresses

• No need to modify the page table...



Details on vmalloc()

Advanced Kernel Programming Memory Management

• Physical memory is allocated by invoking
get free page() multiple times

• So, it is not necessarily contiguous in physical
memory!

• No “linear mapping”; need to modify the page
table to make the memory region contiguous in
virtual memory

• Higher overhead than kmalloc() (page table
modifications), but easier to allocate large buffers

• Can use kmalloc() internally, for its own data
structures


	Memory Management in the Kernel
	Physical Memory and Virtual Memory
	Paging
	Memory Allocator
	Multiple Free Memory Lists: Buddies
	Buddy Allocator: Deallocation
	Buddy Allocator and Pages
	Buddy and Pages: Deallocation/Merging
	Physical Memory Allocator in Linux
	Allocating Physical Pages
	Allocating Physical Pages — 2
	Allocating One Single Physical Page
	Memory Zones
	Get Free Pages Flags
	Virtual Memory Allocator in Linux
	Details on kmalloc()
	Details on vmalloc()

