Linux Memory Management

Luca Abeni
luca.abeni@santannapisa.it

May 20, 2020

Memory Management in the Kernel

e In user space, we are usedtomalloc (), new and
friends

e What we see is virtual memory
Easy to allocate arbitrary amounts of memory
Lazy memory allocation and advanced features,

e The OS kernel is the one generally implementing
virtual memory

e For the sake of simplicity, let’s forget p-kernels
and hypervisors

e How is virtual memory implemented?

Advanced Kernel Programming Memory Management

Physical Memory and Virtual Memory

e The kernel directly accesses the hardware
e |t manages physical memory
e The kernel provides functionalities to user-space

e |t manages virtual memory too
It handles the translation of virtual addresses into
physical addresses

o MMU configuration, page faults handling,
etc...

e 50, the kernel contains both a virtual memory and a
physical memory manager!

Advanced Kernel Programming Memory Management

e Translation of virtual addresses into physical
addresses is generally performed using paging

e The MMU uses a page table for the translation
o Can be a complex data structure (hierarchical
paging)

e The kernel is responsible for managing the page
table

e Physical memory allocator: allocates physical pages
of memory

e Virtual memory allocator: allocates virtual memory
ranges

Advanced Kernel Programming Memory Management

Memory Allocator

e (Goal: allow to allocate memory buffers of specified
size
e Simplest idea: list of free memory fragments

e Ordered by size: makes allocation easier
Ordered by memory address: makes deallocation

(compacting adiacent fragments) easier

e |n general, a single list of free memory fragments is

not a good idea...
e Better idea: multiple lists (for different fragment

sizes)

Advanced Kernel Programming Memory Management

Multiple Free Memory Lists: Buddies

e (Constraints: memory fragments have sizes power of
2

e Multiple lists, containing fragments with different
sizes |
The " queue contains fragments of size 2°**
Allocation of buffer of size s:

o Find the smallest i such that 2 > s

o If the i'" queue is not empty, return a memory
fragment from it

o Otherwise, split a fragment from the (i + 1)
queue, and insert 2 fragments in the i queue.
Then allocate one of them

o Might split a fragment from the (i 4+ 1) queue
If needed (and so on)

Advanced Kernel Programming Memory Management

Buddy Allocator: Deallocation

e When a fragment from the (i + 1)"* queue is split in 2
fragments of the i queue, such fragments are
named buddies

e Generally, when a fragment is split one of the two
buddies is used

e When it is released, the two buddies can be
recompacted

e Onfree, itis easy to see Iif the buddy of the freed
fragment is in a list

e Need to compute the buddy address...

Advanced Kernel Programming Memory Management

Buddy Allocator and Pages

e The i list contains fragments of 2 pages
e . order of the allocation

e At the beginning, only the highest-order list (say, list
m) IS not empty

e When a i-order allocation is requested, a fragment
from list m is split in two buddies

e Oneisinsertedin list m — 1, the other one is split
In 2 buddies...
...And so on, until buddies are inserted in list .
Then, a memory fragment composed by 2' pages
is allocated (and the other one remains in the ;"
list

Advanced Kernel Programming Memory Management

Buddy and Pages: Deallocation/Merging

When a memory fragment is freed, need to check if
its buddy is free too

e In this case, they can be merged!

Order i deallocation: the fragment is composed by 2
pages...

e Look at the page number of the first page of the
freed segment: the 7 rightmost bits are 0

e Then look at bit 7: the buddy will have this bit
swapped

® SO, buddy_number = page_number =~ (1 << 1)

The merged fragment has order ¢ + 1 (so, it has the
rightmost ¢ + 1 bits set to 0)

® merged_number = page_number & buddy_number

Advanced Kernel Programming Memory Management

Physical Memory Allocator in Linux

e Allocates fragments composed by contiguous
physical pages

e A physical page is sometimes known as page
frame

e I|tis not possible to allocate arbitrary amounts of
memory

o Only fragments composed by 2 pages

e 1 is the allocation order

e Special case: allocate 1 physical memory page
(0-order allocation)

e Linux uses a buddy allocator for physical pages

Advanced Kernel Programming Memory Management

Allocating Physical Pages

e 2! pages can be allocated with
struct page xalloc_pages (gfp_t m, unsigned int 1)

e 1 Isthe order of the allocation
e m Indicates which kind of pages to allocate, and
how

e The return value is a pointer to a struct page,
describing the first physical page of the fragment

e Each physical page is described by a page
structure, also identified by a page frame number
(ptn)

e There are functions to convert a pointer to frame
structure into its pfn, and vice-versa

e The conversion depends on the memory model

Advanced Kernel Programming Memory Management

Allocating Physical Pages — 2

e alloc_pages () returns the pointer to a struct
page
e What to do to actually access the content of the
page?
e We need to know the virtual address where the
page Is mapped...

e Can be computed with
volid * page_address (struct page *page)

e _get_free_pages () combines alloc_pages ()
and page_address () ...

e ...Casting the result (a pointer to void) to unsigned
long

Advanced Kernel Programming Memory Management

Allocating One Single Physical Page

e [wo functions specialized for 0-order allocations:

struct page xalloc_page(gfp_t gfp_mask)

unsigned long _ get_free_page (gfp_t gfp_mask)

e Theyendupinvoking alloc_pages () and
__get_free_pages () with second parameter equal
to 0

Advanced Kernel Programming Memory Management

Memory Zones

e Linux organizes the physical memory pages in zones

e Zone: set of pages with similar properties
e Which properties? Can be used by DMA devices,
can lack a mapping to virtual pages, ...

e DMA and DMA32 zones: the pages can be accessed
by DMA/bus mastering devices

e HIGHMEM zone: the pages are not always mapped in
the virtual address space

e What? A physical page not mapped in a virtual
page??? 32bit systems (4GB virtual address
space) with more than 4GB of RAM

e Possible on 32bit x86 CPUs by Intel, thanks to
something called “PAE”

Advanced Kernel Programming Memory Management

Get Free Pages Flags

e All the allocation functions have an argument of type
gfp_t: the gfp mask

e gfp stands for get free pages

This is a bitmask that can contain multiple flags
Some flags specify where to allocate the memory
from

e __GFP.DMA, _GFP_DMA32, _GFP_HIGHMEM

e Some other flags specify constraints for the allocator
e _GFP WAIT,__GFP_IO,__GFP_NOFAIL, ...

e Some constants combine important gfp flags:

e GIFP ATOMIC, GEFP_NOWAIT, GEFP_NOIO, ...
GEFP_KERNEL, GFP_USER, ...

Advanced Kernel Programming Memory Management

Virtual Memory Allocator in Linux

e kmalloc()/kfree() and vmalloc ()/vfree ()
allow to allocate arbitrary amounts of memory in the
virtual address space

e Difference: kmalloc () allocates contiguous
physical memory, while vmalloc () allocate
fragments of virtual memory that might be
non-contiguous in physical memory

e They are based on
get_free_pages ()/get_free_page () at the lower
level

e Upper layer to support allocation of memory
fragments with size different from 2' pages

Advanced Kernel Programming Memory Management

Details on kmalloc()

e |If the size of the memory to be allocated is larger
than a KMALLOC_MAX_CACHE_SIZE, then round it up
to 2° pages and call get _free_pages ()

e See checkin
include/linux/slab.h::kmalloc ()

e Otherwise, allocate memory from a cache of
allocated objects (slab)

e In any case, the allocated memory is contiguous in
both physical and virtual memory!

e A ‘“linear mapping” can be used to convert
between virtual and physical addresses
e No need to modify the page table...

Advanced Kernel Programming Memory Management

Details on vmalloc()

e Physical memory is allocated by invoking
get_free_page () multiple times

e 3o, it is not necessarily contiguous in physical
memory!

e No “linear mapping”; need to modify the page
table to make the memory region contiguous in
virtual memory

e Higher overhead than kmalloc () (page table
modifications), but easier to allocate large buftfers
e Canuse kmalloc () internally, for its own data

structures

Advanced Kernel Programming Memory Management

	Memory Management in the Kernel
	Physical Memory and Virtual Memory
	Paging
	Memory Allocator
	Multiple Free Memory Lists: Buddies
	Buddy Allocator: Deallocation
	Buddy Allocator and Pages
	Buddy and Pages: Deallocation/Merging
	Physical Memory Allocator in Linux
	Allocating Physical Pages
	Allocating Physical Pages — 2
	Allocating One Single Physical Page
	Memory Zones
	Get Free Pages Flags
	Virtual Memory Allocator in Linux
	Details on kmalloc()
	Details on vmalloc()

