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Memory Management in the Kernel

e In user space, we are usedtomalloc (), new and
friends

e What we see is virtual memory
Easy to allocate arbitrary amounts of memory
Lazy memory allocation and advanced features,

e The OS kernel is the one generally implementing
virtual memory

e For the sake of simplicity, let’s forget p-kernels
and hypervisors

e How is virtual memory implemented?
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Physical Memory and Virtual Memory

e The kernel directly accesses the hardware
e |t manages physical memory
e The kernel provides functionalities to user-space

e |t manages virtual memory too
It handles the translation of virtual addresses into
physical addresses

o MMU configuration, page faults handling,
etc...

e 50, the kernel contains both a virtual memory and a
physical memory manager!
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e Translation of virtual addresses into physical
addresses is generally performed using paging

e The MMU uses a page table for the translation
o Can be a complex data structure (hierarchical
paging)

e The kernel is responsible for managing the page
table

e Physical memory allocator: allocates physical pages
of memory

e Virtual memory allocator: allocates virtual memory
ranges
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Memory Allocator

e (Goal: allow to allocate memory buffers of specified
size
e Simplest idea: list of free memory fragments

e Ordered by size: makes allocation easier
Ordered by memory address: makes deallocation

(compacting adiacent fragments) easier

e |n general, a single list of free memory fragments is

not a good idea...
e Better idea: multiple lists (for different fragment

sizes)
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Multiple Free Memory Lists: Buddies

e (Constraints: memory fragments have sizes power of
2

e Multiple lists, containing fragments with different
sizes |
The " queue contains fragments of size 2°**
Allocation of buffer of size s:

o Find the smallest i such that 2 > s

o If the i'" queue is not empty, return a memory
fragment from it

o Otherwise, split a fragment from the (i + 1)
queue, and insert 2 fragments in the i queue.
Then allocate one of them

o Might split a fragment from the (i 4+ 1) queue
If needed (and so on)

Advanced Kernel Programming Memory Management



Buddy Allocator: Deallocation

e When a fragment from the (i + 1)"* queue is split in 2
fragments of the i queue, such fragments are
named buddies

e Generally, when a fragment is split one of the two
buddies is used

e When it is released, the two buddies can be
recompacted

e Onfree, itis easy to see Iif the buddy of the freed
fragment is in a list

e Need to compute the buddy address...
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Buddy Allocator and Pages

e The i list contains fragments of 2 pages
e . order of the allocation

e At the beginning, only the highest-order list (say, list
m) IS not empty

e When a i-order allocation is requested, a fragment
from list m is split in two buddies

e Oneisinsertedin list m — 1, the other one is split
In 2 buddies...
...And so on, until buddies are inserted in list .
Then, a memory fragment composed by 2' pages
is allocated (and the other one remains in the ;"
list

Advanced Kernel Programming Memory Management



Buddy and Pages: Deallocation/Merging

When a memory fragment is freed, need to check if
its buddy is free too

e In this case, they can be merged!

Order i deallocation: the fragment is composed by 2
pages...

e Look at the page number of the first page of the
freed segment: the 7 rightmost bits are 0

e Then look at bit 7: the buddy will have this bit
swapped

® SO, buddy_number = page_number =~ (1 << 1)

The merged fragment has order ¢ + 1 (so, it has the
rightmost ¢ + 1 bits set to 0)

® merged_number = page_number & buddy_number
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Physical Memory Allocator in Linux

e Allocates fragments composed by contiguous
physical pages

e A physical page is sometimes known as page
frame

e I|tis not possible to allocate arbitrary amounts of
memory

o Only fragments composed by 2 pages

e 1 is the allocation order

e Special case: allocate 1 physical memory page
(0-order allocation)

e Linux uses a buddy allocator for physical pages
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Allocating Physical Pages

e 2! pages can be allocated with
struct page xalloc_pages (gfp_t m, unsigned int 1)

e 1 Isthe order of the allocation
e m Indicates which kind of pages to allocate, and
how

e The return value is a pointer to a struct page,
describing the first physical page of the fragment

e Each physical page is described by a page
structure, also identified by a page frame number
(ptn)

e There are functions to convert a pointer to frame
structure into its pfn, and vice-versa

e The conversion depends on the memory model
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Allocating Physical Pages — 2

e alloc_pages () returns the pointer to a struct
page
e What to do to actually access the content of the
page?
e We need to know the virtual address where the
page Is mapped...

e Can be computed with
volid * page_address (struct page *page)

e _get_free_pages () combines alloc_pages ()
and page_address () ...

e ...Casting the result (a pointer to void) to unsigned
long
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Allocating One Single Physical Page

e [wo functions specialized for 0-order allocations:

struct page xalloc_page(gfp_t gfp_mask)

unsigned long _ get_free_page (gfp_t gfp_mask)

e Theyendupinvoking alloc_pages () and
__get_free_pages () with second parameter equal
to 0
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Memory Zones

e Linux organizes the physical memory pages in zones

e Zone: set of pages with similar properties
e Which properties? Can be used by DMA devices,
can lack a mapping to virtual pages, ...

e DMA and DMA32 zones: the pages can be accessed
by DMA/bus mastering devices

e HIGHMEM zone: the pages are not always mapped in
the virtual address space

e What? A physical page not mapped in a virtual
page??? 32bit systems (4GB virtual address
space) with more than 4GB of RAM

e Possible on 32bit x86 CPUs by Intel, thanks to
something called “PAE”
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Get Free Pages Flags

e All the allocation functions have an argument of type
gfp_t: the gfp mask

e gfp stands for get free pages

This is a bitmask that can contain multiple flags
Some flags specify where to allocate the memory
from

e __GFP.DMA, _GFP_DMA32, _GFP_HIGHMEM

e Some other flags specify constraints for the allocator
e _GFP WAIT,__GFP_IO,__GFP_NOFAIL, ...

e Some constants combine important gfp flags:

e GIFP ATOMIC, GEFP_NOWAIT, GEFP_NOIO, ...
GEFP_KERNEL, GFP_USER, ...
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Virtual Memory Allocator in Linux

e kmalloc()/kfree() and vmalloc ()/vfree ()
allow to allocate arbitrary amounts of memory in the
virtual address space

e Difference: kmalloc () allocates contiguous
physical memory, while vmalloc () allocate
fragments of virtual memory that might be
non-contiguous in physical memory

e They are based on
get_free_pages ()/get_free_page () at the lower
level

e Upper layer to support allocation of memory
fragments with size different from 2' pages
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Details on kmalloc()

e |If the size of the memory to be allocated is larger
than a KMALLOC_MAX_CACHE_SIZE, then round it up
to 2° pages and call get _free_pages ()

e See checkin
include/linux/slab.h::kmalloc ()

e Otherwise, allocate memory from a cache of
allocated objects (slab)

e In any case, the allocated memory is contiguous in
both physical and virtual memory!

e A ‘“linear mapping” can be used to convert
between virtual and physical addresses
e No need to modify the page table...
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Details on vmalloc()

e Physical memory is allocated by invoking
get_free_page () multiple times

e 3o, it is not necessarily contiguous in physical
memory!

e No “linear mapping”; need to modify the page
table to make the memory region contiguous in
virtual memory

e Higher overhead than kmalloc () (page table
modifications), but easier to allocate large buftfers
e Canuse kmalloc () internally, for its own data

structures
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