
Linux Virtual Memory

Luca Abeni

luca.abeni@santannapisa.it

May 20, 2020



Virtual Memory Allocator in Linux

Advanced Kernel Programming Virtual Memory

• kmalloc()/kfree() and vmalloc()/vfree()
allow to allocate arbitrary amounts of memory in the
virtual address space

• Difference: kmalloc() allocates contiguous
physical memory, while vmalloc() allocate
fragments of virtual memory that might be
non-contiguous in physical memory

• They are based on
get free pages()/get free page() at the lower
level

• Upper layer to support allocation of memory
fragments with size different from 2

i pages



Details on kmalloc()

Advanced Kernel Programming Virtual Memory

• If the size of the memory to be allocated is larger
than a KMALLOC MAX CACHE SIZE, then round it up
to 2

i pages and call get free pages()

• See check in
include/linux/slab.h::kmalloc()

• Otherwise, allocate memory from a cache of
allocated objects (slab)

• In any case, the allocated memory is contiguous in
both physical and virtual memory!

• A “linear mapping” can be used to convert
between virtual and physical addresses

• No need to modify the page table...



Details on vmalloc()

Advanced Kernel Programming Virtual Memory

• Physical memory is allocated by invoking
get free page() multiple times

• So, it is not necessarily contiguous in physical
memory!

• No “linear mapping”; need to modify the page
table to make the memory region contiguous in
virtual memory

• Higher overhead than kmalloc() (page table
modifications), but easier to allocate large buffers

• Can use kmalloc() internally, for its own data
structures



Caching Memory Allocations

Advanced Kernel Programming Virtual Memory

• The kernel often allocates/deallocates similar
objects a lot of times

• Think about skbufs, task structs, inode
structures, dentry structures, ...

• To avoid the cost of fully allocating/initializing them
all the times, some caching mechanism can be used

• Cache of allocated physical pages (when freed,
cache them instead of returning them to the
buddy allocator)

• Cache of deallocated “memory objects”



Slabs

Advanced Kernel Programming Virtual Memory

• The buddy allocator can only allocate 2
i pages (i:

order of the allocation)
• How to allocate arbitrary amounts of memory?

• Need for an additional software layer over the
buddy allocator

• Allow to allocate “memory objects” of various
sizes

• Support different object sizes

• slab: portion of memory containing multiple memory
objects, all of the same size

• slab size: multiple of the page size, depending on
architecture and allocator



Slabs and SLAB

Advanced Kernel Programming Virtual Memory

• Software layer handling slabs

• Allocating/caching objects
• Requesting physical pages to the buddy allocator

• Originally called SLAB

• So, there is a SLAB allocator working on slabs...
• But SLAB != slab...
• ...Confusing!

• Now, SLUB and SLOB are also available

• So, there are 3 different slab allocators: SLAB,
SLUB and SLOB!!!

• What a mess...



SLAB, SLUB and SLOB

Advanced Kernel Programming Virtual Memory

• SLAB, SLUB, and SLOB are all slab allocators

• So, they all export the same API
• What changes is the the internal implementation

• They differ in how slabs are internally managed, and
how objects are cached

• To be precise, SLOB is not actually a slab allocator:
it exports the API of a slab allocator, but does not
internaly use slabs...



Objects, slabs and Caches

Advanced Kernel Programming Virtual Memory

• slabs are stored in caches
• Cache: manager for allocating objects of a given

type

• All objects in a cache have the same size

• The main difference between SLUB and SLAB is in
how the slab caches are organized (a single list vs
multiple lists, ...)

• Try “sudo cat /proc/slabinfo” to have an idea
of the caches present in your system

• The “kmalloc-*” caches are used... By
kmalloc()!!!



Allocator API

Advanced Kernel Programming Virtual Memory

• kmem cache create(): creates a new object
cache

• kmem cache shrink(): removes free slabs from a
cache, freeing pages

• kmem cache alloc(): allocates an object from the
cache

• kmem cache free(): frees an object returning it to
the cache

• kmem cache destroy(): deallocates all the
objects allocated from a cache, and destroys the
cache

• kmalloc() and kfree() are based on these...

• How to support arbitrary sizes? They use
multiple caches... Will see later



The Linux SLAB Allocator

Advanced Kernel Programming Virtual Memory

• Implements a slab allocator as a set of caches
sharing no data

• Per-cache locking

• Evey cache has 3 lists:

• Full slabs list (slabs containing no free objects):
slab full

• Partial slabs list (slabs containing some allocated
objects and some free objects) :slab partial

• Free slabs list (slabs containing only free
objects): slab free

• The Linux kernel is NUMA aware: 3 slab lists per
NUMA node!



The SLAB Cache

Advanced Kernel Programming Virtual Memory

• The slab interface is described in
include/linux/slab.h; the SLAB details are in
include/linux/slab def.h and mm/slab.h

• struct kmem cache in
include/linux/slab def.h

• Contains some cache arguments and the cache
state

• Also contains an array of kmem cache node

structure (they contains the 3 lists!)

• slabs are enqueued in these lists

• Actually, the first page of each slab is enqueued
• See the slab list field in struct page



Using the 3 Lists

Advanced Kernel Programming Virtual Memory

• Objects are generally allocated from slabs in
slab partial

• If slab partial is empty, slabs from slab free

can be used

• After allocating the object, the slab is moved to
slab partial

• If slab free is also empty, invoke
alloc pages() (actually,
alloc pages node()) to allocate a slab

• When an object is freed, add it to its slab

• If it was the last allocated object of the slab, move
the slab to slab free



Multi-Core Optimization

Advanced Kernel Programming Virtual Memory

• The original SLAB algorithm was designed for
uni-processor systems

• Per-cache locks protecting the 3 lists (and other
kmem cache fields

• On multi-core systems, scales badly (high risk of
lock contention)

• Optimization: per-CPU (actually, per-core) cache of
free objects

• See the cpu cache field of kmem cache

• Can be accessed without locking, but is “percpu”
(disable preemption)



Example: Allocating an Object

Advanced Kernel Programming Virtual Memory

• kmem cache alloc(), defined in mm/slab.c

invokes slab alloc()

• slab alloc() invokes do cache alloc() which
invokes cache alloc()

• cache alloc() looks at the per-CPU cache
(using cpu cache get()

• If the per-CPU cache is not empty, returns a free
object from it (ac->entry[--ac->avail])

• If the per-CPU cache is empty, refill it
(cache alloc refill())



Refilling the per-CPU Cache

Advanced Kernel Programming Virtual Memory

• cache alloc refill() is invoked when the
per-CPU cache is empty and an object has to be
allocated

• It invokes searches for a slab to be used (from some
of the lists, or from the buddy allocator)

• Then, it invokes alloc block() (to fill the per cpu

array with objects) and fixup slab list() (to
insert the slab in slabs full or slabs partial)

• fixup slab list() is eventually called by
cache grow end()



Slabs and Coloring

Advanced Kernel Programming Virtual Memory

• A slab contains multiple objects

• The slab is some pages large
• The slab size is generally not an integer multiple

of an object size
• So, the first object can have an offset respect to

the beginning of the slab

• To be more hw-cache friendly, each slab has objects
starting at a slightly different offset

• Goal: distribute buffers evenly throughout the
cache



Coloring Example

Advanced Kernel Programming Virtual Memory

• When a slab is initialized, the first buffer starts at a
different offset from the slab base (different color)

• This results in different colors because slabs are
page-aligned...

• Example: 200-byte objects, with 8-bytes alignment
requirement

• Slab 1: objects at offsets 0, 200, 400, ...
• Slab 2: objects at offsets 8, 208, 408, ...
• Slab 3: objects at offsets 16, 216, 416, ...

• When the maximum offset is reached, restart from 0



SLUB

Advanced Kernel Programming Virtual Memory

• SLUB allocator: born to simplify the SLAB code

• The SLAB complexity went... Kind of out of
control

• Avoid multiple queues: all the slabs are in the same
list

• Full slabs are not inserted in any list
• Partial slabs and empty slabs are in the same list

• Try to reduce the memory overhead
• Goal: better scalability on many-core systems
• Some of the SLUB improvements have been ported

to SLAB



The Object Cache

Advanced Kernel Programming Virtual Memory

• struct kmem cache, from
include/linux/slub def.h

• Similar to the SLAB kmem cache, but simpler
• Also, the per-CPU free objects cache is

implemented as a (lockless!) list (not an array)
• SLAB uses the Linux “percpu” thing, that disables

preemption

• Single slabs list (partial): see kmem cache node

in mm/slab.h



Example: Object Allocation

Advanced Kernel Programming Virtual Memory

• kmem cache alloc(), defined in mm/slub.c

invokes slab alloc(), which invokes
slab alloc node()

• slab alloc node() gets first object from
per-CPU-cache-¿freelist and updates freelist

• Lockless operation: if the list changed in the
meanwhile, redo

• If there are no objects in freelist, invokes
slab alloc()



Refilling the per-CPU Cache

Advanced Kernel Programming Virtual Memory

• slab alloc() is invoked when the per-CPU free
objects list (freelist) is empty

• slab alloc() invokes new slab objects()

which invokes get partial()

• To get a slab from the partial list

• If get partial() fails (no slabs in the partial list),
new slab() invokes allocate slab() which
invokes alloc slab page() which invokes
alloc pages()



Generic Allocations from slabs

Advanced Kernel Programming Virtual Memory

• Slab-based allocators are good for creating caches
of “memory objects”

• All the ojects of a cache have the same size
• Size declared when creating the cache

• So, how does a generic kmalloc() work?

• Isn’t it based on the slab allocator?

• It uses multiple caches, for objects of different sizes!



kmalloc Caches

Advanced Kernel Programming Virtual Memory

• At boot time, multiple kmalloc-* caches are
created

• For objects of size 8 bytes, 16 bytes, 32 bytes, 64
bytes, 96 bytes, ...

• From 256 bytes to 8 kilobytes, only powers of 2

• When kmalloc() is used to allocate an amount s
of memory, find the kmalloc- object with size
immediately larger than s

• See kmalloc() in mm/slab.c or mm/slub.c

• For SLAB, do kmalloc()



kmalloc Details

Advanced Kernel Programming Virtual Memory

• If the slab allocator must be used, kmalloc()
invokes kmalloc slab() to find the correct cache

• A kmalloc- cache containing objects that are
large enough

• See mm/slab common.c::kmalloc slab()

• For s ≤ 192, it uses a size index array
• After finding a cache, slab alloc() is invoked

• See details about SLAB and SLUB



Again on vmalloc

Advanced Kernel Programming Virtual Memory

• As mentioned, vmalloc() can allocate virtual
memory

• Not contiguous in physical memory
• Notice: it is memory for kernel usage
• Not in a specific process virtual address space

• Can work for kernel threads too (see later)
• It allocates both a virtual memory fragment and the

corresponding physical memory pages

• Need to modify the default linear mapping

• Memory allocated in a specific range of virtual
addresses

• From VMALLOC START to VMALLOC END

• vmalloc address space



Basic vmalloc Idea

Advanced Kernel Programming Virtual Memory

• In theory, the vmalloc() behaviour is not difficult to
understand/describe

• Search for a suitable virtual memory fragment (in
the reserved range)

• Compute how many pages of memory are
needed

• Allocate the physical pages one-by-one, storing
them in an array

• Map the physical pages in virtual memory

• As usual, the devil is in the details...
• Some data structures are needed to store

vmalloc() information

• Allocated from slab caches or with kmalloc



vmalloc Data Structures

Advanced Kernel Programming Virtual Memory

• Defined in include/linux/vmalloc.h

• struct vmap area: describes the memory
fragment in virtual memory (va start and
va end)

• struct vm struct: describes how phisical
pages are mapped in the virtual memory area

• They are stored in lists and rb trees
• A vmap area contains a pointer to its vm struct

• A vm struct is actually a simplified version of the
mm struct describing the virtual address space of a
task



Example: Allocation

Advanced Kernel Programming Virtual Memory

• Virtual memory allocation is performed by invoking
vmalloc()

• vmalloc() invokes vmalloc node flags(),
that invokes vmalloc node() ending up in
vmalloc node range()

• vmalloc node range() rounds up the memory
size to a multiple of a page, then invokes
get vm area node(), then inovkes
vmalloc area node()

• get vm area node() allocates and initializes
vmap area and vm struct

• vmalloc area node() takes care of actually
allocating and mapping the physical pages



Virtual Memory Area Computation

Advanced Kernel Programming Virtual Memory

• get vm area node() allocates vm struct

(using kmalloc()

• Then, allocates and fills vmap area

(alloc vmap area())

• vmap area is allocated from a dedicated slab
cache

• Then, it is initialized with the correct va start

and va end values
• And it is inserted in a list of used memory areas

• Then, initializes vm struct with the data from
vmap area and sets the vm pointer in vmap area

(setup vmalloc vm()



Physical Pages Allocation

Advanced Kernel Programming Virtual Memory

• vmalloc area node() allocates the physical pages
for the virtual memory area that has been allocated

• First of all, it allocates an array of struct page *

• Funny recursive allocation (can invoke
vmalloc node()...

• Fills the pages and nr pages fields of
vm struct

• Then, allocates all the pages in a for loop

• Uses alloc page() or alloc pages node()

(with order 0!)

• Finally, maps the allocated physical pages in the
virtual memory area (map vm area())



Process Address Spaces

Advanced Kernel Programming Virtual Memory

• Every user-space process has a private virtual
address space

• It contains only a subset of all the possible
addresses

• The other addresses are used for the kernel
address space — shared by all processes, but
non accessible from user-space

• The kernel address space uses a linear mapping

• No need to describe it in any data structure
• Exception: vmalloc address space

• The address space of a process is described by
struct mm struct (defined in
include/linux/mm types.h)



Virtual Memory Regions

Advanced Kernel Programming Virtual Memory

• The virtual address space of a process is composed
by multiple memory regions

• A memory region for each segment (code, data,
bss, ...)

• The heap is also a memory region

• Memory regions are page-aligned
• Each memory region is described by a struct

vm area struct (defined in
include/linux/mm types.h)

• Organized in lists and rb trees
• Contains a link to its address space (struct

mm struct * vm mm)

• The mmap() system call can create a new region...



Example: the Heap

Advanced Kernel Programming Virtual Memory

• malloc() is not a system call: it is a library call

• Implemented in the standard C library (example:
glibc)

• The standarc C library allocates memory from the
heap

• Remember? The heap is one of the memory
regions of the proces...

• What to do when the heap is empty?

• The standard C library cannot allocate memory
anymore...

• ...So, it must grow the heap
• Done by invoking a system call: brk()



Growing the Heap

Advanced Kernel Programming Virtual Memory

• brk() system call (do brk(): changes the heap
size

• Technically, it changes the “program break” (end
of the data segment)

• Increasing the program break allows to grow the
heap by adding more virtual memory pages to
this virtual memory region...

• No physical pages are actually allocated!
• Physical pages are allocated only on page faults

• Lazy memory allocation
• So, do not search for alloc page() in the

do brk() call chain...



Page Fault Hanling

Advanced Kernel Programming Virtual Memory

• An access to a virtual memory page which is not
mapped in physical memory generates a page fault

• This also happens on write accesses to read-only
pages...

• ...Or in case of violations to page permissions

• Page faults handling is architecture-dependent

• See, for example,
arch/x86/mm/fault.c::do page fault()

• It accesses architecture-specific registers to get
the faulting address

• It looks at the current task to get the mm struct

structure

• Then, it invokes handle mm fault()



Architecture Independent Handler

Advanced Kernel Programming Virtual Memory

• mm/memory.c::handle mm fault() receives the
virtual memory area containing the faulting address,
the address and some flags

• handle mm fault() ends up invoking
handle pte fault()

• For a “regular” memory page, ends up invoking
do anonymous page()

• do anonymous page() ends up in
alloc pages() (with order 0)

• Through alloc zeroed user highpage movable(),

remapped in alloc page vma()→ alloc pages vma()

with order 0 → alloc pages() (for no NUMA)

• Only when writing to the page for the first time


	Virtual Memory Allocator in Linux
	Details on kmalloc()
	Details on vmalloc()
	Caching Memory Allocations
	Slabs
	Slabs and SLAB
	SLAB, SLUB and SLOB
	Objects, slabs and Caches
	Allocator API
	The Linux SLAB Allocator
	The SLAB Cache
	Using the 3 Lists
	Multi-Core Optimization
	Example: Allocating an Object
	Refilling the per-CPU Cache
	Slabs and Coloring
	Coloring Example
	SLUB
	The Object Cache
	Example: Object Allocation
	Refilling the per-CPU Cache
	Generic Allocations from slabs
	kmalloc Caches
	kmalloc Details
	Again on vmalloc
	Basic vmalloc Idea
	vmalloc Data Structures
	Example: Allocation
	Virtual Memory Area Computation
	Physical Pages Allocation
	Process Address Spaces
	Virtual Memory Regions
	Example: the Heap
	Growing the Heap
	Page Fault Hanling
	Architecture Independent Handler

