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Virtual Memory Allocator in Linux

Advanced Kernel Programming Virtual Memory

• kmalloc()/kfree() and vmalloc()/vfree()
allow to allocate arbitrary amounts of memory in the
virtual address space

• Difference: kmalloc() allocates contiguous
physical memory, while vmalloc() allocate
fragments of virtual memory that might be
non-contiguous in physical memory

• They are based on
get free pages()/get free page() at the lower
level

• Upper layer to support allocation of memory
fragments with size different from 2

i pages



Details on kmalloc()

Advanced Kernel Programming Virtual Memory

• If the size of the memory to be allocated is larger
than a KMALLOC MAX CACHE SIZE, then round it up
to 2

i pages and call get free pages()

• See check in
include/linux/slab.h::kmalloc()

• Otherwise, allocate memory from a cache of
allocated objects (slab)

• In any case, the allocated memory is contiguous in
both physical and virtual memory!

• A “linear mapping” can be used to convert
between virtual and physical addresses

• No need to modify the page table...



Details on vmalloc()
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• Physical memory is allocated by invoking
get free page() multiple times

• So, it is not necessarily contiguous in physical
memory!

• No “linear mapping”; need to modify the page
table to make the memory region contiguous in
virtual memory

• Higher overhead than kmalloc() (page table
modifications), but easier to allocate large buffers

• Can use kmalloc() internally, for its own data
structures



Caching Memory Allocations
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• The kernel often allocates/deallocates similar
objects a lot of times

• Think about skbufs, task structs, inode
structures, dentry structures, ...

• To avoid the cost of fully allocating/initializing them
all the times, some caching mechanism can be used

• Cache of allocated physical pages (when freed,
cache them instead of returning them to the
buddy allocator)

• Cache of deallocated “memory objects”



Slabs
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• The buddy allocator can only allocate 2
i pages (i:

order of the allocation)
• How to allocate arbitrary amounts of memory?

• Need for an additional software layer over the
buddy allocator

• Allow to allocate “memory objects” of various
sizes

• Support different object sizes

• slab: portion of memory containing multiple memory
objects, all of the same size

• slab size: multiple of the page size, depending on
architecture and allocator



Slabs and SLAB
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• Software layer handling slabs

• Allocating/caching objects
• Requesting physical pages to the buddy allocator

• Originally called SLAB

• So, there is a SLAB allocator working on slabs...
• But SLAB != slab...
• ...Confusing!

• Now, SLUB and SLOB are also available

• So, there are 3 different slab allocators: SLAB,
SLUB and SLOB!!!

• What a mess...



SLAB, SLUB and SLOB
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• SLAB, SLUB, and SLOB are all slab allocators

• So, they all export the same API
• What changes is the the internal implementation

• They differ in how slabs are internally managed, and
how objects are cached

• To be precise, SLOB is not actually a slab allocator:
it exports the API of a slab allocator, but does not
internaly use slabs...



Objects, slabs and Caches
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• slabs are stored in caches
• Cache: manager for allocating objects of a given

type

• All objects in a cache have the same size

• The main difference between SLUB and SLAB is in
how the slab caches are organized (a single list vs
multiple lists, ...)

• Try “sudo cat /proc/slabinfo” to have an idea
of the caches present in your system

• The “kmalloc-*” caches are used... By
kmalloc()!!!



Allocator API
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• kmem cache create(): creates a new object
cache

• kmem cache shrink(): removes free slabs from a
cache, freeing pages

• kmem cache alloc(): allocates an object from the
cache

• kmem cache free(): frees an object returning it to
the cache

• kmem cache destroy(): deallocates all the
objects allocated from a cache, and destroys the
cache

• kmalloc() and kfree() are based on these...

• How to support arbitrary sizes? They use
multiple caches... Will see later



The Linux SLAB Allocator
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• Implements a slab allocator as a set of caches
sharing no data

• Per-cache locking

• Evey cache has 3 lists:

• Full slabs list (slabs containing no free objects):
slab full

• Partial slabs list (slabs containing some allocated
objects and some free objects) :slab partial

• Free slabs list (slabs containing only free
objects): slab free

• The Linux kernel is NUMA aware: 3 slab lists per
NUMA node!



The SLAB Cache
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• The slab interface is described in
include/linux/slab.h; the SLAB details are in
include/linux/slab def.h and mm/slab.h

• struct kmem cache in
include/linux/slab def.h

• Contains some cache arguments and the cache
state

• Also contains an array of kmem cache node

structure (they contains the 3 lists!)

• slabs are enqueued in these lists

• Actually, the first page of each slab is enqueued
• See the slab list field in struct page



Using the 3 Lists
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• Objects are generally allocated from slabs in
slab partial

• If slab partial is empty, slabs from slab free

can be used

• After allocating the object, the slab is moved to
slab partial

• If slab free is also empty, invoke
alloc pages() (actually,
alloc pages node()) to allocate a slab

• When an object is freed, add it to its slab

• If it was the last allocated object of the slab, move
the slab to slab free



Multi-Core Optimization
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• The original SLAB algorithm was designed for
uni-processor systems

• Per-cache locks protecting the 3 lists (and other
kmem cache fields

• On multi-core systems, scales badly (high risk of
lock contention)

• Optimization: per-CPU (actually, per-core) cache of
free objects

• See the cpu cache field of kmem cache

• Can be accessed without locking, but is “percpu”
(disable preemption)



Example: Allocating an Object

Advanced Kernel Programming Virtual Memory

• kmem cache alloc(), defined in mm/slab.c

invokes slab alloc()

• slab alloc() invokes do cache alloc() which
invokes cache alloc()

• cache alloc() looks at the per-CPU cache
(using cpu cache get()

• If the per-CPU cache is not empty, returns a free
object from it (ac->entry[--ac->avail])

• If the per-CPU cache is empty, refill it
(cache alloc refill())



Refilling the per-CPU Cache
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• cache alloc refill() is invoked when the
per-CPU cache is empty and an object has to be
allocated

• It invokes searches for a slab to be used (from some
of the lists, or from the buddy allocator)

• Then, it invokes alloc block() (to fill the per cpu

array with objects) and fixup slab list() (to
insert the slab in slabs full or slabs partial)

• fixup slab list() is eventually called by
cache grow end()



Slabs and Coloring
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• A slab contains multiple objects

• The slab is some pages large
• The slab size is generally not an integer multiple

of an object size
• So, the first object can have an offset respect to

the beginning of the slab

• To be more hw-cache friendly, each slab has objects
starting at a slightly different offset

• Goal: distribute buffers evenly throughout the
cache



Coloring Example
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• When a slab is initialized, the first buffer starts at a
different offset from the slab base (different color)

• This results in different colors because slabs are
page-aligned...

• Example: 200-byte objects, with 8-bytes alignment
requirement

• Slab 1: objects at offsets 0, 200, 400, ...
• Slab 2: objects at offsets 8, 208, 408, ...
• Slab 3: objects at offsets 16, 216, 416, ...

• When the maximum offset is reached, restart from 0



SLUB
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• SLUB allocator: born to simplify the SLAB code

• The SLAB complexity went... Kind of out of
control

• Avoid multiple queues: all the slabs are in the same
list

• Full slabs are not inserted in any list
• Partial slabs and empty slabs are in the same list

• Try to reduce the memory overhead
• Goal: better scalability on many-core systems
• Some of the SLUB improvements have been ported

to SLAB



The Object Cache
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• struct kmem cache, from
include/linux/slub def.h

• Similar to the SLAB kmem cache, but simpler
• Also, the per-CPU free objects cache is

implemented as a (lockless!) list (not an array)
• SLAB uses the Linux “percpu” thing, that disables

preemption

• Single slabs list (partial): see kmem cache node

in mm/slab.h



Example: Object Allocation
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• kmem cache alloc(), defined in mm/slub.c

invokes slab alloc(), which invokes
slab alloc node()

• slab alloc node() gets first object from
per-CPU-cache-¿freelist and updates freelist

• Lockless operation: if the list changed in the
meanwhile, redo

• If there are no objects in freelist, invokes
slab alloc()



Refilling the per-CPU Cache
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• slab alloc() is invoked when the per-CPU free
objects list (freelist) is empty

• slab alloc() invokes new slab objects()

which invokes get partial()

• To get a slab from the partial list

• If get partial() fails (no slabs in the partial list),
new slab() invokes allocate slab() which
invokes alloc slab page() which invokes
alloc pages()



Generic Allocations from slabs
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• Slab-based allocators are good for creating caches
of “memory objects”

• All the ojects of a cache have the same size
• Size declared when creating the cache

• So, how does a generic kmalloc() work?

• Isn’t it based on the slab allocator?

• It uses multiple caches, for objects of different sizes!



kmalloc Caches

Advanced Kernel Programming Virtual Memory

• At boot time, multiple kmalloc-* caches are
created

• For objects of size 8 bytes, 16 bytes, 32 bytes, 64
bytes, 96 bytes, ...

• From 256 bytes to 8 kilobytes, only powers of 2

• When kmalloc() is used to allocate an amount s
of memory, find the kmalloc- object with size
immediately larger than s

• See kmalloc() in mm/slab.c or mm/slub.c

• For SLAB, do kmalloc()



kmalloc Details
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• If the slab allocator must be used, kmalloc()
invokes kmalloc slab() to find the correct cache

• A kmalloc- cache containing objects that are
large enough

• See mm/slab common.c::kmalloc slab()

• For s ≤ 192, it uses a size index array
• After finding a cache, slab alloc() is invoked

• See details about SLAB and SLUB



Again on vmalloc

Advanced Kernel Programming Virtual Memory

• As mentioned, vmalloc() can allocate virtual
memory

• Not contiguous in physical memory
• Notice: it is memory for kernel usage
• Not in a specific process virtual address space

• Can work for kernel threads too (see later)
• It allocates both a virtual memory fragment and the

corresponding physical memory pages

• Need to modify the default linear mapping

• Memory allocated in a specific range of virtual
addresses

• From VMALLOC START to VMALLOC END

• vmalloc address space



Basic vmalloc Idea
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• In theory, the vmalloc() behaviour is not difficult to
understand/describe

• Search for a suitable virtual memory fragment (in
the reserved range)

• Compute how many pages of memory are
needed

• Allocate the physical pages one-by-one, storing
them in an array

• Map the physical pages in virtual memory

• As usual, the devil is in the details...
• Some data structures are needed to store

vmalloc() information

• Allocated from slab caches or with kmalloc



vmalloc Data Structures
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• Defined in include/linux/vmalloc.h

• struct vmap area: describes the memory
fragment in virtual memory (va start and
va end)

• struct vm struct: describes how phisical
pages are mapped in the virtual memory area

• They are stored in lists and rb trees
• A vmap area contains a pointer to its vm struct

• A vm struct is actually a simplified version of the
mm struct describing the virtual address space of a
task



Example: Allocation
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• Virtual memory allocation is performed by invoking
vmalloc()

• vmalloc() invokes vmalloc node flags(),
that invokes vmalloc node() ending up in
vmalloc node range()

• vmalloc node range() rounds up the memory
size to a multiple of a page, then invokes
get vm area node(), then inovkes
vmalloc area node()

• get vm area node() allocates and initializes
vmap area and vm struct

• vmalloc area node() takes care of actually
allocating and mapping the physical pages



Virtual Memory Area Computation
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• get vm area node() allocates vm struct

(using kmalloc()

• Then, allocates and fills vmap area

(alloc vmap area())

• vmap area is allocated from a dedicated slab
cache

• Then, it is initialized with the correct va start

and va end values
• And it is inserted in a list of used memory areas

• Then, initializes vm struct with the data from
vmap area and sets the vm pointer in vmap area

(setup vmalloc vm()



Physical Pages Allocation

Advanced Kernel Programming Virtual Memory

• vmalloc area node() allocates the physical pages
for the virtual memory area that has been allocated

• First of all, it allocates an array of struct page *

• Funny recursive allocation (can invoke
vmalloc node()...

• Fills the pages and nr pages fields of
vm struct

• Then, allocates all the pages in a for loop

• Uses alloc page() or alloc pages node()

(with order 0!)

• Finally, maps the allocated physical pages in the
virtual memory area (map vm area())



Process Address Spaces
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• Every user-space process has a private virtual
address space

• It contains only a subset of all the possible
addresses

• The other addresses are used for the kernel
address space — shared by all processes, but
non accessible from user-space

• The kernel address space uses a linear mapping

• No need to describe it in any data structure
• Exception: vmalloc address space

• The address space of a process is described by
struct mm struct (defined in
include/linux/mm types.h)



Virtual Memory Regions
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• The virtual address space of a process is composed
by multiple memory regions

• A memory region for each segment (code, data,
bss, ...)

• The heap is also a memory region

• Memory regions are page-aligned
• Each memory region is described by a struct

vm area struct (defined in
include/linux/mm types.h)

• Organized in lists and rb trees
• Contains a link to its address space (struct

mm struct * vm mm)

• The mmap() system call can create a new region...



Example: the Heap
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• malloc() is not a system call: it is a library call

• Implemented in the standard C library (example:
glibc)

• The standarc C library allocates memory from the
heap

• Remember? The heap is one of the memory
regions of the proces...

• What to do when the heap is empty?

• The standard C library cannot allocate memory
anymore...

• ...So, it must grow the heap
• Done by invoking a system call: brk()



Growing the Heap

Advanced Kernel Programming Virtual Memory

• brk() system call (do brk(): changes the heap
size

• Technically, it changes the “program break” (end
of the data segment)

• Increasing the program break allows to grow the
heap by adding more virtual memory pages to
this virtual memory region...

• No physical pages are actually allocated!
• Physical pages are allocated only on page faults

• Lazy memory allocation
• So, do not search for alloc page() in the

do brk() call chain...



Page Fault Hanling
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• An access to a virtual memory page which is not
mapped in physical memory generates a page fault

• This also happens on write accesses to read-only
pages...

• ...Or in case of violations to page permissions

• Page faults handling is architecture-dependent

• See, for example,
arch/x86/mm/fault.c::do page fault()

• It accesses architecture-specific registers to get
the faulting address

• It looks at the current task to get the mm struct

structure

• Then, it invokes handle mm fault()



Architecture Independent Handler
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• mm/memory.c::handle mm fault() receives the
virtual memory area containing the faulting address,
the address and some flags

• handle mm fault() ends up invoking
handle pte fault()

• For a “regular” memory page, ends up invoking
do anonymous page()

• do anonymous page() ends up in
alloc pages() (with order 0)

• Through alloc zeroed user highpage movable(),

remapped in alloc page vma()→ alloc pages vma()

with order 0 → alloc pages() (for no NUMA)

• Only when writing to the page for the first time
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