Linux Scheduler Internals

Luca Abeni
luca.abeni@santannapisa.it

May 5, 2020

Multiprocessor Scheduling

e UniProcessor Systems

e A schedule ¢(t) is a function mapping time ¢ into
an executing task o : t — T U {74} Where T is
the set of tasks running in the system

e T4 1S the idle task

e For a multiprocessor system with M CPUs, o (%) is
extended to map ¢ in vectors 7 € (T U {7;q.})M
e Scheduling algorithms for M > 1 processors?

e Partitioned scheduling
Global scheduling

Advanced Kernel Programming Scheduler Internals

The Quest for Optimality

e UP Scheduling:

e N periodic tasks with D; = T;: (C;, T;,T;)

o Optimal scheduler: if = & < 1, then the task set
is schedulable Z

e EDF is optimal

e Multiprocessor scheduling:

Goal: schedule periodic task sets with > % < M
e Is this possible?
Optimal algorithms

Advanced Kernel Programming Scheduler Internals

Partitioned Scheduling - 1

e Reduceo:t— (T U{ra.})* to M uniprocessor
schedules o, : t = T U{Tq}, 0 <p < M

Statically assign tasks to CPUs
Reduce the problem of scheduling on M CPUs to
M instances of uniprocessor scheduling

e Problem: system underutilisation

M

L[

L[

L[

CPU

(][]

L
1 [

CPU

L
1 O

CPU

L
1 [

L[
l

CPU

—

RAAT

Advanced Kernel Programming

Scheduler Internals

Partitioned Scheduling - 2

e Reduce an M CPUs scheduling problem to M single
CPU scheduling problems and a bin-packing
problem
CPU schedulers: uni-processor, EDF can be used
Bin-packing: assign tasks to CPUs so that every
CPU has load <1

e s this possible?

e Think about 2 CPUs with
{(6,10,10), (6,10, 10), (6,10,10)}

Advanced Kernel Programming Scheduler Internals

Global Scheduling

e One single task queue, shared by M CPUs

The first M ready tasks are selected

What happens using fixed priorities (or EDF)?
Tasks are not bound to specific CPUs

Tasks can often migrate between different CPUs

e Problem: schedulers designed for UP...
M

L[L[L[L[

LCF’UJ LCF’UJ LCF’UJ LCF’UJ G Gb Gb &GP &b @ °
et e et e s e e A s
JTL JTL JTL JTL

u{

]
i

Advanced Kernel Programming Scheduler Internals

Global Scheduling - Problems

o Dhall's effect: U' for global multiprocessor
scheduling can be 1 (for RM or EDF)

e Pathological case: M CPUs, M + 1 tasks. M

tasks (¢,7— 1,7 — 1), atask (T,7T,T).

o U=Mz5+1le—->0=U—1

e Global scheduling can cause a lot of useless

migrations

e Migrations are overhead!
Decrease in the throughput
Migrations are not accounted for...

Advanced Kernel Programming

Scheduler Internals

Global Scheduling for Soft Tasks

e Dhall's Effect — global EDF and global RM have
Ulub — 1
e With U > 1, deadlines can be missed
e Global EDF / RM are not useful for hard tasks

e However, global EDF can be useful for scheduling
soft tasks...

e When U < M, global EDF guarantees an upper
bound for the tardiness!

e Deadlines can be missed, but by a limited
amount of time

Advanced Kernel Programming Scheduler Internals

SCHED DEADLINE

e New SCHED_DEADLINE scheduling policy
e Foreground respect to all of the other policies

SCHED DEADLINE SCHED_RR SCHED_FIFO SCHED_IDLE SCHED_BATCH
tzisks tasks tasks tasks tasks

CHED_OTHER
tasks

sched/deadline.c sched/rt.c sched/fair.c

Linux Modular Scheduling Framework

@ m Relative priority among the scheduling classes > @

Advanced Kernel Programming Scheduler Internals

SCHED DEADLINE and CBS

e Uses the CBS to assign scheduling deadline to
SCHED_DEADLINE tasks

e Assign a (maximum) runtime ¢) and a
(reservation) period P to SCHED_DEADLINE tasks

e Additional parameter: relative deadline D
e The “check if the current scheduling deadline can
be used” rule is used at task wake-up

e Then uses EDF to schedule them

e Both global EDF and partitioned EDF are
possible
e Configurable through the cpuset mechanism

Advanced Kernel Programming Scheduler Internals

SCHED DEADLINE Design: Flexibility

e Supports both global and partitioned scheduling
e For partitioned scheduling, use cpusets

e Flexible utilization-based admission control
o > % <U*
o U’ configurable, ranging from 0 to M

® /proc/sys/kernel/sched rt {runtime, period}_us

Can leave CPU time for non-deadline tasks
Bounded tardiness; hard respect of deadlines for
partitioned scheduling

e Even supports arbitrary affinities!
e But admission control must be disabled...

Advanced Kernel Programming Scheduler Internals

Setting the Scheduling Policy

¢ NO sched_setsched () < new syscalls (and data
structures added to be extensible)

e Maybe even too extensible!

int sched_setattr(pid_t pid, const struct sched_attr xattr,
unsigned int flags);

int sched_getattr(pid_t pid, struct sched_attr xattr,
unsigned int size, unsigned int flags);

struct sched _attr {
__u32 size;

__u32 sched_policy;
__u6b4 sched_flags;

__u64 sched_runtime;
__u64 sched_deadline;
__u64 sched_period;

Y

Advanced Kernel Programming Scheduler Internals

Using sched_setattr ()

pid: as for sched_setscheduler ()
flags: currently unused (for future extensions!)
attr: scheduling parameters for the task

size: mustbe setto sizeof (struct
sched_attr)

sched_policy: setto SCHED DEADLINE!
sched_runtime: ()

sched_deadline: D

sched_period: P

sched_flags: will see later (set to 0 for now)

Advanced Kernel Programming Scheduler Internals

e SO0, can we use SCHED DEADLINE in our user
programs?

e sched setattr () & friends are in the kernel since
3.14...

e But the user-space side of things is still missing in
many Linux distributions

e No support in glibc, no definition of st ruct
sched_attr, etc...

e Solution: small user-space library providing the
sched_xattr () system calls and related data
structures

e 1libdl, released by Juri Lelli under GPL

Advanced Kernel Programming Scheduler Internals

#include "libdl/dl_syscalls.h"

struct sched attr attr;

attr.size = sizeof (struct attr);
attr.sched_policy = SCHED_DEADLINE;
attr.sched runtime = 30000000;
attr.sched_period = 100000000;
attr.sched deadline = 100000000;

res = sched setattr (0, &attr, 0);

1f (res < 0)
perror ("sched_setattr()");

Advanced Kernel Programming Scheduler Internals

Admission Control

e sched_setattr () might fail if admission control
fails

e Sum of reserved utilizations exceed the limit U*
e Affinity of the task is different from its root domain

e Why the check on the affinity?

e ;% < M guarantees bounded tardiness for

global scheduling!
e Arbitrary affinities need a different analysis...

e S0, how to use arbitrary affinities?
e Disable admission control!

® echo -1 > /proc/sys/kernel/sched_rt_runtime_us

Advanced Kernel Programming Scheduler Internals

Partitioned Scheduling

e cpuset: mechanism for assigning a set of CPUs to
a set of tasks

e Exclusive cpuset: CPUs not shared

e T[asks migrate inside scheduling domains <
cpusets can bee used to create isolated domains
e Only one CPU = partitioned scheduling

I# The next 3 lines are not needed in many Linux distributions
mount -t tmpfs cgroup_root /sys/fs/cgroup

mkdir /sys/fs/cgroup/cpuset

mount -t cgroup —-o cpuset cpuset /sys/fs/cgroup/cpuset

mkdir /sys/fs/cgroup/cpuset/Setl

echo 3 > /sys/fs/cgroup/cpuset/Setl/cpuset.cpus

echo 0 > /sys/fs/cgroup/cpuset/Setl/cpuset.mems

echo 0 > /sys/fs/cgroup/cpuset/cpuset.sched_load_balance
| echo 1 > /sys/fs/cgroup/cpuset/Setl/cpuset.cpu_exclusive
echo $SPID > /sys/fs/cgroup/cpuset/Setl/tasks

Advanced Kernel Programming Scheduler Internals

¢ sched_setaffinity () on SCHED DEADLINE
tasks can fall

e Again, disable admission control to use
something different from global scheduling

e SCHED_DEADLINE tasks cannot fork

e Which scheduling parameters would be
inherited?

e Remember: runtimes and periods are in
nanoseconds (not microseconds)

Advanced Kernel Programming Scheduler Internals

Task Affinities in Linux

e Linux scheduler: more generic than “simple”
partitioned or global schedulers

e Every task has an affinity mask
e Bitmask describing all the CPU cores on which
the task can be scheduled

e Mask == all cores — global scheduling
e Mask == 1 core — partitioned scheduling
e Also, cpuset mechanism to impose constraints on
the tasks affinity masks

e Remember the previous example with
SCHED_DEADLINE

e When migrating a task, the scheduler has to look at
Advanced Iltt§rng‘grlorg]r!atr¥mma8k Scheduler Internals

Affinity Masks in the Task Structure

e The task_struct structure has a cpus_mask field,
of type cpumask_t

e Bitmask containing CPU cores, accessible
through the cpumask_. .. functions and macros

e Example: cpumask_weight (...) returns the
number of bits set to 1

e cpumask_weight (t—>cpus_mask) returns the
number of cores on which task t can be
scheduled

e Cachedin t->nr_cpus_allowed

e The cpus_ptr field caches the cpus_mask
address

e (Can be set with sched_setaffinity ()

Advanced Kernel Programming Scheduler Internals

Affinity Masks and SCHED DEADLINE

e The SCHED_DEADLINE policy is subject to
admission control

e Remember? sched_setattr () can fail even if
you are administrator!!!

e See __sched_setscheduler () returning
—FEPERM...

e [he admission control assumes global scheduling

e So, the affinity mask must contain all the CPU
cores!

e See the check “! cpumask_subset (span,
p—->cpus_ptr)”

e Here, “span”is a bitmask containing all the cores
available to the scheduler

Advanced Kernel Programming Scheduler Internals

Affinity Masks, Again

If admission control is disabled, then generic
affinities can be used
How are affinities used?

e Example based on SCHED_DEADLINE (as usual)
e rt.c (implementing SCHED_FIFO and
SCHED_RR) Is similar

The “push” and “pull” functions look at “pushable di
tasks” (stored in an RB tree)

e Tasks are stored in such an RB tree only if
nr_cpus_allowed > 1

If the affinity mask contains all cores, then push and
pull implement global scheduling
With generic affinities, things are more complex

Advanced Kernel Programming Scheduler Internals

A Partitioned SCHED DEADLINE

e !cpumask_subset (span, p->cpus_ptr) implies
global scheduling...
e ...How to modify it to have partitioned scheduling?

e Hint: each task should be affine to only 1 CPU...
e Then, other related changes are needed...

e Cope with SCHED_DEADLINE tasks trying to
change their affinity...
e Cope with changes in the cpuset configuration...

e The admission test (see __d1_overflow ()) also
needs to be modified

e After that, push and pull functions become
useless/unused!

Advanced Kernel Programming Scheduler Internals

Coping with Changes in Affinity Masks

e Current SCHED DEADLINE: the task’s affinity mask
must contain all the CPU cores that can be used by
the scheduler

e Seethecheckin __sched setscheduler ()
What happens if cpus_allowed changes after
the task has become SCHED DEADLINE?

e The kernel must prevent changes in the tasks’
affinity masks that break this property

e Seethe checkin sched_setaffinity ()

e Special case of affinity change: moving between
different cpusets

e See deadline.c::set_cpus_allowed._dl ()

Advanced Kernel Programming Scheduler Internals

Coping with Changes in cpusets

e Current SCHED DEADLINE: the task’s affinity mask
must contain all the CPU cores that can be used by
the scheduler

e Remember “span”? (from rg->rd->span)

e The kernel must prevent changes in cpusets that
break this property (or break admission control)

e Look at
kernel/cgroup/cpuset.c::validate_change

e T[his must be modified if SCHED_DEADLINE does not
enforce global scheduling

Advanced Kernel Programming Scheduler Internals

Admission Control

Not present in SCHED {FIFO, RR}
Currently based on global scheduling

e C(Considers the cpuset’s (root domain’s)
utilization
e Remember: utilization U =runtime/period

e See struct dl bw *dl bin_dl overflow()

e Member of the “root domain” structure
e (Contains a maximum bw field and a current bw
field

e Must be changed to a per-rq admission control
e The rq utilization is already tracked by this_bw

Advanced Kernel Programming Scheduler Internals

The Root Domain Utilization

e Root domain (isolated cpuset): contains all the
information about the CPU cores usable by the
scheduler

e rg—->rd->dl_bw: utilization of the dl tasks in the
root domain

e See
kernel/sched/deadline.c: :dl bw_of ()
and related stuff

e The root domain utilization is updated when a task
switch to/from SCHED _DEADLINE and when a dl task

ends

e Search for TASK DEAD in
kernel/sched/deadline.c

Advanced Kernel Programming Scheduler Internals

	Multiprocessor Scheduling
	The Quest for Optimality
	Partitioned Scheduling - 1
	Partitioned Scheduling - 2
	Global Scheduling
	Global Scheduling - Problems
	Global Scheduling for Soft Tasks
	SCHED_DEADLINE
	SCHED_DEADLINE and CBS
	SCHED_DEADLINE Design: Flexibility
	Setting the Scheduling Policy
	Using sched_setattr()
	libdl
	Example
	Admission Control
	Partitioned Scheduling
	Warning!
	Task Affinities in Linux
	Affinity Masks in the Task Structure
	Affinity Masks and SCHED_DEADLINE
	Affinity Masks, Again
	A Partitioned SCHED_DEADLINE
	Coping with Changes in Affinity Masks
	Coping with Changes in cpusets
	Admission Control
	The Root Domain Utilization

