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Multiprocessor Scheduling

e UniProcessor Systems

e A schedule ¢(t) is a function mapping time ¢ into
an executing task o : t — T U {74} Where T is
the set of tasks running in the system

e T4 1S the idle task

e For a multiprocessor system with M CPUs, o (%) is
extended to map ¢ in vectors 7 € (T U {7;q.} )M
e Scheduling algorithms for M > 1 processors?

e Partitioned scheduling
Global scheduling
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The Quest for Optimality

e UP Scheduling:

e N periodic tasks with D; = T;: (C;, T;,T;)

o Optimal scheduler: if = & < 1, then the task set
is schedulable Z

e EDF is optimal

e Multiprocessor scheduling:

Goal: schedule periodic task sets with > % < M
e Is this possible?
Optimal algorithms
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Partitioned Scheduling - 1

e Reduceo:t— (T U{ra.})* to M uniprocessor
schedules o, : t = T U{Tq}, 0 <p < M

Statically assign tasks to CPUs
Reduce the problem of scheduling on M CPUs to
M instances of uniprocessor scheduling

e Problem: system underutilisation
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Partitioned Scheduling - 2

e Reduce an M CPUs scheduling problem to M single
CPU scheduling problems and a bin-packing
problem
CPU schedulers: uni-processor, EDF can be used
Bin-packing: assign tasks to CPUs so that every
CPU has load <1

e s this possible?

e Think about 2 CPUs with
{(6,10,10), (6,10, 10), (6,10,10)}
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Global Scheduling

e One single task queue, shared by M CPUs

The first M ready tasks are selected

What happens using fixed priorities (or EDF)?
Tasks are not bound to specific CPUs

Tasks can often migrate between different CPUs

e Problem: schedulers designed for UP...
M
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Global Scheduling - Problems

o Dhall's effect: U' for global multiprocessor
scheduling can be 1 (for RM or EDF)

e Pathological case: M CPUs, M + 1 tasks. M

tasks (¢,7— 1,7 — 1), atask (T,7T,T).

o U=Mz5+1le—->0=U—1

e Global scheduling can cause a lot of useless

migrations

e Migrations are overhead!
Decrease in the throughput
Migrations are not accounted for...
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Global Scheduling for Soft Tasks

e Dhall's Effect — global EDF and global RM have
Ulub — 1
e With U > 1, deadlines can be missed
e Global EDF / RM are not useful for hard tasks

e However, global EDF can be useful for scheduling
soft tasks...

e When U < M, global EDF guarantees an upper
bound for the tardiness!

e Deadlines can be missed, but by a limited
amount of time
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SCHED DEADLINE

e New SCHED_DEADLINE scheduling policy
e Foreground respect to all of the other policies

SCHED DEADLINE SCHED_RR SCHED_FIFO SCHED_IDLE SCHED_BATCH
tzisks tasks tasks tasks tasks

CHED_OTHER
tasks

sched/deadline.c sched/rt.c sched/fair.c

Linux Modular Scheduling Framework

@ m Relative priority among the scheduling classes > @
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SCHED DEADLINE and CBS

e Uses the CBS to assign scheduling deadline to
SCHED_DEADLINE tasks

e Assign a (maximum) runtime ¢) and a
(reservation) period P to SCHED_DEADLINE tasks

e Additional parameter: relative deadline D
e The “check if the current scheduling deadline can
be used” rule is used at task wake-up

e Then uses EDF to schedule them

e Both global EDF and partitioned EDF are
possible
e Configurable through the cpuset mechanism
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SCHED DEADLINE Design: Flexibility

e Supports both global and partitioned scheduling
e For partitioned scheduling, use cpusets

e Flexible utilization-based admission control
o > % <U*
o U’ configurable, ranging from 0 to M

® /proc/sys/kernel/sched rt {runtime, period}_us

Can leave CPU time for non-deadline tasks
Bounded tardiness; hard respect of deadlines for
partitioned scheduling

e Even supports arbitrary affinities!
e But admission control must be disabled...
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Setting the Scheduling Policy

¢ NO sched_setsched () < new syscalls (and data
structures added to be extensible)

e Maybe even too extensible!

int sched_setattr(pid_t pid, const struct sched_attr xattr,
unsigned int flags);

int sched_getattr(pid_t pid, struct sched_attr xattr,
unsigned int size, unsigned int flags);

struct sched _attr {
__u32 size;

__u32 sched_policy;
__u6b4 sched_flags;

__u64 sched_runtime;
__u64 sched_deadline;
__u64 sched_period;

Y
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Using sched_setattr ()

pid: as for sched_setscheduler ()
flags: currently unused (for future extensions!)
attr: scheduling parameters for the task

size: mustbe setto sizeof (struct
sched_attr)

sched_policy: setto SCHED DEADLINE!
sched_runtime: ()

sched_deadline: D

sched_period: P

sched_flags: will see later (set to 0 for now)
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e SO0, can we use SCHED DEADLINE in our user
programs?

e sched setattr () & friends are in the kernel since
3.14...

e But the user-space side of things is still missing in
many Linux distributions

e No support in glibc, no definition of st ruct
sched_attr, etc...

e Solution: small user-space library providing the
sched_xattr () system calls and related data
structures

e 1libdl, released by Juri Lelli under GPL
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#include "libdl/dl_syscalls.h"

struct sched attr attr;

attr.size = sizeof (struct attr);
attr.sched_policy = SCHED_DEADLINE;
attr.sched runtime = 30000000;
attr.sched_period = 100000000;
attr.sched deadline = 100000000;

res = sched setattr (0, &attr, 0);

1f (res < 0)
perror ("sched_setattr()");
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Admission Control

e sched_setattr () might fail if admission control
fails

e Sum of reserved utilizations exceed the limit U*
e Affinity of the task is different from its root domain

e Why the check on the affinity?

e ;% < M guarantees bounded tardiness for

global scheduling!
e Arbitrary affinities need a different analysis...

e S0, how to use arbitrary affinities?
e Disable admission control!

® echo -1 > /proc/sys/kernel/sched_rt_runtime_us

Advanced Kernel Programming Scheduler Internals



Partitioned Scheduling

e cpuset: mechanism for assigning a set of CPUs to
a set of tasks

e Exclusive cpuset: CPUs not shared

e T[asks migrate inside scheduling domains <
cpusets can bee used to create isolated domains
e Only one CPU = partitioned scheduling

I# The next 3 lines are not needed in many Linux distributions
mount -t tmpfs cgroup_root /sys/fs/cgroup

mkdir /sys/fs/cgroup/cpuset

mount -t cgroup —-o cpuset cpuset /sys/fs/cgroup/cpuset

mkdir /sys/fs/cgroup/cpuset/Setl

echo 3 > /sys/fs/cgroup/cpuset/Setl/cpuset.cpus

echo 0 > /sys/fs/cgroup/cpuset/Setl/cpuset.mems

echo 0 > /sys/fs/cgroup/cpuset/cpuset.sched_load_balance
| echo 1 > /sys/fs/cgroup/cpuset/Setl/cpuset.cpu_exclusive
echo $SPID > /sys/fs/cgroup/cpuset/Setl/tasks
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¢ sched_setaffinity () on SCHED DEADLINE
tasks can fall

e Again, disable admission control to use
something different from global scheduling

e SCHED_DEADLINE tasks cannot fork

e Which scheduling parameters would be
inherited?

e Remember: runtimes and periods are in
nanoseconds (not microseconds)
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Task Affinities in Linux

e Linux scheduler: more generic than “simple”
partitioned or global schedulers

e Every task has an affinity mask
e Bitmask describing all the CPU cores on which
the task can be scheduled

e Mask == all cores — global scheduling
e Mask == 1 core — partitioned scheduling
e Also, cpuset mechanism to impose constraints on
the tasks affinity masks

e Remember the previous example with
SCHED_DEADLINE

e When migrating a task, the scheduler has to look at
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Affinity Masks in the Task Structure

e The task_struct structure has a cpus_mask field,
of type cpumask_t

e Bitmask containing CPU cores, accessible
through the cpumask_. .. functions and macros

e Example: cpumask_weight (...) returns the
number of bits set to 1

e cpumask_weight (t—>cpus_mask) returns the
number of cores on which task t can be
scheduled

e Cachedin t->nr_cpus_allowed

e The cpus_ptr field caches the cpus_mask
address

e (Can be set with sched_setaffinity ()
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Affinity Masks and SCHED DEADLINE

e The SCHED_DEADLINE policy is subject to
admission control

e Remember? sched_setattr () can fail even if
you are administrator!!!

e See __sched_setscheduler () returning
—FEPERM...

e [he admission control assumes global scheduling

e So, the affinity mask must contain all the CPU
cores!

e See the check “! cpumask_subset (span,
p—->cpus_ptr)”

e Here, “span”is a bitmask containing all the cores
available to the scheduler
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Affinity Masks, Again

If admission control is disabled, then generic
affinities can be used
How are affinities used?

e Example based on SCHED_DEADLINE (as usual)
e rt.c (implementing SCHED_FIFO and
SCHED_RR) Is similar

The “push” and “pull” functions look at “pushable di
tasks” (stored in an RB tree)

e Tasks are stored in such an RB tree only if
nr_cpus_allowed > 1

If the affinity mask contains all cores, then push and
pull implement global scheduling
With generic affinities, things are more complex
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A Partitioned SCHED DEADLINE

e !cpumask_subset (span, p->cpus_ptr) implies
global scheduling...
e ...How to modify it to have partitioned scheduling?

e Hint: each task should be affine to only 1 CPU...
e Then, other related changes are needed...

e Cope with SCHED_DEADLINE tasks trying to
change their affinity...
e Cope with changes in the cpuset configuration...

e The admission test (see __d1_overflow ()) also
needs to be modified

e After that, push and pull functions become
useless/unused!
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Coping with Changes in Affinity Masks

e Current SCHED DEADLINE: the task’s affinity mask
must contain all the CPU cores that can be used by
the scheduler

e Seethecheckin __sched setscheduler ()
What happens if cpus_allowed changes after
the task has become SCHED DEADLINE?

e The kernel must prevent changes in the tasks’
affinity masks that break this property

e Seethe checkin sched_setaffinity ()

e Special case of affinity change: moving between
different cpusets

e See deadline.c::set_cpus_allowed._dl ()
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Coping with Changes in cpusets

e Current SCHED DEADLINE: the task’s affinity mask
must contain all the CPU cores that can be used by
the scheduler

e Remember “span”? (from rg->rd->span)

e The kernel must prevent changes in cpusets that
break this property (or break admission control)

e Look at
kernel/cgroup/cpuset.c::validate_change

e T[his must be modified if SCHED_DEADLINE does not
enforce global scheduling
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Admission Control

Not present in SCHED {FIFO, RR}
Currently based on global scheduling

e C(Considers the cpuset’s (root domain’s)
utilization
e Remember: utilization U =runtime/period

e See struct dl bw *dl bin_dl overflow()

e Member of the “root domain” structure
e (Contains a maximum bw field and a current bw
field

e Must be changed to a per-rq admission control
e The rq utilization is already tracked by this_bw
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The Root Domain Utilization

e Root domain (isolated cpuset): contains all the
information about the CPU cores usable by the
scheduler

e rg—->rd->dl_bw: utilization of the dl tasks in the
root domain

e See
kernel/sched/deadline.c: :dl bw_of ()
and related stuff

e The root domain utilization is updated when a task
switch to/from SCHED _DEADLINE and when a dl task

ends

e Search for TASK DEAD in
kernel/sched/deadline.c
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