
The Kernel

Luca Abeni

luca.abeni@santannapisa.it

The Kernel

Kernel Programming The Kernel

• Part of the OS which manages the hardware
• Runs with the CPU in Supervisor Mode (high

privilege level)

• Privilege level known as Kernel Level (KL) -
execution in Kernel Space

• Regular programs run in User Space

• Mechanisms for increasing the privilege level (from
US to KS) in a controlled way

• Interrupts (+ traps / hw execptions)
• Instructions causing a hardware exception

Interrupts and Hardware Exceptions

Kernel Programming The Kernel

• Switch the CPU from User Level to Supervisor Mode

• Enter the kernel
• Can be used to implement system calls

• A partial Context Switch is performed

• Flags and PC are pushed on the stack
• If processor is executing at User Level, switch to

Kernel Level, and eventually switch to a kernel
stack

• Execution jumps to a handler in the kernel →
save the user registers for restoring them later

Back to User Space

Kernel Programming The Kernel

• Return to low privilege level (execution returns to
User Space) through a “return from interrupt”
Assembly instruction (IRET on x86)

• Pop flags and PC from the stack
• Eventually switch back to user stack

• Return path for system calls and hardware interrupt
handlers

Simplified CPU Execution

Kernel Programming The Kernel

• To understand interrupts, consider simplified CPU
execution first

• Simplification respect to the
fetch/decode/load/execute/save cycle

Increment
Program
Counter

Execute
Instruction

Fetch
Instruction

• The CPU iteratively:

• Fetches an instruction (address given by PC)
• Increases the PC
• Executes the instruction (might update the PC on

jump...)

CPU Execution with Interrupts

Kernel Programming The Kernel

• More realistic execution model

Interrupts
Disabled?

No

Yes

Fired?
Interrupt

No

Yes

Hardware Exception

Increment
Program
Counter

Execute
Instruction

Fetch
Instruction

Process
Interrupt

• Interrupt: cannot fire during the execution of an
instruction

• Hardware exception: caused by the execution of an
instruction

• trap, syscall, sc, . . .
• I/O instructions at low privilege level, Page faults,

...

Processing Interrupts

Kernel Programming The Kernel

Process
Interrupt

• Interrupt table → addresses of the handlers

• Interrupt n fires ⇒ after eventually switching to
KS and pushing flags and PC on the stack

• Read the address contained in the n
th entry of

the interrupt table, and jump to it!

Interrupt Tables

Kernel Programming The Kernel

• Implemented in hardware or in software

• x86 → Interrupt Description Table composed of
interrupt gates. The CPU automatically jumps to
the n

th interrupt gate
• Other CPUs jump to a fixed address → a

software demultiplexer reads the interrupt table

Software Interrupt - System Call

Kernel Programming The Kernel

τ 1

τ 2

KS

US
Interrupt
Software

Blocks

New task
scheduled

Syscall

1. Task τ1 executes and invokes a system call
2. Execution passes from US to KS (change stack,

push PC & flags, increase privilege level)
3. The invoked syscall executes. Maybe, it is blocking
4. τ1 blocks → back to US, and τ2 is scheduled

Hardware Interrupt

Kernel Programming The Kernel

τ 2

1τ

1τ KS

US

ISR

Hardware
Interrupt

unblocks

1. While τ2 is executing, a hardware interrupt fires
2. Execution passes from US to KS (change stack,

push PC & flags, increase privilege level)
3. The proper Interrupt Service Routine executes
4. The ISR can unblock τ1 → when execution returns

to US, τ1 is scheduled

Summing up...

Kernel Programming The Kernel

• The execution flow enters the kernel for two reasons:

• Reacting to events “coming from up” (syscalls)
• Reacting to an event “coming from below” (an

hardware interrupt from a device)

• The kernel executes in the context of the interrupted
task

Blocking / Waking up Tasks...

Kernel Programming The Kernel

• A system call can block the invoking task, or can
unblock a different task

• An ISR can unblock a task
• If a task is blocked / unblocked, when returning to

user space a context switch can happen

The scheduler is invoked
when returning from KS to US

Example: I/O Operation

Kernel Programming The Kernel

• Consider a generic Input or Output to an external
device (example: a PCI card)

• Performed by the kernel
• User programs must use a syscall

• The operation if performed in 3 phases

1. Setup: prepare the device for the I/O operation
2. Wait: wait for the end of the operation
3. Cleanup: complete the operation

• Can be done using polling, PIO, DMA, ...

Polling

Kernel Programming The Kernel

• User programs invoke the kernel; execution in kernel
space until the operation is terminated

• The kernel cyclically reads (polls) an interface status
register to check if the operation is terminated

• Busy-waiting in kernel space!

• No user task can execute while waiting for the I/O
operation...

• The operation must be very short!
• I/O operation == blocking time

Polling - 2

Kernel Programming The Kernel

1. The user program raises a software input
2. Setup phase - in kernel: in case of input operation,

nothing is done; in case of output operation, write a
value to a card register

3. Wait - in kernel: cycle until a bit of the card status
register becomes 1

4. Cleanup - in kernel: in case of input, read a value
from a card register; in case of output, nothing is
done. Eventually return to phase 1

5. IRET

Interrupt

Kernel Programming The Kernel

• User programs invoke the kernel; execution returns
to user space while waiting for the device

• The task that invoked the syscall blocks!

• An interrupt will notify the kernel when the “wait”
phase is terminated

• The interrupt handler will take care of performing
the I/O operation

• Many, frequent, short interruptions of unrelated
user-space tasks!!!

Interrupt - 2

Kernel Programming The Kernel

1. The user program raises a software input
2. Setup phase - in kernel: instruct the device to raise

an input when it is ready for I/O
3. Wait - return to user space: block the invoking task,

and schedule a new one (IRET)
4. Cleanup - in kernel: the interrupt fires → enter

kernel, and perform the I/O operation
5. Return to phase 2, or unblock the task if the

operation is terminated (IRET)

Programmed I/O Mode

Kernel Programming The Kernel

τ 1

τ 2

τ 1

ISR ISR ISR

1τ

Operation
I/O

start i/o

Blocks KS

US

unblocks

DMA / Bus Mastering

Kernel Programming The Kernel

• User programs invoke the kernel; execution returns
to user space while waiting for the device

• The task that invoked the syscall blocks!

• I/O operations are not performed by the kernel on
interrupt,

• Performed by a dedicated HW device

• An interrupt is raised when the whole I/O
operation is terminated

DMA / Bus Mastering - 2

Kernel Programming The Kernel

1. The user program raises a software input
2. Setup phase - in kernel: instruct the DMA (or the

Bus Mastering Device) to perform the I/O
3. Wait - return to user space: block the invoking task,

and schedule a new one (IRET)
4. Cleanup - in kernel: the interrupt fires → the

operation is terminated. Stop device and DMA
5. Unblock the task and invoke the scheduler (IRET)

DMA / Bus Mastering - 3

Kernel Programming The Kernel

τ 1

τ 2

τ 1

ISR

1τ

Operation
I/O

Blocks KS

US

unblocks

start DMA

Invoking the Kernel

Kernel Programming The Kernel

• Kernel → part of an OS that interacts with the
hardware

• Runs with CPU in privileged mode
• User Level ⇔ Kernel Level switch through special

CPU instructions (INT for Intel x86)

• User Level applications

• Run with the CPU in non-privileged mode
• invoke system calls or IPCs

Level
User

Hardware

Level
Kernel

Applications

memory devicesCPU

Kernel

System Libraries

Kernel Programming The Kernel

• Applications generally don’t invoke system calls
directly

• They generally use system libraries (like glibc),
which

• Provide a more advanced user interface
(example: fopen() vs open())

• Hide the US ⇔ KS switches
• Provide some kind of stable ABI (application

binary interface)

• Example: let’s see how system calls are converted in
regular library calls

System Library Example

Kernel Programming The Kernel

• Standard C library: exports some functions...
• ...That are just converted in system calls! (example:

getpid())
• Let’s see how this works...

• Some Assembly is needed

syscall:
pushl %ebp
pushl %edi
pushl %esi
pushl %ebx

/* arguments in registers */
movl 44(%esp),%ebp
movl 40(%esp),%edi
/*...*/
int $0x80

popl %ebx
/*...*/

ENTRY(system_call)
pushl %eax # save orig_eax
SAVE_ALL
GET_THREAD_INFO(%ebp)
cmpl $(nr_syscalls), %eax
jae syscall_badsys

syscall_call:
call *sys_call_table(,%eax,4)
movl %eax,PT_EAX(%esp) # store the ret val

syscall_exit:
/*...*/

Static vs Shared Libraries - 1

Kernel Programming The Kernel

• Libraries can be static or dynamic

• <libname>.a vs <libname>.so

• Static libraries (.a)

• Collections of object files (.o)
• Application linked to a static library ⇒ the needed

objects are included into the executable
• Only needed to compile the application

Static vs Shared Libraries - 2

Kernel Programming The Kernel

• Dynamic libraries (.so, shared objects)

• Are not included in the executable
• Application linked to a dynamic library ⇒ only the

library symbols names are written in the
executable

• Actual linking is performed at loading time
• .so files are needed to execute the application

• Linking static libraries produces larger executables...

• ...But these executables are “self contained”

Monolithic Kernels

Kernel Programming The Kernel

• Traditional Unix-like structure
• Protection: distinction between Kernel (running in

KS) and User Applications (running in US)
• The kernel behaves as a single-threaded program

• One single execution flow in KS at each time
• Simplify consistency of internal kernel structures

• Execution enters the kernel in two ways:

• Coming from upside (system calls)
• Coming from below (hardware interrupts)

Single-Threaded Kernels

Kernel Programming The Kernel

• Only one single execution flow (thread) can execute
in the kernel

• It is not possible to execute more than 1 system
call at time

• Non-preemptable system calls
• In SMP systems, syscalls are critical sections

(execute in mutual exclusion)

• Interrupt handlers execute in the context of the
interrupted task

Bottom Halves

Kernel Programming The Kernel

• Interrupt handlers split in two parts

• Short and fast ISR
• “Soft IRQ handler”

• Soft IRQ hanlder: deferred handler

• Traditionally known ass Bottom Half (BH)
• AKA Deferred Procedure Call - DPC - in

Windows
• Linux: distinction between “traditional” BHs and

Soft IRQ handlers

Synchronizing System Calls and BHs

Kernel Programming The Kernel

• Synchronization with ISRs by disabling interrupts
• Synchronization with BHs: is almost automatic

• BHs execute atomically (a BH cannot interrupt
another BH)

• BHs execute at the end of the system call, before
invoking the scheduler for returning to US

• Easy synchronization, but large non-preemptable
sections!

• Achieved by reducing the kernel parallelism
• Can be bad for real-time

Latency in Single-Threaded Kernels

Kernel Programming The Kernel

• Kernels working in this way are often called
non-preemptable kernels

• L
np is upper-bounded by the maximum amount of

time spent in KS

• Maximum system call length
• Maximum amount of time spent serving interrupts

Evolution of the Monolithic Structure

Kernel Programming The Kernel

• Monolithic kernels are single-threaded: how to run
then on multiprocessor?

• The kernel is a critical section: Big Kernel Lock
protecting every system call

• This solution does not scale well: a more
fine-grained locking is needed!

• Tasks cannot block on these locks → not mutexes,
but spinlocks!

• Remember? When the CS is busy, a mutex
blocks, a spinlock spins!

• Busy waiting... Not that great idea...

Removing the Big Kernel Lock

Kernel Programming The Kernel

• Big Kernel Lock → huge critical section for everyone

• Bad for real-time...
• ...But also bad for troughput!

• Let’s split it in multiple locks...
• Fine-grained locking allows more execution flows in

the kernel simultaneously

• More parallelism in the kernel...
• ...But tasks executing in kernel mode are still

non-preemptable

Preemptable Kernels

Kernel Programming The Kernel

• Multithreaded kernel

• Fine-grained critical sections inside the kernel
• Kernel code is still non-preemptable

• Idea: When the kernel is not in critical section,
preemptions can occurr

• Check for preemptions when exiting kernel’s
critical sections

Linux Kernel Preemptability

Kernel Programming The Kernel

• Check for preemption when exiting a kernel critical
section

• Implemented by modifying spinlocks
• Preemption counter: increased when locking,

drecreased when unlocking
• When preemption counter == 0, check for

preemption

• In a preemptable kernel, Lnp is upper bounded by
the maximum size of a kernel critical section

• Critical section == non-preemptable... This is NPP!!!

	The Kernel
	Interrupts and Hardware Exceptions
	Back to User Space
	Simplified CPU Execution
	CPU Execution with Interrupts
	Processing Interrupts
	Interrupt Tables
	Software Interrupt - System Call
	Hardware Interrupt
	Summing up...
	Blocking / Waking up Tasks...
	Example: I/O Operation
	Polling
	Polling - 2
	Interrupt
	Interrupt - 2
	Programmed I/O Mode
	DMA / Bus Mastering
	DMA / Bus Mastering - 2
	DMA / Bus Mastering - 3
	Invoking the Kernel
	System Libraries
	System Library Example
	Static vs Shared Libraries - 1
	Static vs Shared Libraries - 2
	Monolithic Kernels
	Single-Threaded Kernels
	Bottom Halves
	Synchronizing System Calls and BHs
	Latency in Single-Threaded Kernels
	Evolution of the Monolithic Structure
	Removing the Big Kernel Lock
	Preemptable Kernels
	Linux Kernel Preemptability

