Introduction to Linux Kernel
Modules

Luca Abeni
luca.abeni@santannapisa.it

Linux Kernel Modules

e Kernel module: code that can be dynamically
loaded/unloaded into the kernel at runtime

e (Change the kernel code without needing to reboot
the system

e More technically: the modules’ object code is
dynamically linked to the running kernel code

e Form of dynamic linking!

e This mechanism can be used for some simple
experiments on Linux kernel programming!

Kernel Programming Introduction to Linux Kernel Modules

Using Kernel Modules

Kernel Module: kernel object — . ko file
Inserted with modprobe <module name>
Can be removed with rmmod <module name>
When inserted, a kernel module can:

e Register some services
e Start some tasks (kernel threads)

e A kernel module can use some exported kernel
functions

Kernel Programming Introduction to Linux Kernel Modules

Kernel Programming - 1

e No single entry point (N0 “main () function)
No memory protection

e Kernel Memory Address Space: all the memory
can be accessed

e Kernel-space tasks can easily corrupt important
data structures!

e Not linked to standard libraries

e (Cannotinclude <stdio.h> and friends...
No standard C library!

Kernel Programming Introduction to Linux Kernel Modules

Kernel Programming - 2

e The kernel (or nanokernel, or ...) provides some
functions we can use

e Example, no printf (), but printk () ...

Errors do not result in segmentation faults...
...But can cause system crashes!
Other weird details

e No floating point (do not use float or double)
Small stack (4K B or 8K B)

Atomic contexts, ...

Kernel Programming Introduction to Linux Kernel Modules

Kernel Programming Language

e OS kernels are generally coded in C or C++

The Linux kernel uses C

Subset of C99 + some extensions (1ikely () /
unlikely () annotations, etc...)

e As said, no access to standard libraries
e Different set of header files and utility functions

Some Assembly is used (for entry points, etc...)
Example: Linked Lists (include/linux/list.h)

Kernel Programming Introduction to Linux Kernel Modules

Writing Linux Kernel Modules

e Written in C99 + extensions (see previous slide)
Must include some headers:

#include <linux/module.h>
#include <linux/kernel.h>
#$#include <linux/init.h>

e Must define two entry points: init and cleanup

e Init entry point: called when the module is
inserted

e Cleanup entry point: called when the module is
removed

Kernel Programming Introduction to Linux Kernel Modules

The Init Entry Point

static int _ init my_init (void)

{
fééurn 0;
)
module_1init (my_1init);
static: not used outside this compilation unit
__init: annotation for the kernel (not used after

insmod)

return 0;: module initialised without errors
module_init (my_init);: markmy_init as the
Init entry point

Kernel Programming Introduction to Linux Kernel Modules

The EXxit Entry Point

static void _ exit my_cleanup (void)

{
}

module_exit (my_cleanup) ;

e __exit: annotation for the kernel (used only In
rmmod)

¢ module_exit (my_cleanup);: mark my_cleanup
as the cleanup entry point
Responsible for undoing things done by init
If not defined, the module cannot be unloaded

Kernel Programming Introduction to Linux Kernel Modules

Compiling Linux Kernel Modules

e (Compliling user-space code is simple

e gcc without additional parameters works

e Makefiles and similar for more complex programs
e But compiling kernel code is more difficult!

“Freestanding” programming environment —
special compiler options are needed
e The compiler defaults might change from version

to version
o

e Fortunately, Linux developers already did the dirty
work for us!

e KBuild system

Kernel Programming Introduction to Linux Kernel Modules

e Set of Makefiles, programs and scripts used to build
the Linux kernel
Already knows which compiler options to use
Simpler to use than “regular’ Makefiles

e We just need to tell kbuild the name of the
module we want to build

e Supports the compilation of kernel modules
e Even external (out-of-tree) modules!

Kernel Programming Introduction to Linux Kernel Modules

Using KBuild

Based on Makefiles
Important line: “ocbj—-m = modulename.o”

e This assumes modules composed by one single
compilation unit (. c file)

e In case of multiple compilation units, use
“‘modulename-objs = ...” (listof .o files)

e To use it, we must tell make where KBuild Is

e make -C PathTolLinuxSources M=$S (pwd)
Where “PathToLinuxSources” IS the
pathname of a compiled Linux kernel

e The“-C ...” complication can be embedded in a
Makefile rule (see example)

Kernel Programming Introduction to Linux Kernel Modules

Applications as Kernel Modules

e The init entry point must return quickly
e modprobe does not terminate until init returns

e |t can create some threads, or register some device,
and return

e After loading the module, the application is
started!

e The cleanup entry point stops the threads /
unregister the device
e See example

Kernel Programming Introduction to Linux Kernel Modules

	Linux Kernel Modules
	Using Kernel Modules
	Kernel Programming - 1
	Kernel Programming - 2
	Kernel Programming Language
	Writing Linux Kernel Modules
	The Init Entry Point
	The Exit Entry Point
	Compiling Linux Kernel Modules
	KBuild
	Using KBuild
	Applications as Kernel Modules

