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Linux Kernel Modules

e Kernel module: code that can be dynamically
loaded/unloaded into the kernel at runtime

e (Change the kernel code without needing to reboot
the system

e More technically: the modules’ object code is
dynamically linked to the running kernel code

e Form of dynamic linking!

e This mechanism can be used for some simple
experiments on Linux kernel programming!
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Using Kernel Modules

Kernel Module: kernel object — . ko file
Inserted with modprobe <module name>
Can be removed with rmmod <module name>
When inserted, a kernel module can:

e Register some services
e Start some tasks (kernel threads)

e A kernel module can use some exported kernel
functions
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Kernel Programming - 1

e No single entry point (N0 “main () function)
No memory protection

e Kernel Memory Address Space: all the memory
can be accessed

e Kernel-space tasks can easily corrupt important
data structures!

e Not linked to standard libraries

e (Cannotinclude <stdio.h> and friends...
No standard C library!
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Kernel Programming - 2

e The kernel (or nanokernel, or ...) provides some
functions we can use

e Example, no printf (), but printk () ...

Errors do not result in segmentation faults...
...But can cause system crashes!
Other weird details

e No floating point (do not use float or double)
Small stack (4K B or 8K B)

Atomic contexts, ...
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Kernel Programming Language

e OS kernels are generally coded in C or C++

The Linux kernel uses C

Subset of C99 + some extensions (1ikely () /
unlikely () annotations, etc...)

e As said, no access to standard libraries
e Different set of header files and utility functions

Some Assembly is used (for entry points, etc...)
Example: Linked Lists (include/linux/list.h)
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Writing Linux Kernel Modules

e Written in C99 + extensions (see previous slide)
Must include some headers:

#include <linux/module.h>
#include <linux/kernel.h>
#$#include <linux/init.h>

e Must define two entry points: init and cleanup

e Init entry point: called when the module is
inserted

e Cleanup entry point: called when the module is
removed
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The Init Entry Point

static int _ init my_init (void)

{
fééurn 0;
)
module_1init (my_1init);
static: not used outside this compilation unit
__init: annotation for the kernel (not used after

insmod)

return 0;: module initialised without errors
module_init (my_init);: markmy_init as the
Init entry point
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The EXxit Entry Point

static void _ exit my_cleanup (void)

{
}

module_exit (my_cleanup) ;

e __exit: annotation for the kernel (used only In
rmmod)

¢ module_exit (my_cleanup);: mark my_cleanup
as the cleanup entry point
Responsible for undoing things done by init
If not defined, the module cannot be unloaded
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Compiling Linux Kernel Modules

e (Compliling user-space code is simple

e gcc without additional parameters works

e Makefiles and similar for more complex programs
e But compiling kernel code is more difficult!

“Freestanding” programming environment —
special compiler options are needed
e The compiler defaults might change from version

to version
o

e Fortunately, Linux developers already did the dirty
work for us!

e KBuild system
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e Set of Makefiles, programs and scripts used to build
the Linux kernel
Already knows which compiler options to use
Simpler to use than “regular’ Makefiles

e We just need to tell kbuild the name of the
module we want to build

e Supports the compilation of kernel modules
e Even external (out-of-tree) modules!
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Using KBuild

Based on Makefiles
Important line: “ocbj—-m = modulename.o”

e This assumes modules composed by one single
compilation unit (. c file)

e In case of multiple compilation units, use
“‘modulename-objs = ...” (listof .o files)

e To use it, we must tell make where KBuild Is

e make -C PathTolLinuxSources M=$S (pwd)
Where “PathToLinuxSources” IS the
pathname of a compiled Linux kernel

e The“-C ...” complication can be embedded in a
Makefile rule (see example)
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Applications as Kernel Modules

e The init entry point must return quickly
e modprobe does not terminate until init returns

e |t can create some threads, or register some device,
and return

e After loading the module, the application is
started!

e The cleanup entry point stops the threads /
unregister the device
e See example
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