
Container-Based

Virtualization

Advanced Operating Systems

Luca Abeni

luca.abeni@santannapisa.it



Virtualized Resources

Advanced Operating Systems Container-Based Virtualization

• Virtual Machine: efficient, isolated duplicate of a
physical machine

• Why focusing on physical machines?
• What about abstract machines?

• Software stack: hierarchy of abstract machines

• ...
• Abstract machine: language runtime
• Abstract machine: OS (hardware + system library

calls)
• Abstract machine: OS kernel (hardware +

syscalls)
• Physical machine (hardware)



Hardware Virtualization

Advanced Operating Systems Container-Based Virtualization

• Can be full hardware virtualization or
paravirtualization

• Paravirtualization requires modifications to guest
OS (kernel)

• Can be based on trap and emulate
• Can use special CPU features (hardware assisted

virtualization)
• In any case, the hardware (whole machine) is

virtualized!

• Guests can provide their own OS kernel
• Guests can execute at various privilege levels



OS-Level Virtualization

Advanced Operating Systems Container-Based Virtualization

• The OS kernel (or the whole OS) is virtualized

• Guests can provide the user-space part of the
OS (system libraries + binaries, boot scripts, ...)
or just an application...

• ...But continue to use the host OS kernel!

• One single OS kernel (the host kernel) in the system

• The kernel virtualizes all (or part) of its services

• OS kernel virtualization: container-based
virtualization

• Example of OS virtualization: wine



Virtualization at Language Level

Advanced Operating Systems Container-Based Virtualization

• The language runtime is virtualized

• Often used to achieve independence from
hardware architecture

• Example: Java Virtual Machine
• Often implemented by using emulation techniques

• Interpreter or just-in-time compiler



OS-Level Virtual Machines

Advanced Operating Systems Container-Based Virtualization

• Do not virtualise the whole hardware

• Only OS services are virtualised
• Host kernel: virtualise its services to provide

isolation among guests

• Container: isolated execution environment to
encapsulate one or more processes/tasks

• Sort of “chroot on steroids”

• Two aspects: resource control (scheduling) and
visibility

• Control/monitor how much resources a VM is
using

• Make sure that virtual resources of a VM are not
visible in other VMs



More on “Containers”

Advanced Operating Systems Container-Based Virtualization

• Banga and others, 99: “Resource Containers: A
New Facility for Resource Management in Server
Systems”

• Operating system abstraction containing all the
resources used by an application to achieve a
particular independent activity

• Today, “container” == execution environment

• Used to run a whole OS → VM (with OS-level
virtualization)

• Used to run a single application / micro-service



Linux Containers

Advanced Operating Systems Container-Based Virtualization

• The Linux kernel does not directly provide the
“container” abstraction

• Containers can be built based on lower-level
mechanisms: control groups (cgroups) and
namespaces

• namespaces: isolate and virtualise system
resources

• cgroups: limit, control, or monitor resources used
by groups of tasks

• Namespaces are concerned with resources’ visibility,
cgroups are concerned with scheduling



Linux Namespaces

Advanced Operating Systems Container-Based Virtualization

• Used to isolate and virtualise system resources

• Processes executing in a namespace have the
illusion to use a dedicated copy of the
namespace resources

• Processes in a namespace cannot use (or even
see) resources outside of the namespace

• Processes in a network namespace only see
network interfaces that are assigned to the
namespace

• Same for routing table, etc...

• Processes in a PID namespace only see processes
from the same namespace

• PIDs can be“private to the namespace”



Linux Control Groups

Advanced Operating Systems Container-Based Virtualization

• Used to restrict (limit, control) or monitor the amount
of resources used by “groups of processes”

• Processes can be organized in groups, to control
their accesses to resources

• Example: CPU control groups for scheduling

• Limit the amount of CPU time that processes can
use, etc...

• Similar cgroups for other resources

• memory, IO, pids, network, ...



Building a Container

Advanced Operating Systems Container-Based Virtualization

• Namespaces and control group give fine-grained
control on processes and resources

• Per-resource control groups and/or namespaces
• Lower level abstractions respect to other OSs (for

example, FreeBSD jails)

• More powerful than other mechanisms, but more
difficult to use

• To build a container, it is necessary to:

• Setup all the needed namespaces and control
groups

• Create a “disk image” for the container (directory
containing the container’s fs)



Running in a Container

Advanced Operating Systems Container-Based Virtualization

• Chroot to the container fs

• Must contain the whole OS, or the libraries/files
needed to execute the program to containerize

• Start init, or the program to containerize

• Thanks to the PID namespace, it will have PID 1
in the container!

• Note: init can mount procfs or other
pseudo-filesystems

• Namespaces allow to control the information
exported in those pseudofilesystems!



Example: Networking in Containers

Advanced Operating Systems Container-Based Virtualization

• Thanks to the network namespace, processes
running in a container do not see the host’s network
interfaces

• How to do networking, then?

• Create a virtual ethernet pair

• Two virtual ethernet interfaces, connected
point-to-point

• Packets sent on one interface are received on the
other, and vice-versa

• Associate one of the two virtual ethernet interfaces
to the network namespace of the container

• Bind the other one to a software bridge



User-Space Tools

Advanced Operating Systems Container-Based Virtualization

• Building and running a container can be difficult...

• But users do not have to do it “by hand”!!!

• User-space tools for building containers and
deploying OSs/applications in them

• Simplest tool: lxc
(http://linuxcontainers.org)

• Server-based version of lxc: lxd
• Docker: more advanced features
• Kubernetes
• ...

• Recent proliferation of tools, all with different
interfaces/features

http://linuxcontainers.org


lxc / lxd

Advanced Operating Systems Container-Based Virtualization

• lxc: set of tools and libraries that allow to easily use
containers, namespaces and friends

• Focus on installing and running Linux
distributions in containers

• Need root privileges, at least partly
• lxd: daemon running with root privileges and using

the lxc library

• Clients can connect to it through a socket to
request operations on containers

• More secure, because user tools do not need to
be privileged (the only privileged component is
the daemon)



More Advanced Tools

Advanced Operating Systems Container-Based Virtualization

• Docker, Kubernetes and similar allow to also
containerize single applications

• Container with application binary, libraries,
needed files, etc...

• Useful for distributing consistent execution
environments

• More advanced tools respect to lxc/lxd
• Also provide “container images” distributed with

custom image formats
• Lot of different solutions with different features,

interfaces, etc...



Standardizing the Container Tools

Advanced Operating Systems Container-Based Virtualization

• Open Container Initiative (OCI):
https://www.opencontainers.org/

• Tries to define standards for the user-space tools
• Currently, two standards: runtime specification

and image specification

• Runtime specification: standardizes the
configuration, execution environment, and lifecycle of
a container

• A “filesystem bundle” described according to this
specification can be started in a container by any
compliant runtime

• Image specification: standardizes how the content of
a container is represented in binary form

https://www.opencontainers.org/


OCI’s Goals

Advanced Operating Systems Container-Based Virtualization

• Define containers in a “technology neutral” way
• Container: encapsulates a software component and

all its dependencies

• Using a format that is self-describing and
portable

• Any compliant “runtime” must be able to run it
without extra dependencies

• This must work regardless of the implementation
details

• Underlying machine, containerization technology,
contents of the container, ...



OCI Runtime Specification

Advanced Operating Systems Container-Based Virtualization

• Standardizes important aspects of containers

• Configuration: specified through a standardized
config.json, describing all the details of the
container

• Execution environment: standardized so that
applications running in containers see a
consistent environment between runtimes

• Standard operations possible during the
containers’ lifecycles

• If a “runtime” is compliant with these specifications,
the implementation details do not matter



More than Containers

Advanced Operating Systems Container-Based Virtualization

• Looking at the OCI definitions, there is not mention
to OS-level virtualization anymore...

• The terms “container” and “containerized
application” are evolving...

• “container” is just a synonim for “lightweight virtual
machine”, independently from the used technology

• Kata containers: use kvm-based VMs
(qemu/nemu) instead of namespaces and
cgrouops

• Compliant with the OCI runtime specification

• Thanks to OCI, it is possible to almost transparently
replace the runtime/containerization mechanism
without changing userspace tools!


	Virtualized Resources
	Hardware Virtualization
	OS-Level Virtualization
	Virtualization at Language Level
	OS-Level Virtual Machines
	More on ``Containers''
	Linux Containers
	Linux Namespaces
	Linux Control Groups
	Building a Container
	Running in a Container
	Example: Networking in Containers
	User-Space Tools
	lxc / lxd
	More Advanced Tools
	Standardizing the Container Tools
	OCI's Goals
	OCI Runtime Specification
	More than Containers

