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Remember?
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• Scheduler → triggered by internal (IPC, signal, ...) or
external (IRQ) events

• Time between the triggering event and dispatch:

• Event generation
• Event delivery (interrupts may be disabled)
• Scheduler activation (nonpreemptable sections)
• Scheduling time

Scheduler

Event Delivery Dispatch
Event Time Latency

Kernel Latency!



Latency: Why?
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• In real world, high priority tasks often suffer from
blocking times coming from the OS (more precisely,
from the kernel)

• Why?
• How?
• What can we do?

• To answer the previous questions, we need to recall
how the hardware and the OS work...



Computer Architecture - I
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• A computer is composed by at least:

• A processor (CPU)

• Executes machine instructions
• Might move data from / to memory

• A main memory (RAM)

• Used to store data and code (sequences of
machine instructions)

• Fast, but volatile (not persistent)

• Some storage memory

• Slower than RAM, but persistent

• Some additional input output devices (I/O
devices)



Computer Architecture - II
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• All the components (one or more CPUs, RAM, I/O
devices, ...) are connected by a bus

• Example: system bus
• Set of electrical connections

• Used to move data and code between CPU and
RAM...

• ...or for Input and Output from / to devices or storage



Von Neumann Architecture
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CPU CPU

RAM

Bus

I/O Devices

Disk
ScreenKeyboard

• Same memory containing both code and data
• Single bus connecting CPU, RAM and I / O devices



The CPU
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• Fectes machine instructions from memory and
executes them

• Execution: might access memory (write / read
data)

• Processing unit and control unit

• Control unit: fetches the machine instructions
• Processing unit (Arithmetic Logic Unit - ALU):

executes the (arithmetic and logic) machine
instructions

• Modern CPUs: more units (FPU and others...)

• Contains some registers

• Can be accessed by user code or not (invisible /
hidden registers)



CPU Registers
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• Invisible / hidden (cannot be referenced by machine
instructions):

• Address Register (AR): address we want to
access on the bus

• Data Register (DR): data to be written to / read
from the bus

• Visible (referenced from machine instructions):

• Program Counter (PC) / IP (Instruction Pointer):
address of the next machine instruction to be
executed

• Status Register (SR) / F (Flags register): set of
flags describing the machine state

• Some data and address registers



Executing a Machine Instruction

Advanced Operating Systems OS Kernel

• Fetch the machine instruction to be executed

• Copy PC into AR
• Transfer data (indicated by AR) from RAM to DR
• Save DR into an invisible register (instruction

register)
• Increase PC

• Decode: interpret the instruction saved in the
instruction register

• Execute: perform the actions corresponding to the
decoded instruction

• If memory read, set AR, read DR, etc...
• If memory write, set AR, write DR, etc...
• Can modify PC (jump, etc...)



The Main Memory
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• Von Neumann → The same memory contains both
data and machine instructions

• Accessed through the bus
• Set of cells (locations) composed by 8 bit each
• Memory Access:

• Load in AR the address of the cell to be
accessed

• If memory write, put the data in DR
• Trigger the operation (read / write) on the bus
• If memory read, get the data from DR



System Architecture
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• System bus, intercon-
necting:

• One or more CPU(s)
• Memory (RAM)
• I/O Devices

• Secondary mem-
ory (disks, etc. . .)

• Network cards
• Graphic cards
• Keyboard, mouse,

etc

CPU CPU

RAM

Bus

I/O Devices

Disk
ScreenKeyboard



The CPU
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• General-purpose registers

• Can be accessed by all the
programs

• Sometimes, data registers or
address registers instead of
general-purpose

PC

SP

FG
P

R
eg

is
te

rs

• Program Counter (PC) - AKA Instruction Pointer
• Stack Pointer (SP) register
• Flags register (AKA Program Status Word)
• Some “special” registers

• Control how the CPU works, must be “protected”



The CPU - Protection
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• Regular user programs should not be allowed to:

• Influence the CPU mode of operation
• Perform I/O operations
• Reconfigure virtual memory

• ⇒ Need for “privileged” mode of execution

• Regular registers vs “special” registers
• Regular instructions vs privileged instructions

• User programs: low privilege level (User Level)
• The OS kernel runs in Supervisor Mode



An Example: Intel x86
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• Real CPUs are more complex. Example: Intel x86

• Few GP registers: EAX, EBX, ECX, EDX
(accumulator registers - containing an 8bit part
and a 16bit part), EBP, ESI, EDI

• EAX: Main accumulator
• EBX: Sometimes used as base for arrays
• ECX: Sometimes used as counter
• EBP: Stack base pointer (for subroutines

calls)
• ESI: Source Index
• EDI: Destination Index



Intel x86 - 2
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• Segmented memory architecture

• Segment registers CS (code segment), DS (data
segment), SS (stack segment), GS, FS

• Various modes of operation: RM, PM, VM86,
x86-64, . . .

• Mainly due to backward compatibility



Example of (Toy) CPU

Advanced Operating Systems OS Kernel

Registers
ALU

Control
Unit

Bus
DRAR

PC, IR,...

• Toy CPU: just an example with many simplifications
• Modern (real) CPUs are much more complex!

• Pipeline
• Parallel execution
• ...



CPUs, Programs, & Friends
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• CPU → executes programs

• Stored in main memory
• Use data from main memory

• Program: formal description of an algorithm

• Using a programming language

• Sequence of machine instructions

• Actions having effects on some objects
• “Object”: data stored in main memory

• Instance of program in execution: sequence of
actions on objects

• Example: int mcd(int a, int b) and its
execution



Executing a Program
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Fetch

Save Data

Execute

Load Data

Decode

• CPU: cyclical execution (fetch /
decode / load / execute / save)

• Machine instructions are exe-
cuted (mainly) sequentially

• Machine designed to execute its
own language!

• Machine Language



Physical Machines...
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• Computer: (physical) machine designed to execute
programs

• Every machine executes programs written in its own
language

• Relationship between machine and language

• A machine has its own language (the language it
can parse and execute)

• A language can be “understood” (parsed and
executed) by multiple different machines

• Program execution: (infinite) cycle
fetch/decode/load/execute/save

• CPU: hw implementation of this cycle



...And Abstract Machines!
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• The fetch/decode/load/execute/save cycle can be
implemented in hw or in sw...

• Software Implementation: Abstract Machine

• Algoritmhms and data structures used to store
and execute programs

• Once upon a time referred as “Virtual Machine”

• Today, the term “Virtual Machine” (VM) is used
with a slightly different meaning



Abstract Machines and Languages

Advanced Operating Systems OS Kernel

• Similarly to physical machines (CPUs), each
abstract machine has its own machine language

• Machine language for a CPU: sequence of 0 / 1

• Assembly makes it more readable

• Abstract machines generally have higher level
machine languages (C, Java, etc...)

• ML: abstract machine understanding language L

• L is the machine language of ML

• Program: sequence of instructions written in L

• ML is just a possibile way to describe L



Abstract Machines Behaviour
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• To execute a program written in L, ML has to:

1. Execute some “elementary operations”

• In hw, ALU

2. Manage the execution flow

• Execution is not only sequential (jumps,
loops, etc...)

• In hw, PC handling

3. Move data from / to memory

• Addressing modes, ...

4. Take care of memory management

• Dynamic allocation, stack management,
etc...



Abstract Machine Example
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Fetch

Load Data

Decode

Save Data

HaltOp 1 Op 2 Op n

Start

Stop

• Execution cycle: very
similar to a CPU...

• ... But it is imple-
mented in software!



Multiple Flows of Instructions
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• A modern computer has at least a CPU...
• ...And each CPU is the hw implementation of an

abstract machine

• Abstract machine describing the whole
computer?

• Programs are not sequential anymore!!!

• An execution flow (fetch/decode/load/execute/save
cycle) per CPU

• “Concurrent” machine model



Concurrent Machines
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• Execute M instruction flows in parallel

• Hardware implementation: M = number of CPUs
/ CPU cores

• Various possible architectures

• Shared memory model (hw: SMP machines)
• Private memory model (hw: network of M

computing nodes)
• Various trade-offs between the two (NUMA, etc...)

• Issue: the various flows are not independent

• Concurrent accesses to memory?
• Synchronization?



Concurrent Machine Architectures

Advanced Operating Systems OS Kernel

• Shared memory

CPU CPU

RAM

Bus

I/O Devices

Disk
ScreenKeyboard

• Private memory

CPU CPU

RAM

Bus

I/O Devices

Disk
ScreenKeyboard

CPU CPU

RAM

Bus

I/O Devices

Disk
ScreenKeyboard

CPU CPU

RAM

Bus

I/O Devices

Disk
ScreenKeyboard



Concurrent Abstract Machines
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• I said: “Abstract Macnine ≡ Algoritmhms and data
structures used to store and execute programs”

• Is this correct when considering concurrent
execution?

• Yes! The “issue” is in the description of how to
execute a program

• Single fetch/decode/load/execute/save cycle:
sequential program ⇒ Sequential Abstract Machine

• Concurrent Abstract Machine: can store and execute
concurrent programs

• Multiple, concurrent, execution cycles!
• Machine language: concurrent language!



Concurrent Abstract Machine Architectures
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• As for physical machines, various possible
architectures

• Shared memory (threads)
• Private memory (processes)
• Trade-offs (multi-threaded processes, processes

sharing memory, ...)

• Result in different programming models

• Shared resources with mutexes / condvars
• Message passing
• ...

• Different programming styles (cooperative resource
management vs servers...)

• And different problems to be addressed



The OS as an Abstract Machine
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• Concurrent Abstract Machine

• Support for the execution of concurrent programs
• Multiple execution flows
• No relationship with the number of physical CPUs

(or CPU cores)
• Can have more execution flows than physical

CPUs / CPU cores

• The Operating System implements this abstract
machine

• Machine language: the CPU machine language
augmented with system calls



The Operating System
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• Operating System: set of programs and libraries
implementing the (concurrent) abstract machine

• In particular, the OS kernel implements:

• Concurrency

• Allows to execute multiple instruction flows on
a smaller number of physical CPUs

• Synchronization / Communication

• Allows the multiple instruction flows to interact

• Protection

• Give exclusive access to some shared
resources (example: memory) to some
instruction flows



The Kernel
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• Part of the OS which manages the hardware
• Runs with the CPU in Supervisor Mode (high

privilege level)

• Privilege level known as Kernel Level (KL) -
execution in Kernel Space

• Regular programs run in User Space

• Mechanisms for increasing the privilege level (from
US to KS) in a controlled way

• Interrupts (+ traps / hw execptions)
• Instructions causing a hardware exception



Interrupts and Hardware Exceptions
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• Switch the CPU from User Level to Supervisor Mode

• Enter the kernel
• Can be used to implement system calls

• A partial Context Switch is performed

• Flags and PC are pushed on the stack
• If processor is executing at User Level, switch to

Kernel Level, and eventually switch to a kernel
stack

• Execution jumps to a handler in the kernel →
save the user registers for restoring them later



Back to User Space
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• Return to low privilege level (execution returns to
User Space) through a “return from interrupt”
Assembly instruction (IRET on x86)

• Pop flags and PC from the stack
• Eventually switch back to user stack

• Return path for system calls and hardware interrupt
handlers



Simplified CPU Execution
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• To understand interrupts, consider simplified CPU
execution first

• Simplification respect to the
fetch/decode/load/execute/save cycle

Increment
Program
Counter

Execute
Instruction

Fetch 
Instruction

• The CPU iteratively:

• Fetch an instruction (address given by PC)
• Increase the PC
• Execute the instruction (might update the PC on

jump...)



CPU Execution with Interrupts
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• More realistic execution model

Interrupts
Disabled?

No

Yes

Fired?
Interrupt

No

Yes

Hardware Exception

Increment
Program
Counter

Execute
Instruction

Fetch 
Instruction

Process
Interrupt

• Interrupt: cannot fire during the execution of an
instruction

• Hardware exception: caused by the execution of an
instruction

• trap, syscall, sc, . . .
• I/O instructions at low privilege level, Page faults,

...



Processing Interrupts
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Process
Interrupt

• Interrupt table → addresses of the handlers

• Interrupt n fires ⇒ after eventually switching to
KS and pushing flags and PC on the stack

• Read the address contained in the n
th entry of

the interrupt table, and jump to it!



Interrupt Tables
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• Implemented in hardware or in software

• x86 → Interrupt Description Table composed by
interrupt gates. The CPU automatically jumps to
the n

th interrupt gate
• Other CPUs jump to a fixed address → a

software demultiplexer reads the interrupt table



Software Interrupt - System Call
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τ 1

τ 2

KS

US
Interrupt
Software

Blocks

New task
scheduled

Syscall

1. Task τ1 executes and invokes a system call
2. Execution passes from US to KS (change stack,

push PC & flags, increase privilege level)
3. The invoked syscall executes. Maybe, it is blocking
4. τ1 blocks → back to US, and τ2 is scheduled



Hardware Interrupt
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τ 2

1τ

1τ KS

US

ISR

Hardware
Interrupt

unblocks

1. While τ2 is executing, a hardware interrupt fires
2. Execution passes from US to KS (change stack,

push PC & flags, increase privilege level)
3. The proper Interrupt Service Routine executes
4. The ISR can unblock τ1 → when execution returns

to US, τ1 is scheduled



Summing up...
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• The execution flow enters the kernel for two reasons:

• Reacting to events “coming from up” (syscalls)
• Reacting to an event “coming from below” (an

hardware interrupt from a device)

• The kernel executes in the context of the interrupted
task



Blocking / Waking up Tasks...
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• A system call can block the invoking task, or can
unblock a different task

• An ISR can unblock a task
• If a task is blocked / unblocked, when returning to

user space a context switch can happen

The scheduler is invoked
when returning from KS to US



Example: I/O Operation
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• Consider a generic Input or Output to an external
device (example: a PCI card)

• Performed by the kernel
• User programs must use a syscall

• The operation if performed in 3 phases

1. Setup: prepare the device for the I/O operation
2. Wait: wait for the end of the operation
3. Cleanup: complete the operation

• Can be done using polling, PIO, DMA, ...



Polling
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• User programs invoke the kernel; execution in kernel
space until the operation is terminated

• The kernel cyclically reads (polls) an interface status
register to check if the operation is terminated

• Busy-waiting in kernel space!

• No user task can execute while waiting for the I/O
operation...

• The operation must be very short!
• I/O operation == blocking time



Polling - 2
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1. The user program raises a software input
2. Setup phase - in kernel: in case of input operation,

nothing is done; in case of output operation, write a
value to a card register

3. Wait - in kernel: cycle until a bit of the card status
register becomes 1

4. Cleanup - in kernel: in case of input, read a value
from a card register; in case of output, nothing is
done. Eventually return to phase 1

5. IRET



Interrupt
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• User programs invoke the kernel; execution returns
to user space while waiting for the device

• The task that invoked the syscall blocks!

• An interrupt will notify the kernel when the “wait”
phase is terminated

• The interrupt handler will take care of performing
the I/O operation

• Many, frequent, short interruptions of unrelated
user-space tasks!!!



Interrupt - 2
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1. The user program raises a software input
2. Setup phase - in kernel: instruct the device to raise

an input when it is ready for I/O
3. Wait - return to user space: block the invoking task,

and schedule a new one (IRET)
4. Cleanup - in kernel: the interrupt fires → enter

kernel, and perform the I/O operation
5. Return to phase 2, or unblock the task if the

operation is terminated (IRET)



Programmed I/O Mode
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τ 1

τ 2

τ 1

ISR ISR ISR

1τ

Operation
I/O

start i/o

Blocks KS

US

unblocks



DMA / Bus Mastering
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• User programs invoke the kernel; execution returns
to user space while waiting for the device

• The task that invoked the syscall blocks!

• I/O operations are not performed by the kernel on
interrupt,

• Performed by a dedicated HW device

• An interrupt is raised when the whole I/O
operation is terminated



DMA / Bus Mastering - 2
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1. The user program raises a software input
2. Setup phase - in kernel: instruct the DMA (or the

Bus Mastering Device) to perform the I/O
3. Wait - return to user space: block the invoking task,

and schedule a new one (IRET)
4. Cleanup - in kernel: the interrupt fires → the

operation is terminated. Stop device and DMA
5. Unblock the task and invoke the scheduler (IRET)



DMA / Bus Mastering - 3
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τ 1

τ 2

τ 1

ISR

1τ

Operation
I/O

Blocks KS

US

unblocks

start DMA



Example: Linux System Call
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int close(int fd)
{

long __res;

__asm__ volatile ("int $0x80"
: "=a" (__res)
: "0" (__NR_close),"b" ((long)(fd)));

__syscall_return(type, __res);
}

• Don’t be scared!

• syscall return() is just converting a linux
error code in −1, properly filling errno

• Linux uses a syscall1 macro to define it (see
asm/unistd.h)
#define _syscall1(type, name, type1, arg1)
type name(type1 arg1) \
{ \
...



Kernel Side (arch/*/kernel/entry.S)

Advanced Operating Systems OS Kernel

ENTRY(system_call)
pushl %eax # save orig_eax
SAVE_ALL
GET_THREAD_INFO(%ebp)
cmpl $(nr_syscalls), %eax
jae syscall_badsys
syscall_call:
call *sys_call_table(,%eax,4)
movl %eax,EAX(%esp) # store the return value
/* ... */

restore_all:
/* ... */

RESTORE_REGS
addl $4, %esp
1: iret

• SAVE ALL pushes all the registers on the stack
• The syscall number is in the eax register

(accumulator)
• After executing the syscall, the return value is in eax

→ must be put in the stack to pop it in
RESTORE REGS
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