
The OS Kernel

Luca Abeni

luca.abeni@santannapisa.it

March 21, 2018

Remember?

Advanced Operating Systems OS Kernel

• Scheduler → triggered by internal (IPC, signal, ...) or
external (IRQ) events

• Time between the triggering event and dispatch:

• Event generation
• Event delivery (interrupts may be disabled)
• Scheduler activation (nonpreemptable sections)
• Scheduling time

Scheduler

Event Delivery Dispatch
Event Time Latency

Kernel Latency!

Latency: Why?

Advanced Operating Systems OS Kernel

• In real world, high priority tasks often suffer from
blocking times coming from the OS (more precisely,
from the kernel)

• Why?
• How?
• What can we do?

• To answer the previous questions, we need to recall
how the hardware and the OS work...

Computer Architecture - I

Advanced Operating Systems OS Kernel

• A computer is composed by at least:

• A processor (CPU)

• Executes machine instructions
• Might move data from / to memory

• A main memory (RAM)

• Used to store data and code (sequences of
machine instructions)

• Fast, but volatile (not persistent)

• Some storage memory

• Slower than RAM, but persistent

• Some additional input output devices (I/O
devices)

Computer Architecture - II

Advanced Operating Systems OS Kernel

• All the components (one or more CPUs, RAM, I/O
devices, ...) are connected by a bus

• Example: system bus
• Set of electrical connections

• Used to move data and code between CPU and
RAM...

• ...or for Input and Output from / to devices or storage

Von Neumann Architecture

Advanced Operating Systems OS Kernel

CPU CPU

RAM

Bus

I/O Devices

Disk
ScreenKeyboard

• Same memory containing both code and data
• Single bus connecting CPU, RAM and I / O devices

The CPU

Advanced Operating Systems OS Kernel

• Fectes machine instructions from memory and
executes them

• Execution: might access memory (write / read
data)

• Processing unit and control unit

• Control unit: fetches the machine instructions
• Processing unit (Arithmetic Logic Unit - ALU):

executes the (arithmetic and logic) machine
instructions

• Modern CPUs: more units (FPU and others...)

• Contains some registers

• Can be accessed by user code or not (invisible /
hidden registers)

CPU Registers

Advanced Operating Systems OS Kernel

• Invisible / hidden (cannot be referenced by machine
instructions):

• Address Register (AR): address we want to
access on the bus

• Data Register (DR): data to be written to / read
from the bus

• Visible (referenced from machine instructions):

• Program Counter (PC) / IP (Instruction Pointer):
address of the next machine instruction to be
executed

• Status Register (SR) / F (Flags register): set of
flags describing the machine state

• Some data and address registers

Executing a Machine Instruction

Advanced Operating Systems OS Kernel

• Fetch the machine instruction to be executed

• Copy PC into AR
• Transfer data (indicated by AR) from RAM to DR
• Save DR into an invisible register (instruction

register)
• Increase PC

• Decode: interpret the instruction saved in the
instruction register

• Execute: perform the actions corresponding to the
decoded instruction

• If memory read, set AR, read DR, etc...
• If memory write, set AR, write DR, etc...
• Can modify PC (jump, etc...)

The Main Memory

Advanced Operating Systems OS Kernel

• Von Neumann → The same memory contains both
data and machine instructions

• Accessed through the bus
• Set of cells (locations) composed by 8 bit each
• Memory Access:

• Load in AR the address of the cell to be
accessed

• If memory write, put the data in DR
• Trigger the operation (read / write) on the bus
• If memory read, get the data from DR

System Architecture

Advanced Operating Systems OS Kernel

• System bus, intercon-
necting:

• One or more CPU(s)
• Memory (RAM)
• I/O Devices

• Secondary mem-
ory (disks, etc. . .)

• Network cards
• Graphic cards
• Keyboard, mouse,

etc

CPU CPU

RAM

Bus

I/O Devices

Disk
ScreenKeyboard

The CPU

Advanced Operating Systems OS Kernel

• General-purpose registers

• Can be accessed by all the
programs

• Sometimes, data registers or
address registers instead of
general-purpose

PC

SP

FG
P

R
eg

is
te

rs

• Program Counter (PC) - AKA Instruction Pointer
• Stack Pointer (SP) register
• Flags register (AKA Program Status Word)
• Some “special” registers

• Control how the CPU works, must be “protected”

The CPU - Protection

Advanced Operating Systems OS Kernel

• Regular user programs should not be allowed to:

• Influence the CPU mode of operation
• Perform I/O operations
• Reconfigure virtual memory

• ⇒ Need for “privileged” mode of execution

• Regular registers vs “special” registers
• Regular instructions vs privileged instructions

• User programs: low privilege level (User Level)
• The OS kernel runs in Supervisor Mode

An Example: Intel x86

Advanced Operating Systems OS Kernel

• Real CPUs are more complex. Example: Intel x86

• Few GP registers: EAX, EBX, ECX, EDX
(accumulator registers - containing an 8bit part
and a 16bit part), EBP, ESI, EDI

• EAX: Main accumulator
• EBX: Sometimes used as base for arrays
• ECX: Sometimes used as counter
• EBP: Stack base pointer (for subroutines

calls)
• ESI: Source Index
• EDI: Destination Index

Intel x86 - 2

Advanced Operating Systems OS Kernel

• Segmented memory architecture

• Segment registers CS (code segment), DS (data
segment), SS (stack segment), GS, FS

• Various modes of operation: RM, PM, VM86,
x86-64, . . .

• Mainly due to backward compatibility

Example of (Toy) CPU

Advanced Operating Systems OS Kernel

Registers
ALU

Control
Unit

Bus
DRAR

PC, IR,...

• Toy CPU: just an example with many simplifications
• Modern (real) CPUs are much more complex!

• Pipeline
• Parallel execution
• ...

CPUs, Programs, & Friends

Advanced Operating Systems OS Kernel

• CPU → executes programs

• Stored in main memory
• Use data from main memory

• Program: formal description of an algorithm

• Using a programming language

• Sequence of machine instructions

• Actions having effects on some objects
• “Object”: data stored in main memory

• Instance of program in execution: sequence of
actions on objects

• Example: int mcd(int a, int b) and its
execution

Executing a Program

Advanced Operating Systems OS Kernel

Fetch

Save Data

Execute

Load Data

Decode

• CPU: cyclical execution (fetch /
decode / load / execute / save)

• Machine instructions are exe-
cuted (mainly) sequentially

• Machine designed to execute its
own language!

• Machine Language

Physical Machines...

Advanced Operating Systems OS Kernel

• Computer: (physical) machine designed to execute
programs

• Every machine executes programs written in its own
language

• Relationship between machine and language

• A machine has its own language (the language it
can parse and execute)

• A language can be “understood” (parsed and
executed) by multiple different machines

• Program execution: (infinite) cycle
fetch/decode/load/execute/save

• CPU: hw implementation of this cycle

...And Abstract Machines!

Advanced Operating Systems OS Kernel

• The fetch/decode/load/execute/save cycle can be
implemented in hw or in sw...

• Software Implementation: Abstract Machine

• Algoritmhms and data structures used to store
and execute programs

• Once upon a time referred as “Virtual Machine”

• Today, the term “Virtual Machine” (VM) is used
with a slightly different meaning

Abstract Machines and Languages

Advanced Operating Systems OS Kernel

• Similarly to physical machines (CPUs), each
abstract machine has its own machine language

• Machine language for a CPU: sequence of 0 / 1

• Assembly makes it more readable

• Abstract machines generally have higher level
machine languages (C, Java, etc...)

• ML: abstract machine understanding language L

• L is the machine language of ML

• Program: sequence of instructions written in L

• ML is just a possibile way to describe L

Abstract Machines Behaviour

Advanced Operating Systems OS Kernel

• To execute a program written in L, ML has to:

1. Execute some “elementary operations”

• In hw, ALU

2. Manage the execution flow

• Execution is not only sequential (jumps,
loops, etc...)

• In hw, PC handling

3. Move data from / to memory

• Addressing modes, ...

4. Take care of memory management

• Dynamic allocation, stack management,
etc...

Abstract Machine Example

Advanced Operating Systems OS Kernel

Fetch

Load Data

Decode

Save Data

HaltOp 1 Op 2 Op n

Start

Stop

• Execution cycle: very
similar to a CPU...

• ... But it is imple-
mented in software!

Multiple Flows of Instructions

Advanced Operating Systems OS Kernel

• A modern computer has at least a CPU...
• ...And each CPU is the hw implementation of an

abstract machine

• Abstract machine describing the whole
computer?

• Programs are not sequential anymore!!!

• An execution flow (fetch/decode/load/execute/save
cycle) per CPU

• “Concurrent” machine model

Concurrent Machines

Advanced Operating Systems OS Kernel

• Execute M instruction flows in parallel

• Hardware implementation: M = number of CPUs
/ CPU cores

• Various possible architectures

• Shared memory model (hw: SMP machines)
• Private memory model (hw: network of M

computing nodes)
• Various trade-offs between the two (NUMA, etc...)

• Issue: the various flows are not independent

• Concurrent accesses to memory?
• Synchronization?

Concurrent Machine Architectures

Advanced Operating Systems OS Kernel

• Shared memory

CPU CPU

RAM

Bus

I/O Devices

Disk
ScreenKeyboard

• Private memory

CPU CPU

RAM

Bus

I/O Devices

Disk
ScreenKeyboard

CPU CPU

RAM

Bus

I/O Devices

Disk
ScreenKeyboard

CPU CPU

RAM

Bus

I/O Devices

Disk
ScreenKeyboard

Concurrent Abstract Machines

Advanced Operating Systems OS Kernel

• I said: “Abstract Macnine ≡ Algoritmhms and data
structures used to store and execute programs”

• Is this correct when considering concurrent
execution?

• Yes! The “issue” is in the description of how to
execute a program

• Single fetch/decode/load/execute/save cycle:
sequential program ⇒ Sequential Abstract Machine

• Concurrent Abstract Machine: can store and execute
concurrent programs

• Multiple, concurrent, execution cycles!
• Machine language: concurrent language!

Concurrent Abstract Machine Architectures

Advanced Operating Systems OS Kernel

• As for physical machines, various possible
architectures

• Shared memory (threads)
• Private memory (processes)
• Trade-offs (multi-threaded processes, processes

sharing memory, ...)

• Result in different programming models

• Shared resources with mutexes / condvars
• Message passing
• ...

• Different programming styles (cooperative resource
management vs servers...)

• And different problems to be addressed

The OS as an Abstract Machine

Advanced Operating Systems OS Kernel

• Concurrent Abstract Machine

• Support for the execution of concurrent programs
• Multiple execution flows
• No relationship with the number of physical CPUs

(or CPU cores)
• Can have more execution flows than physical

CPUs / CPU cores

• The Operating System implements this abstract
machine

• Machine language: the CPU machine language
augmented with system calls

The Operating System

Advanced Operating Systems OS Kernel

• Operating System: set of programs and libraries
implementing the (concurrent) abstract machine

• In particular, the OS kernel implements:

• Concurrency

• Allows to execute multiple instruction flows on
a smaller number of physical CPUs

• Synchronization / Communication

• Allows the multiple instruction flows to interact

• Protection

• Give exclusive access to some shared
resources (example: memory) to some
instruction flows

The Kernel

Advanced Operating Systems OS Kernel

• Part of the OS which manages the hardware
• Runs with the CPU in Supervisor Mode (high

privilege level)

• Privilege level known as Kernel Level (KL) -
execution in Kernel Space

• Regular programs run in User Space

• Mechanisms for increasing the privilege level (from
US to KS) in a controlled way

• Interrupts (+ traps / hw execptions)
• Instructions causing a hardware exception

Interrupts and Hardware Exceptions

Advanced Operating Systems OS Kernel

• Switch the CPU from User Level to Supervisor Mode

• Enter the kernel
• Can be used to implement system calls

• A partial Context Switch is performed

• Flags and PC are pushed on the stack
• If processor is executing at User Level, switch to

Kernel Level, and eventually switch to a kernel
stack

• Execution jumps to a handler in the kernel →
save the user registers for restoring them later

Back to User Space

Advanced Operating Systems OS Kernel

• Return to low privilege level (execution returns to
User Space) through a “return from interrupt”
Assembly instruction (IRET on x86)

• Pop flags and PC from the stack
• Eventually switch back to user stack

• Return path for system calls and hardware interrupt
handlers

Simplified CPU Execution

Advanced Operating Systems OS Kernel

• To understand interrupts, consider simplified CPU
execution first

• Simplification respect to the
fetch/decode/load/execute/save cycle

Increment
Program
Counter

Execute
Instruction

Fetch
Instruction

• The CPU iteratively:

• Fetch an instruction (address given by PC)
• Increase the PC
• Execute the instruction (might update the PC on

jump...)

CPU Execution with Interrupts

Advanced Operating Systems OS Kernel

• More realistic execution model

Interrupts
Disabled?

No

Yes

Fired?
Interrupt

No

Yes

Hardware Exception

Increment
Program
Counter

Execute
Instruction

Fetch
Instruction

Process
Interrupt

• Interrupt: cannot fire during the execution of an
instruction

• Hardware exception: caused by the execution of an
instruction

• trap, syscall, sc, . . .
• I/O instructions at low privilege level, Page faults,

...

Processing Interrupts

Advanced Operating Systems OS Kernel

Process
Interrupt

• Interrupt table → addresses of the handlers

• Interrupt n fires ⇒ after eventually switching to
KS and pushing flags and PC on the stack

• Read the address contained in the n
th entry of

the interrupt table, and jump to it!

Interrupt Tables

Advanced Operating Systems OS Kernel

• Implemented in hardware or in software

• x86 → Interrupt Description Table composed by
interrupt gates. The CPU automatically jumps to
the n

th interrupt gate
• Other CPUs jump to a fixed address → a

software demultiplexer reads the interrupt table

Software Interrupt - System Call

Advanced Operating Systems OS Kernel

τ 1

τ 2

KS

US
Interrupt
Software

Blocks

New task
scheduled

Syscall

1. Task τ1 executes and invokes a system call
2. Execution passes from US to KS (change stack,

push PC & flags, increase privilege level)
3. The invoked syscall executes. Maybe, it is blocking
4. τ1 blocks → back to US, and τ2 is scheduled

Hardware Interrupt

Advanced Operating Systems OS Kernel

τ 2

1τ

1τ KS

US

ISR

Hardware
Interrupt

unblocks

1. While τ2 is executing, a hardware interrupt fires
2. Execution passes from US to KS (change stack,

push PC & flags, increase privilege level)
3. The proper Interrupt Service Routine executes
4. The ISR can unblock τ1 → when execution returns

to US, τ1 is scheduled

Summing up...

Advanced Operating Systems OS Kernel

• The execution flow enters the kernel for two reasons:

• Reacting to events “coming from up” (syscalls)
• Reacting to an event “coming from below” (an

hardware interrupt from a device)

• The kernel executes in the context of the interrupted
task

Blocking / Waking up Tasks...

Advanced Operating Systems OS Kernel

• A system call can block the invoking task, or can
unblock a different task

• An ISR can unblock a task
• If a task is blocked / unblocked, when returning to

user space a context switch can happen

The scheduler is invoked
when returning from KS to US

Example: I/O Operation

Advanced Operating Systems OS Kernel

• Consider a generic Input or Output to an external
device (example: a PCI card)

• Performed by the kernel
• User programs must use a syscall

• The operation if performed in 3 phases

1. Setup: prepare the device for the I/O operation
2. Wait: wait for the end of the operation
3. Cleanup: complete the operation

• Can be done using polling, PIO, DMA, ...

Polling

Advanced Operating Systems OS Kernel

• User programs invoke the kernel; execution in kernel
space until the operation is terminated

• The kernel cyclically reads (polls) an interface status
register to check if the operation is terminated

• Busy-waiting in kernel space!

• No user task can execute while waiting for the I/O
operation...

• The operation must be very short!
• I/O operation == blocking time

Polling - 2

Advanced Operating Systems OS Kernel

1. The user program raises a software input
2. Setup phase - in kernel: in case of input operation,

nothing is done; in case of output operation, write a
value to a card register

3. Wait - in kernel: cycle until a bit of the card status
register becomes 1

4. Cleanup - in kernel: in case of input, read a value
from a card register; in case of output, nothing is
done. Eventually return to phase 1

5. IRET

Interrupt

Advanced Operating Systems OS Kernel

• User programs invoke the kernel; execution returns
to user space while waiting for the device

• The task that invoked the syscall blocks!

• An interrupt will notify the kernel when the “wait”
phase is terminated

• The interrupt handler will take care of performing
the I/O operation

• Many, frequent, short interruptions of unrelated
user-space tasks!!!

Interrupt - 2

Advanced Operating Systems OS Kernel

1. The user program raises a software input
2. Setup phase - in kernel: instruct the device to raise

an input when it is ready for I/O
3. Wait - return to user space: block the invoking task,

and schedule a new one (IRET)
4. Cleanup - in kernel: the interrupt fires → enter

kernel, and perform the I/O operation
5. Return to phase 2, or unblock the task if the

operation is terminated (IRET)

Programmed I/O Mode

Advanced Operating Systems OS Kernel

τ 1

τ 2

τ 1

ISR ISR ISR

1τ

Operation
I/O

start i/o

Blocks KS

US

unblocks

DMA / Bus Mastering

Advanced Operating Systems OS Kernel

• User programs invoke the kernel; execution returns
to user space while waiting for the device

• The task that invoked the syscall blocks!

• I/O operations are not performed by the kernel on
interrupt,

• Performed by a dedicated HW device

• An interrupt is raised when the whole I/O
operation is terminated

DMA / Bus Mastering - 2

Advanced Operating Systems OS Kernel

1. The user program raises a software input
2. Setup phase - in kernel: instruct the DMA (or the

Bus Mastering Device) to perform the I/O
3. Wait - return to user space: block the invoking task,

and schedule a new one (IRET)
4. Cleanup - in kernel: the interrupt fires → the

operation is terminated. Stop device and DMA
5. Unblock the task and invoke the scheduler (IRET)

DMA / Bus Mastering - 3

Advanced Operating Systems OS Kernel

τ 1

τ 2

τ 1

ISR

1τ

Operation
I/O

Blocks KS

US

unblocks

start DMA

Example: Linux System Call

Advanced Operating Systems OS Kernel

int close(int fd)
{

long __res;

__asm__ volatile ("int $0x80"
: "=a" (__res)
: "0" (__NR_close),"b" ((long)(fd)));

__syscall_return(type, __res);
}

• Don’t be scared!

• syscall return() is just converting a linux
error code in −1, properly filling errno

• Linux uses a syscall1 macro to define it (see
asm/unistd.h)
#define _syscall1(type, name, type1, arg1)
type name(type1 arg1) \
{ \
...

Kernel Side (arch/*/kernel/entry.S)

Advanced Operating Systems OS Kernel

ENTRY(system_call)
pushl %eax # save orig_eax
SAVE_ALL
GET_THREAD_INFO(%ebp)
cmpl $(nr_syscalls), %eax
jae syscall_badsys
syscall_call:
call *sys_call_table(,%eax,4)
movl %eax,EAX(%esp) # store the return value
/* ... */

restore_all:
/* ... */

RESTORE_REGS
addl $4, %esp
1: iret

• SAVE ALL pushes all the registers on the stack
• The syscall number is in the eax register

(accumulator)
• After executing the syscall, the return value is in eax

→ must be put in the stack to pop it in
RESTORE REGS

	Remember?
	Latency: Why?
	Computer Architecture - I
	Computer Architecture - II
	Von Neumann Architecture
	The CPU
	CPU Registers
	Executing a Machine Instruction
	The Main Memory
	System Architecture
	The CPU
	The CPU - Protection
	An Example: Intel x86
	Intel x86 - 2
	Example of (Toy) CPU
	CPUs, Programs, & Friends
	Executing a Program
	Physical Machines...
	...And Abstract Machines!
	Abstract Machines and Languages
	Abstract Machines Behaviour
	Abstract Machine Example
	Multiple Flows of Instructions
	Concurrent Machines
	Concurrent Machine Architectures
	Concurrent Abstract Machines
	Concurrent Abstract Machine Architectures
	The OS as an Abstract Machine
	The Operating System
	The Kernel
	Interrupts and Hardware Exceptions
	Back to User Space
	Simplified CPU Execution
	CPU Execution with Interrupts
	Processing Interrupts
	Interrupt Tables
	Software Interrupt - System Call
	Hardware Interrupt
	Summing up...
	Blocking / Waking up Tasks...
	Example: I/O Operation
	Polling
	Polling - 2
	Interrupt
	Interrupt - 2
	Programmed I/O Mode
	DMA / Bus Mastering
	DMA / Bus Mastering - 2
	DMA / Bus Mastering - 3
	Example: Linux System Call
	Kernel Side (arch/*/kernel/entry.S)

