
NanoKernel and Hypervisors

Advanced Operating Systems

Luca Abeni

luca.abeni@santannapisa.it



Traditional OS Protection

Advanced Operating Systems Real-Time Applications

• Traditional view

• CPU: (at least) 2 privilege levels → distinction
between user programs and kernel

• User programs: low privilege
• Kernel: high privilege mode, must be trusted

• So, we can see 2 protection domains

• Protection domain 6= address space
• User code and kernel can run in the same

address space, but page access rights might be
different

• This was a good idea until Meltdown /
Spectre!!!



Address Spaces and Protection Domains

Advanced Operating Systems Real-Time Applications

• Address space: characterized by the mapping
between virtual addresses and physical addresses

• Page table
• In general, space → mapping between virtual

resources and physical ones

• Protection domain: characterized by the policies in
allowing access to resources

• If a (virtual) memory page is mapped in physical
memory, can it be accessed?

• Traditionally, in supervisor mode everything can be
accessed



Multiple Protection Domains

Advanced Operating Systems Real-Time Applications

• Why using only 2 protection domains?

• Because this model maps naturally to the “least
common denominator” provided by different hw
architectures

• If we extend this concept (allowing multiple
protection domains), we can have a more flexible
architecture

• We can split different OS components in different
domains...

• ...Or we can have different OSs / OS kernels
running in different domains!

• How to switch between protection domains?



Spaces, Domains and... Portals!

Advanced Operating Systems Real-Time Applications

• Portal: abstraction used to switch betwen different
domains

• In traditional OSs, syscall and interrupts used to
securely change privilege level

• With multiple protection domains, the concept
must be extended!

• Associated to interrupt / exception / trap / page fault

• Specifies the domain handling it → used to move
execution between domains

• Lower-level abstractions respect to “traditional” OSs
and Kernels



SPACE “NanoKernel”

Advanced Operating Systems Real-Time Applications

• Provides only 3 abstractions

• Space: translation of virtual addresses/resources
into physical ones (and/or portals)

• Domain: access policy (determine how to map
the space addresses: in physical addresses or
portals?)

• Portal: mechanism to move between domains

• The nanokernel provides portal entry and
resume pcb

• Everything else can implemented by code running in
different domains!!!



Adeos and SPACE

Advanced Operating Systems Real-Time Applications

• Adeos implements some of the notions from the
SPACE kernel

• With focus on interrupt management
• Many protection mechanisms (example: memory

protection) are not considered, for efficiency /
simplicity

• Different domains, for different kernels

• At least Linux and some real-time executive
(RTAI, Xenomai nucleus, ...)

• More complex setups are possible

• Interrupt portals to build the interrupt pipeline



Adeos as Support for Application-Specific Kernels

Advanced Operating Systems Real-Time Applications

• The original SPACE desing provided support for
application-specific OSs

• So that resource allocation can be optimized for
specific applications!

• Possible by executing different OSs in different
protection domains

• SPACE provides protection and security

• Adeos focuses on optimizing an OS kernel for
real-time

• Again, protection and security are not
considered...



Application-Level Resource Management

Advanced Operating Systems Real-Time Applications

• The “exokernel” idea proposed something similar
• Resource management moved from the OS kernel to

user applications

• Small exokernel allowing to do this in a secure
way

• Most of the OS kernel linked to user applications
as a “library Operating System”

• Adeos focuses on a similar idea: the real-time
executive / real-time applications are in charge of
managing their resources

• Management delegated to the Linux kernel for
non real-time resources

• Again, no focus on protection / security



Adeos as a Hypervisor - 1

Advanced Operating Systems Real-Time Applications

• Adeos calls itself a “nanokernel”

• Following naming from some scientific papers
• Tries not to be a “Hardware Abstraction Layer”

(HAL)

• But someone can see it as a hypervisor

• After all, “domains” are used by Xen too
• Controls the execution of multiple OS kernels /

OSs



Adeos as a Hypervisor - 2

Advanced Operating Systems Real-Time Applications

• Hypervisor for para-virtualized kernels

• A kernel must be modified to run on Adeos
• Patched Linux kernel, Xenomai, RTAI, ...

• Hypervisor without complete control of the system
resources

• Both Linux and the RT kernel can crash the
whole system...

• ...Including other para-virtualized kernels!

• Hosted hypervisor

• Does not boot on baremetal, but uses
functionalities from the Linux kernel



Xtratum

Advanced Operating Systems Real-Time Applications

• Another “hypervisor”, very similar to Adeos

• Again, started as an RTLinux replacement!

• Can run (paravirtualized) Linux and some
paravirtualized RTOSs

• Big difference: Xtratum is a bare-metal hypervisor

• Does not rely on Linux (or other kernels’)
functionalities

• Loaded by a bootloader, can start Linux and
other kernel after booting Xtratum


	Traditional OS Protection
	Address Spaces and Protection Domains
	Multiple Protection Domains
	Spaces, Domains and... Portals!
	SPACE ``NanoKernel''
	Adeos and SPACE
	Adeos as Support for Application-Specific Kernels
	Application-Level Resource Management
	Adeos as a Hypervisor - 1
	Adeos as a Hypervisor - 2
	Xtratum

