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Again on Preemptable Kernels
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• Preemptable Linux kernel → reduces LN

• Is it just a hack?

• Theoretical foundation: spinlocks end up using NPP

• Oh, no! Real-time jargon, once again!
• So, what is NPP?

• Latencies can still be high... Why?

• Once again, theory can explain...

• Two possible ways around: HLP and PI!

• HLP? PI? WTH!!!



Reconciliating Practice and (RT) Theory
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• Latency: can be modelled as a blocking time
• RT Theory → lot of work on blocking times

• Mainly seen as due to priority inversion
• In OS kernels, blocking times due to someting

different...
• ...But to re-use RT theory, let’s see them as

priority inversion due to kernel critical sections!

• Non-preemptable (monolithic) kernels: the kernel is
a critical section!

• Preemptable kernels: fine-grained critical sections
inside the kernel

• Issue: they affect even tasks not using syscalls /
IRQs!



Dealing with Priority Inversion
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• Priority inversion can be reduced...

• ...But how?
• By introducing an appropriate resource sharing

protocol (concurrency protocol)

• Provides an upper bound for the blocking time

• Non Preemptive Protocol (NPP) / Highest
Locking Priority (HLP)

• Priority Inheritance Protocol (PI)
• Priority Ceiling Protocol (PC)
• Immediate Priority Ceiling Protocol (Part of the

OSEK and POSIX standards)

• mutexes/spinlocks (not generic semaphores) must
be used



Non Preemptive Protocol (NPP)
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• The idea is very simple inhibit preemption when in a
critical section. How would you implement that?

• Advantages: simplicity
• Drawbacks: tasks which are not involved in a critical

section suffer blocking



Non Preemptive Protocol (NPP)
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• The idea is very simple inhibit preemption when in a
critical section. How would you implement that?

• Raise the task’s priority to the maximum available
priority when entering a critical section

• Advantages: simplicity
• Drawbacks: tasks which are not involved in a critical

section suffer blocking



NPP Example
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• Remember the previous example...
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• Using NPP, we have:
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Some Observations

Advanced Operating Systems Real-Time OS Kernels

• The blocking (priority inversion) is bounded by the
length of the critical section of task τ3

• Medium priority tasks (τ2) cannot delay τ1
• τ2 experiences some blocking, but it does not use

any resource

• Indirect blocking: τ2 is in the middle between a
higher priority task τ1 and a lower priority task τ3
which use the same resource

• Must be computed and taken into account in the
admission test as any other blocking time

• What’s the maximum blocking time Bi for τi?



A Problem with NPP
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• Consider the following example, with
p0 > p1 > p2 > p3.
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• τ0 misses its deadline (suffers a blocking time equal
to 3) even though it does not use any resource!!

• Solution: raise τ3 priority to the maximum between
tasks accessing the shared resource (τ1’ priority)



HLP
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• So....
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• This time, everyone is happy
• Problem: we must know in advance which task will

access the resource



Blocking Time and Response Time
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• NPP introduces a blocking time on all tasks bounded
by the maximum lenght of a critical section used by
lower priority tasks

• How does blocking time affect the response times?
• Response Time Computation:
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Response Time Computation - I
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Task Ci Ti ξi,1 Di

τ1 20 70 0 30
τ2 20 80 1 45
τ3 35 200 2 130



Response Time Computation - II
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Task Ci Ti ξi,1 Di Bi

τ1 20 70 0 30 2
τ2 20 80 1 45 2
τ3 35 200 2 130 0



Response Time Computation - III
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Task Ci Ti ξi,1 Di Bi Ri

τ1 20 70 0 30 2 20+2=22
τ2 20 80 1 45 2 20+20+2=42
τ3 35 200 2 130 0 35+2*20+2*20=115



The Priority Inheritance protocol
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• Another possible solution to the priority inversion:

• a low priority task τ3 blocking an higher priority
task τ1 inherits its priority

• → medium priority tasks cannot preempt τ3
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The Priority Inheritance protocol
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• Another possible solution to the priority inversion:

• a low priority task τ3 blocking an higher priority
task τ1 inherits its priority

• → medium priority tasks cannot preempt τ3
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• Another possible solution to the priority inversion:

• a low priority task τ3 blocking an higher priority
task τ1 inherits its priority
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Some PI Properties
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• Summarising, the main rules are the following:

• If a task τi blocks on a resource protected by a
mutex S, and the resource is locked by task τj,
then τj inherits the priority of τi

• If τj itself blocks on another mutex by a task τk,
then τk inherits the priority of τi (multiple
inheritance)

• If τk is blocked, the chain of blocked tasks is
followed until a non-blocked task is found that
inherits the priority of τi

• When a task unlocks a mutex, it returns to the
priority it had when locking it
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