Resource Sharing Protocols

Advanced Real Time Operating Systems

Luca Abeni
luca.abeni@santannapisa.it

Again on Preemptable Kernels

e Preemptable Linux kernel — reduces L
e Isitjust a hack?
e Theoretical foundation: spinlocks end up using NPP

e Oh, no! Real-time jargon, once again!
e S0, whatis NPP?

e Latencies can still be high... Why?
e Once again, theory can explain...

e [wo possible ways around: HLP and Pl!
e HLP? PI? WTH!!I

Advanced Operating Systems Real-Time OS Kernels

Reconciliating Practice and (RT) Theory

Latency: can be modelled as a blocking time
RT Theory — lot of work on blocking times

e Mainly seen as due to priority inversion
In OS kernels, blocking times due to someting
different...

e ...Buttore-use RT theory, let's see them as
priority inversion due to kernel critical sections!

e Non-preemptable (monolithic) kernels: the kernel is
a critical section!

e Preemptable kernels: fine-grained critical sections
iInside the kernel

e |ssue: they affect even tasks not using syscalls /
IRQs!

Advanced Operating Systems Real-Time OS Kernels

Dealing with Priority Inversion

e Priority inversion can be reduced...

e ..Buthow?
e By introducing an appropriate resource sharing
protocol (concurrency protocol)

e Provides an upper bound for the blocking time

e Non Preemptive Protocol (NPP) / Highest
Locking Priority (HLP)
Priority Inheritance Protocol (Pl)
Priority Ceiling Protocol (PC)

e Immediate Priority Ceiling Protocol (Part of the
OSEK and POSIX standards)

e Mmutexes/spinlocks (not generic semaphores) must
be used

Advanced Operating Systems Real-Time OS Kernels

Non Preemptive Protocol (NPP)

e The idea is very simple inhibit preemption when in a
critical section. How would you implement that?

e Advantages: simplicity
e Drawbacks: tasks which are not involved in a critical
section suffer blocking

Advanced Operating Systems Real-Time OS Kernels

Non Preemptive Protocol (NPP)

e The idea is very simple inhibit preemption when in a
critical section. How would you implement that?

e Raise the task’s priority to the maximum available
priority when entering a critical section

Advantages: simplicity

Drawbacks: tasks which are not involved in a critical
section suffer blocking

Advanced Operating Systems Real-Time OS Kernels

NPP Example

e Remember the previous example...
7_1 HS)) SUﬁS >

>
>
l >
0 2 4 6 8 10 12 14 16 18 20 22 24

Advanced Operating Systems Real-Time OS Kernels

Some Observations

e The blocking (priority inversion) is bounded by the
length of the critical section of task 3
Medium priority tasks (7») cannot delay 7
5 experiences some blocking, but it does not use
any resource

e Indirect blocking: 1 IS In the middle between a
higher priority task 7 and a lower priority task 73
which use the same resource

e Must be computed and taken into account in the
admission test as any other blocking time

e What's the maximum blocking time B; for 7;7

Advanced Operating Systems Real-Time OS Kernels

A Problem with NPP

e Consider the following example, with
Po = P1 > P2 > P3-

70 - .
7_1 T L(S . U(S l S
T I . 3
RN s —— = 3

e 7y Misses its deadline (suffers a blocking time equal
to 3) even though it does not use any resource!!

e Solution: raise 73 priority to the maximum between
tasks accessing the shared resource (1, priority)

Advanced Operating Systems Real-Time OS Kernels

7o = 3

7_1 T LiS! 5 USSi l <

T i e .

T3 oS | [U(|S) 1 l N
0 2 4 6 8 10 12 14 16 18 20 22 24

e This time, everyone is happy
Problem: we must know in advance which task will
access the resource

Advanced Operating Systems Real-Time OS Kernels

Blocking Time and Response Time

e NPP introduces a blocking time on all tasks bounded
by the maximum lenght of a critical section used by
lower priority tasks
How does blocking time affect the response times?
Response Time Computation:

1—1 .
R@:C¢—|—BZ‘—|—2 {z
=1 [1;
e B, Is the blocking time from lower priority tasks

o I 11[WC IS the interference from higher
priority tasks

J

Advanced Operating Systems Real-Time OS Kernels

Response Time Computation - |

Task Cz 1 57;71 D;
n 120 70 | O | 30
™ (20 80 | 1 | 45
3 3951200 2 | 130

Advanced Operating Systems Real-Time OS Kernels

Response Time Computation - i

Task | C; | T; |&a| Di | B
nn |20 70 | O | 30 || 2
> 1200 80 | 1 | 45 || 2
™ (351200 2 (130 O

Advanced Operating Systems Real-Time OS Kernels

Response Time Computation - lli

Task Cz 1 gi,l D; B, R;
n 200 70 | 0 | 30 | 2 20+2=22
™ 200 80 | 1 | 45 | 2 20+20+2=42
3 1351200 2 | 130 | 0 | 35+2*20+2*20=115

Advanced Operating Systems Real-Time OS Kernels

The Priority Inheritance protocol

e Another possible solution to the priority inversion:

e a low priority task 73 blocking an higher priority
task 7, inherits its priority
e — medium priority tasks cannot preempt 73

T1
>
79
>
L(S)
T3 l
2 >
0 2 4 6 8 10 12 14 16 18 20 22 24

Advanced Operating Systems Real-Time OS Kernels

The Priority Inheritance protocol

e Another possible solution to the priority inversion:

e a low priority task 73 blocking an higher priority
task 7, inherits its priority
e — medium priority tasks cannot preempt 73

Advanced Operating Systems Real-Time OS Kernels

The Priority Inheritance protocol

e Another possible solution to the priority inversion:

e a low priority task 73 blocking an higher priority
task 7, inherits its priority
e — medium priority tasks cannot preempt 73

0 2 4 6 8 10 12 14 16 18 20 22 24

Advanced Operating Systems Real-Time OS Kernels

The Priority Inheritance protocol

e Another possible solution to the priority inversion:

e a low priority task 73 blocking an higher priority
task 7, inherits its priority
e — medium priority tasks cannot preempt 73

g EEETIREREEEE)
,

L(S) |
7| e s l 4

0 2 4 6 8 10 12 14 16 18 20 22 24

e Task 73 inherits the priority of 7

Advanced Operating Systems Real-Time OS Kernels

The Priority Inheritance protocol

e Another possible solution to the priority inversion:

e a low priority task 73 blocking an higher priority
task 7, inherits its priority
e — medium priority tasks cannot preempt 73

g EEETIREREEEE)
ol 1] SEEEEEEE

L(S) |
7| e s l 4

0 2 4 6 8 10 12 14 16 18 20 22 24

e Task 73 inherits the priority of 7
e Task m, cannot preempt 73 (p2 < p1)

Advanced Operating Systems Real-Time OS Kernels

The Priority Inheritance protocol

e Another possible solution to the priority inversion:

e a low priority task 73 blocking an higher priority
task 7, inherits its priority
e — medium priority tasks cannot preempt 73

e Task 73 inherits the priority of 7
e Task m, cannot preempt 73 (p2 < p1)

Advanced Operating Systems Real-Time OS Kernels

The Priority Inheritance protocol

e Another possible solution to the priority inversion:

e a low priority task 73 blocking an higher priority
task 7, inherits its priority
e — medium priority tasks cannot preempt 73

e Task 73 inherits the priority of 7
e Task m, cannot preempt 73 (p2 < p1)

Advanced Operating Systems Real-Time OS Kernels

The Priority Inheritance protocol

e Another possible solution to the priority inversion:

e a low priority task 73 blocking an higher priority
task 7, inherits its priority
e — medium priority tasks cannot preempt 73

e Task 73 inherits the priority of 7
e Task m, cannot preempt 73 (p2 < p1)

Advanced Operating Systems Real-Time OS Kernels

The Priority Inheritance protocol

e Another possible solution to the priority inversion:

e a low priority task 73 blocking an higher priority
task 7, inherits its priority
e — medium priority tasks cannot preempt 73

7_1 HS) u(S) l
S - >
1
T — |
: >
|
L(S) | u(S)
™| o l
s| I{s| s >
0 2 4 6 8 10 12 14 16 18 20 22 24

e Task 73 inherits the priority of 7
e Task m, cannot preempt 73 (p2 < p1)

Advanced Operating Systems Real-Time OS Kernels

The Priority Inheritance protocol

e Another possible solution to the priority inversion:

e a low priority task 73 blocking an higher priority
task 7, inherits its priority
e — medium priority tasks cannot preempt 73

7_1 HS) u(S) l
S - >
1
T — |
: >
|
L(S) | u(S)
™| o l
s] {s[s [1 N
0 2 4 6 8 10 12 14 16 18 20 22 24

e Task 73 inherits the priority of 7
e Task m, cannot preempt 73 (p2 < p1)

Advanced Operating Systems Real-Time OS Kernels

Some Pl Properties

e Summarising, the main rules are the following:

e |f atask 7; blocks on a resource protected by a
mutex .S, and the resource is locked by task 7;,
then 7; inherits the priority of 7;

o If 7; itself blocks on another mutex by a task 7,
then 7, inherits the priority of ; (multiple
Inheritance)

e If 7, 1S blocked, the chain of blocked tasks is
followed until a non-blocked task is found that
iInherits the priority of ;

e When a task unlocks a mutex, it returns to the
priority it had when locking it

Advanced Operating Systems Real-Time OS Kernels

	Again on Preemptable Kernels
	Reconciliating Practice and (RT) Theory
	Dealing with Priority Inversion
	Non Preemptive Protocol (NPP)
	NPP Example
	Some Observations
	A Problem with NPP
	HLP
	Blocking Time and Response Time
	Response Time Computation - I
	Response Time Computation - II
	Response Time Computation - III
	The Priority Inheritance protocol
	Some PI Properties

