Real-Time Operating Systems

Luca Abeni luca.abeni@santannapisa.it

March 13, 2018

RT Scheduling: Why?

• The task set $\mathcal{T} = \{(1,3), (4,8)\}$ is not schedulable by FCFS

0 2 4 6 8 10 12 14 16 18 20 22 24

• $\mathcal{T} = \{(1,3), (4,8)\}$ is schedulable with other algorithms

Fixed Priority Scheduling

- Very simple *preemptive* scheduling algorithm
 - Every task τ_i is assigned a fixed priority p_i
 - The active task with the highest priority is scheduled
- Priorities are integer numbers: the higher the number, the higher the priority
 - In the research literature, sometimes authors use the opposite convention: the lowest the number, the highest the priority
- In the following we show some examples, considering periodic tasks, constant execution times, and deadlines equal to the period

• Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)

• Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)

• Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)

• Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)

• Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)

• Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)

• Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)

• Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)

• Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)

• Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)

• Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)

• Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)

• Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)

• Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)

• Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest)

Another Example (non-schedulable)

• Consider the following task set: $\tau_1 = (3, 6, 6), p_1 = 3, \tau_2 = (2, 4, 8), p_2 = 2, \tau_3 = (2, 12, 12), p_3 = 1$

Advancet his roase, tetask τ_2 misses its deadline!

Another Example (non-schedulable)

• Consider the following task set: $\tau_1 = (3, 6, 6), p_1 = 3, \tau_2 = (2, 4, 8), p_2 = 2, \tau_3 = (2, 12, 12), p_3 = 1$

Advancet his roase, tetask τ_2 misses its deadline!

Another Example (non-schedulable)

• Consider the following task set: $\tau_1 = (3, 6, 6), p_1 = 3, \tau_2 = (2, 4, 8), p_2 = 2, \tau_3 = (2, 12, 12), p_3 = 1$

Advancet his roase, tetask τ_2 misses its deadline!

Notes about Priority Scheduling

- Some considerations about the schedule shown before:
 - The response time of the task with the highest priority is minimum and equal to its WCET
 - The response time of the other tasks depends on the *interference* of the higher priority tasks
 - The priority assignment may influence the schedulability of a task set
 - Problem: how to assign tasks' priorities so that a task set is schedulable?

Response Time Analysis

- Necessary and sufficient test: compute the worst-case response time for every task
- For every task τ_i :
 - Compute worst case response time R_i for τ_i
 - Remember? $R_i = \max_j \{\rho_{i,j}\}; \rho_{i,j} = f_{i,j} r_{i,j}$
 - If $R_i \leq D_i$, then the task is schedulable
 - otherwise, the task is not schedulable
- No assumption on the priority assignment
 - Algorithm valid for arbitrary priority assignments
 - Not only RM / DM...
- Periodic tasks with no offsets, or sporadic tasks

The Critical Instant

- Tasks ordered by decreasing priority ($i < j \rightarrow p_i > p_j$)
- No assumptions about tasks offsets
 - \Rightarrow Consider the *worst possible offsets combination*
 - A job $J_{i,j}$ released at the *critical instant* experiences the maximum response time for $\tau_i: \forall k, \rho_{i,j} \ge \rho_{i,k}$
 - Simplified definition (jobs deadlines should be considered...)
 - **Theorem:** The critical instant for task τ_i occurs when job $J_{i,j}$ is released at the same time with a job in every high priority task
- If all the offsets are 0, the first job of every task is released at the critical instant!!!

Worst Case Response Time

- Worst case response time R_i for task τ_i depends on:
 - Its execution time...
 - ...And the execution time of higher priority tasks
 - Higher priority tasks can *preempt* task τ_i , and increase its response time

Computing the Response Time - I

$$R_i = C_i + \sum_{h=1}^{i-1} \left\lceil \frac{R_i}{T_h} \right\rceil C_h$$

• Urk!!! $R_i = f(R_i)$... How can we solve it?

- There is no closed-form expression for computing the worst case response time R_i
- We need an iterative method to solve the equation

Computing the Response Time - II

- Iterative solution
 - $R_i = \lim_{k \to \infty} R_i^{(k)}$
 - $R_i^{(k)}$: worst case response time for τ_i , at step k
- $R_i^{(0)}$: first estimation of the response time
 - We can start with $R_i^{(0)} = C_i$
 - $R_i^{(0)} = C_i + \sum_{h=1}^{i-1} C_h$ saves 1 step

$$R_{i}^{(0)} = C_{i}\left(+\sum_{h=1}^{i-1} C_{h}\right)$$
$$R_{i}^{(k)} = C_{i} + \sum_{h=1}^{i-1} \left[\frac{R_{i}^{(k-1)}}{T_{h}}\right] C_{h}$$

Computing the Response Time - III

- Problem: are we sure that we find a valid solution?
- The iteration stops when:

•
$$R_i^{(k+1)} = R_i^{(k)}$$
 or

- $R_i^{(k)} > D_i$ (non schedulable);
- This is a standard method to solve non-linear equations in an iterative way
- If a solution exists (the system is not overloaded), $R_i^{(k)}$ converges to it
- Otherwise, the " $R_i^{(k)} > D_i$ " condition avoids infinite iterations

Task set: $\tau_1 = (2, 5), \tau_2 = (2, 9), \tau_3 = (5, 20); U = 0.872$

Advanced Operating Systems

Task set: $\tau_1 = (2, 5), \tau_2 = (2, 9), \tau_3 = (5, 20); U = 0.872$

Advanced Operating Systems

Task set: $\tau_1 = (2, 5), \tau_2 = (2, 9), \tau_3 = (5, 20); U = 0.872$

Task set: $\tau_1 = (2, 5), \tau_2 = (2, 9), \tau_3 = (5, 20); U = 0.872$

Advanced Operating Systems

What about different priority assignments and deadlines different from periods?

$$au_1 = (1, 4, 4), p_1 = 3, \tau_2 = (4, 6, 15), p_2 = 2,$$

 $au_3 = (3, 10, 10), p_3 = 1; U = 0.72$

$$R_{i}^{(k)} = C_{i} + \sum_{h=1}^{i-1} \left[\frac{R_{i}^{(k-1)}}{T_{h}} \right] C_{h}$$

What about different priority assignments and deadlines different from periods?

$$au_1 = (1, 4, 4), p_1 = 3, \tau_2 = (4, 6, 15), p_2 = 2,$$

 $au_3 = (3, 10, 10), p_3 = 1; U = 0.72$

$$R_{i}^{(k)} = C_{i} + \sum_{h=1}^{i-1} \left[\frac{R_{i}^{(k-1)}}{T_{h}} \right] C_{h}$$

What about different priority assignments and deadlines different from periods?

$$au_1 = (1, 4, 4), p_1 = 3, \tau_2 = (4, 6, 15), p_2 = 2,$$

 $au_3 = (3, 10, 10), p_3 = 1; U = 0.72$

$$R_{i}^{(k)} = C_{i} + \sum_{h=1}^{i-1} \left[\frac{R_{i}^{(k-1)}}{T_{h}} \right] C_{h}$$

What about different priority assignments and deadlines different from periods?

$$au_1 = (1, 4, 4), p_1 = 3, \tau_2 = (4, 6, 15), p_2 = 2,$$

 $au_3 = (3, 10, 10), p_3 = 1; U = 0.72$

$$R_{i}^{(k)} = C_{i} + \sum_{h=1}^{i-1} \left[\frac{R_{i}^{(k-1)}}{T_{h}} \right] C_{h}$$

Considerations

- The response time analysis is an efficient algorithm
 - In the worst case, the number of steps N for the algorithm to converge is exponential
 - Depends on the total number of jobs of higher priority tasks in the interval $[0, D_i]$:

$$N \propto \sum_{h=1}^{i-1} \left\lceil \frac{D_h}{T_h} \right\rceil$$

- If *s* is the minimum granularity of the time, then in the worst case $N = \frac{D_i}{s}$;
- However, such worst case is very rare: usually, the number of steps is low.

Advanced Operating Systems

Real-Time Operating Systems

- Real-Time operating system (RTOS): OS providing support to Real-Time applications
- Real-Time application: the correctness depends not only on the output values, but also on the time when such values are produced
- Operating System:
 - Set of computer programs
 - Interface between applications and hardware
 - Control the execution of application programs
 - Manage the hardware and software resources

Different Visions of an OS

- An OS manages resources to provide services...
 - ...hence, it can be seen as:
 - A Service Provider for user programs
 - Exports a programming interface...
 - A Resource Manager
 - Implements schedulers...

Operating System Services

- Services (Kernel Space):
 - Process Synchronisation, Inter-Process Communication (IPC)
 - Process / Thread Scheduling
 - I/O
 - Virtual Memory

RT-POSIX API?

Task Scheduling

- *Kernel*: core part of the OS, allowing multiple tasks to run on the same CPU
 - Task set \mathcal{T} composed by N tasks running on MCPUs (M < N)
 - All tasks τ_i have the illusion to run in parallel
 - Temporal multiplexing between tasks
- Two core components:
 - Scheduler: decides which task to execute
 - Dispatcher: actually switches the CPU context (context switch)

Synchronization and IPC

- The kernel must also provide a mechanism for allowing tasks to communicate and synchronize
- Two possible programming paradigms:
 - Shared memory (threads)
 - Message passing (processes)

Programming Paradigms

- Shared memory (threads)
 - The kernel must provide mutexes + condition variables
 - Real-time resource sharing protocols (PI, HLP, NPP, ...) must be implemented
- Message passing (processes)
 - Interaction models: pipeline, client / server, ...
 - The kernel must provide some IPC mechanism: pipes, message queues, mailboxes, RPC, ...
 - Some real-time protocols can still be used

Real-Time Scheduling in Practice

- An adequate scheduling of system resources removes the need for over-engineering the system, and is necessary for providing a predictable QoS
- Algorithm + Implementation = Scheduling
- RT theory provides us with good algorithms...
- ...But which are the prerequisites for correctly implementing them?

Theoretical and Actual Scheduling

- Scheduler, IPC subsystem, $\dots \rightarrow$ must respect the theoretical model
 - Scheduling is simple: fixed priorities
 - IPC, HLP, or NPP are simple too...
 - But what about (for example) timers?
- Problem:
 - Is the scheduler able to select a high-priority task as soon as it is ready?
 - And the dispatcher?

Periodic Task Example

• Consider a periodic task

- The task expects to be executed at time $r = (= r_0 + jT)...$
- ...But is sometimes delayed to $r_0 + jT + \delta$

Example - Theoretical Schedule

Example - Actual Schedule

• What happens if the 2^{nd} job of τ_1 arrives a little bit later???

• The 2^{nd} job of τ_2 misses a deadline!!!

Advanced Operating Systems

Kernel Latency

- The delay δ in scheduling a task is due to *kernel* latency
- Kernel latency can be modelled as a blocking time

•
$$\sum_{k=1}^{N} \frac{C_k}{T_k} \leq U_{lub} \rightarrow \forall i, \ 1 \leq i \leq n, \sum_{k=1}^{i-1} \frac{C_k}{T_k} + \frac{C_i + \delta}{T_i} \leq U_{lub}$$

•
$$R_i = C_i + \sum_{h=1}^{i-1} \left| \frac{R_i}{T_h} \right| C_h \rightarrow R_i = C_i + \delta + \sum_{h=1}^{i-1} \left| \frac{R_i}{T_h} \right| C_h$$

• $\exists 0 \le t \le D_i : W_i(0,t) = C_i + \sum_{h=1}^{i-1} \left[\frac{t}{T_h} \right] C_h \le t \rightarrow$ $\exists 0 \le t \le D_i : W_i(0,t) = C_i + \sum_{h=1}^{i-1} \left[\frac{t}{T_h} \right] C_h \le t - \delta$

Kernel Latency

- Scheduler \rightarrow triggered by internal (IPC, signal, ...) or external (IRQ) events
- Time between the triggering event and dispatch:
 - Event generation
 - Event delivery (interrupts may be disabled)
 - Scheduler activation (nonpreemptable sections)
 - Scheduling time

Theoretical Model vs Real Schedule

- In real world, high priority tasks often suffer from blocking times coming from the OS (more precisely, from the kernel)
 - Why?
 - How?
 - What can we do?
- To answer the previous questions, we need to recall how the hardware and the OS work...