Something More about
uKernels

Advanced Operating Systems

Luca Abeni
luca.abeni@santannapisa.it

uKernels - The Idea

e Basic idea: simplify the kernel

e Reduce to the number of abstractions
iImplemented by the kernel

e Address Spaces
e Threads
e |PC mechanisms (channels, ports, etc...)

e Most of the “traditional” kernel functionalities
Implemented in user space
e Even device drivers can be in user space!

Advanced Operating Systems Real-Time Applications

uKernels and Servers

e Interactions via IPC (IRQs to drivers as messages,
...)

e Servers: US processes implementing OS
functionalities

e OS kernel as a single user-space process:
Single-server OSs

e Multiple user-space processes (a server per
driver, FS server, network server, ...):
Multi-server OSs

Advanced Operating Systems Real-Time Applications

u-Kernels as Resource Managers

e A u-kernel handles some “software resources”
e Sometimes referred as “objects”

e Debatable name: an object is generally
(encapsulated) data + methods

e Must be protected
e Example: address spaces, tasks, ...

e T[he number / kind of abstractions / resource
types depends on the u-kernel detalls

e [asks can “operate” on these resources

e How to control the accesses / implement
protection?

Advanced Operating Systems Real-Time Applications

Message Passing Interactions

e Most of the interactions happen through message
passing

e QOperation on a resource: send a message (and
eventually wait for a reply)
e Send message... To who?

e The u-kernel / kernel?
e The resource /its manager?
e Something else?

e Different IPC mechanisms depending on the
u-kernel

e Synchronous / Asynchronous

e Different security mechanisms

® .
Advanced Operating Systems Real-Time Applications

Capabilities

e -Kernels are often capability-based systems

e Why"? Because this is the most natural solution
for an IPC-based system

e What is a “capability”? Informally speaking:
reference to a software resource, associated with
access rights

e The exact definition might vary from system to
system

e Intuition: to operate on something | must “own” the
right capability

e More advanced than a simple access control list

Advanced Operating Systems Real-Time Applications

Capabilities as (Protected) References

e [0 access resource R, task 7 needs a reference to it

e Example: you cannot open a file if you do not
Know its hame

e Protected reference: tasks cannot forge capabillities

e Capabilities are created and manipulated by the
capability system
e S0, a file name is not a good example!

e C(Capabilities are opaque

e You do not really know what a capability is: you
just use it to access a resource

e Think about pointers

Advanced Operating Systems Real-Time Applications

Capabilities and Access Rights

A capability is not a simple protected reference
It is associated to access rights

e A capability can be used to perform an action on
a resource, but not other actions

e Example: read/receive capability, write/send
capability, ...

e Using the read capability for a file, | can read it, but |
cannot write on it!
e Each task owns capabilities for accessing some

resources
e The u-kernel / capability system is responsible for
enforcing the respect of capabilities

Advanced Operating Systems Real-Time Applications

Capabilities Management

Tasks cannot create capabilities — a task “receives”
a capability from someone else

e (Can be the u-kernel / capability system
e .. Someone else? ...

Capabilities can be transferred

e A task owning a capability can send it to another
task
e What happens when a capability is tranferred?

The capability system defines the exact behaviour of
capability transfer

Advanced Operating Systems Real-Time Applications

Capabilities and Messages

e (Capabilities can be used for IPC access control

e Used to send/ receive messages
e Used to check if a task has the rights to send /

receive a message
o

e Object Oriented vision: resource — Object

e Invocation of a method — send a message to the
object

Advanced Operating Systems Real-Time Applications

Example: Mach

e Mach u-kernel: capability-based, tries to implement
some OO concepts

e TJasks can operate on “objects” by sending
messages to them
e |PC mechanism provided by the (u)kernel

e Mach IPC: indirect addressing

e The destination of a message is indicated by
specifying a “communication channel”

e T[asks send messages to ports — queues of
messages

e Capabitilies implemented through ports
e Capability «+ read or write reference to a port)

Advanced Operating Systems Real-Time Applications

Mach Ports and Capabilities

Port rights: secure, location-independent way of
naming ports

The receive right for a port can be owned only by
one single task

e A task can send a message to a port by using a
“send capabillity” (send right) for the port

e A task can receive a message from a port by
using a “receive capability” (receive right) for the
port

Each task is created with some ports for
communicating with the kernel (and owns the “send
rights” - capabillities for such ports)

Advanced Operating Systems Real-Time Applications

Sending Capabilities

A task can send one of its “port right” in a message
The task receiving the message will be able to
access the port

e When a receive right is contained in the message,
the right is revoked from the sender

e The sender “donates” its capability to the receiver

e Remember: the receive right for a port cannot be
owned by multiple tasks!

Advanced Operating Systems Real-Time Applications

Example: Scheduling Capabilities

e (Capabilities can be used for scheduling too!
e Temporal capabllities

e Distinction between scheduling context and
execution context

e In traditional systems, a “task context” contains
both scheduling information and the task state
used for dispatching

e Scheduling context: data structure used by the
scheduler

e EXxecution context: rest of the task state

e Scheduling capability: reference to the scheduling
context

Advanced Operating Systems Real-Time Applications

Scheduling and Dispatching

e A task can execute only if it owns a scheduling
capability

e Wil be dispatched when the scheduler selects
the corresponding scheduling context

e (Generally, a scheduling context is associated to a
core / CPU

e Migration: the scheduling capability of a task is
replaced with a different one (referencing a
scheduling context associated to a different core /
CPU)

Advanced Operating Systems Real-Time Applications

Flexibility

e Inheritance is simple: donate the scheduling
capability to a different task!

e Easy form of proxy execution... Useful for
client/server interactions!

e User space scheduling is possible: a user-space
server manages the scheduling capabilities of the

tasks!

Advanced Operating Systems Real-Time Applications

	Kernels - The Idea
	Kernels and Servers
	-Kernels as Resource Managers
	Message Passing Interactions
	Capabilities
	Capabilities as (Protected) References
	Capabilities and Access Rights
	Capabilities Management
	Capabilities and Messages
	Example: Mach
	Mach Ports and Capabilities
	Sending Capabilities
	Example: Scheduling Capabilities
	Scheduling and Dispatching
	Flexibility

