
Advanced CPU

Virtualization

Luca Abeni

luca.abeni@santannapisa.it

December 21, 2022



Popek and Goldberg’s Virtualization

Advanced Operating Systems Advanced Virtualization

• Basically, trap and emulate

• Execute guest code at low privilege level
• Execution of privileged instructions causes

exceptions / faults
• The hypervisor running at high privilege level can

emulate such instructions (exeption handler)

• Works if all sensitive instructions are privileged

• For some architectures (x86, ARM, ...) this
requirement is not satisfiled

• Hardware extensions for virtualization

• Do not consider devices (interrupts), paging, etc...



Hardware Assisted Virtualization

Advanced Operating Systems Advanced Virtualization

• Needed if the original hw architecture is not
virtualizable...

• ...Or to improve performance
• Paging support, interrupt virtualization, ...

• Must somehow keep compatibility with the original
hw architecture

• First idea: introduce a new privilege level

• Hypervisor privilege level, more privileged than
system (kernel) privilege level

• All sensitive instruction trap to hypervisor level
(even if they do not trap to kernel privilege level)



Hypervisor Privilege Level

Advanced Operating Systems Advanced Virtualization

• Privilege level -1 (privilege level 0 is kernel)
• Designed to comply with Popek and Goldberg’s

requirements
• Advantage: trap and emulate can be implemented!

• Writing simple hypervisors is easy

• But there are some disadvantages...

• The hypervisor execution environment is different
from the kernel’s one

• Difficult to re-use existing kernel code,
problem for hosted hypervisors

• Every sensitive instruction is emulated

• Exception / trap / VM exit → overhead!



Beyond Popek and Goldberg

Advanced Operating Systems Advanced Virtualization

• Should we emulate in software every sensitive
instruction?

• If the hardware “just complies” with Popek and
Goldberg requirements, yes!

• But the hardware can do better...

• Idea: keep a copy of the CPU state, and allow the
guest instructions to access the copy

• So, we do not need to emulate all of them!
• The CPU in a “special execution mode” will not

access the real state, but only the shadow copy!
Without the hypervisor intervention

• Two modes of operation: one for the host and one for
the guests



Shadow CPU State

Advanced Operating Systems Advanced Virtualization

• Host execution mode: the “real CPU state” is
accessed

• Can be identical to a CPU without virtualization

• Guest execution mode: the “shadow copy” is
accessed (one copy per guest)

• Data structure in memory, containing a private
copy of the CPU state

• The guest can access it without compromising
security and performance

• The hypervisor can access / modify / control all of
the copies

• Advantage: performance
• Disadvantage: much more complex to use / program



Intel VT-x

Advanced Operating Systems Advanced Virtualization

• Intel VT-x technology follows the second approach
for hw assisted virtualization (shadow guest state)

• Distinction between “root mode” and “non-root
mode”

• Both the two execution modes have the
traditional intel privilege levels

• In root mode, the CPU is almost identical to a
“traditional” intel CPU

• In non-root mode, the shadow guest state is stored
in a Virtual Machine Control Structure

• The VMCS actually also contains configuration
data and other things



Using Intel VT-x

Advanced Operating Systems Advanced Virtualization

• First, check if the CPU supports it

• Use the cpuid instruction to check for VT-x
• Access a machine specific register to check if

VT-x is enabled

• If it is not, try to enable it - if the BIOS did not
lock it

• Then, initialize VT-x and enter root mode

• Set a bit in cr4

• Assign a VMCS region to root mode
• Execute vmxon

• Now, the difficult part begins...



Creating VT-x VMs

Advanced Operating Systems Advanced Virtualization

• Once in root mode, it is possible to create VMs...

• Allocate a VMCS for the VM
• Assign it to the VM (vmptrld instruction)
• Configure the VMCS
• Start the VM (vmlaunch instruction)

• VMCS configuration: host / guest state and control
information)

• Guest state: initialization of the “shadow state”
for the guest

• Host state: CPU state after VM exit
• Control: configure which instructions cause VM

exit, the behaviour of some control registers, ...



VMCS Setup - I

Advanced Operating Systems Advanced Virtualization

• Configuring the guest state, it is possible to execute
real-mode, 32bit or 64bit guests, controlling paging,
etc...

• It is possible to configure an inconsistent guest
state

• vmlaunch will fail

• Control information: VM exits (which instructions to
trap), some “shadow control registers”, ...

• Example: guest access to cr0

• Possible to decide if the guest “sees” the host
cr0, the guest cr0, or some “fake value”
configured by the hypervisor

• This is configurable bit-per-bit



VMCS Setup - II

Advanced Operating Systems Advanced Virtualization

• VMCS configuration and setup is not easy

• Also, requires to know a lot of details about the
CPU architecture

• Starting a VM (even a “simple” one) requires some
work!

• I skipped the details about nested page tables...

• On the other hand, it is easier to build hosted
hypervisors



The Kernel Virtual Machine

Advanced Operating Systems Advanced Virtualization

• Kernel Virtual Machine (kvm): Linux driver for VT-x

• Actually, it also supports AMD’s SVM

• Hides most of the dirty details in setting up a
hardware-assisted VM

• Also checks for consistency of the guest state,
etc...

• Started as an x86-only driver, now supports more
architectures

• With some “tricks”, for example for ARM

• Accessible through a /dev/kvm device file

• Allows to use the “standard” UNIX permission
management



Using kvm

Advanced Operating Systems Advanced Virtualization

• First, check if the CPU is supported by kvm

• Open /dev/kvm

• This also checks for permissions

• Then, check the kvm version

• Use the KVM GET API VERSION ioctl
• Compare the result with KVM API VERSION

• Now, create a VM (KVM CREATE VM ioctl)

• Without memory and virtual CPUs
• Memory must be added later

• KVM SET USER MEMORY REGION ioctl

• Virtual CPUs must be created later
• KVM CREATE VCPU ioctl



kvm Virtual CPUs

Advanced Operating Systems Advanced Virtualization

• Created after creating a VM, and associated to it

• Allow to create multi-(v)CPU VMs

• After creating a virtual CPU, its state must be
initialized

• Allow to start VMs in real-mode, protected mode,
long mode, etc...

• Done by setting registers and system registers
(KVM {GET,SET} REGS and
KVM {GET,SET} SREGS ioctls)

• Interaction through memory region shared between
kernel and application (mmap())



Virtual CPU Setup

Advanced Operating Systems Advanced Virtualization

• Before starting a VM, the state of each virtual CPU
must be properly initialized

• RM, 32bit PM (with or without paging), 64bit “long
mode” (paging is mandatory), ...

• Properly initialize some control registers (cr0,
cr3 and cr4, ...)

• In PM, setup segments

• No need to setup a GDT, kvm can do it for
us!!!

• Page tables configuration

• kvm checks the consistency of this configuration

• Example: if we configures segments, PM must
be enabled in cr0



Running the VM

Advanced Operating Systems Advanced Virtualization

• A thread for each virtual CPU
• Loop on the KVM RUN ioctl

• The ioctl can return because of error

• Check for EINTR or EAGAIN

• Or because of a VM exit (KVM EXIT)

• Check the exit reason (KVM EXIT xxx)...
• ...And properly serve it!

• Virtual CPU execution can be interrupted by signals
• Virtual devices implemented serving I/O exits or

accesses to unmapped memory


	Popek and Goldberg's Virtualization
	Hardware Assisted Virtualization
	Hypervisor Privilege Level
	Beyond Popek and Goldberg
	Shadow CPU State
	Intel VT-x
	Using Intel VT-x
	Creating VT-x VMs
	VMCS Setup - I
	VMCS Setup - II
	The Kernel Virtual Machine
	Using kvm
	kvm Virtual CPUs
	Virtual CPU Setup
	Running the VM

