
Real-Time OS Kernels

Advanced Real Time Operating Systems

Luca Abeni

luca.abeni@santannapisa.it



Latency

Advanced Operating Systems Real-Time OS Kernels

• Latency: measure of the difference between the
theoretical and actual schedule

• Task τ expects to be scheduled at time t . . .

• . . . but is actually scheduled at time t′

• ⇒ Latency L = t′ − t

• The latency L can be modelled as a blocking time ⇒

affects the guarantee test

• Similar to what done for shared resources
• Blocking time due to latency, not to priority

inversion



Effects of the Latency

Advanced Operating Systems Real-Time OS Kernels

• Upper bound for L? If not known, no schedulability
tests!!!

• The latency must be bounded: ∃Lmax : L < Lmax

• If Lmax is too high, only few task sets result to be
schedulable

• Large blocking time experienced by all tasks!
• The worst-case latency Lmax cannot be too high



Sources of Latency

Advanced Operating Systems Real-Time OS Kernels

• A task τi is a stream of jobs Ji,j arriving at time ri,j
• Job Ji,j is scheduled at time t′ > ri,j

• t′ − ri,j is given by:

1. Ji,j ’s arrival is signalled at time ri,j + L1

2. Such event is served at time ri,j + L1 + L2

3. Ji,j is actually scheduled at ri,j +L1 +L2 +L3

L1 2 L3L



Analysis of the Various Sources

Advanced Operating Systems Real-Time OS Kernels

• L = L1 + L2 + L3

• L3 is sometimes called scheduler latency

• But it is not really a latency!!!
• Interference from higher priority tasks
• Already accounted for by RTA / TDA or similar →

let’s not consider it

• L2 is the non-preemptable section latency (Lnp)
• L1 is due to the delayed interrupt generation



Non-Preemptable Section Latency

Advanced Operating Systems Real-Time OS Kernels

• Delay between time when an event is generated and
when the kernel handles it

• Due to non-preemptable sections in the kernel,
which delay the response to hardware interrupts

• Composed by various parts: interrupt disabling,
bottom halves delaying, . . .

• Depends on how the kernel handles the various
events...

• Will talk about it later!

Scheduler

Event Delivery Dispatch
Event Time Latency



Interrupt Generation Latency

Advanced Operating Systems Real-Time OS Kernels

• Hardware interrupts: generated by devices
• Sometimes, an interrupt should be generated at time

t . . .

• . . . but it si actually generated at time t′ = t+ Lint

• Lint is the Interrupt Generation Latency

• It is due to hardware issues
• It is generally small compared to Lnp

• Exception: if the device is a timer device, the
interrupt generation latency can be quite high

• Timer Resolution Latency Ltimer



The Timer Resolution Latency

Advanced Operating Systems Real-Time OS Kernels

• Interrupt generation latency for a hw timer device
• Ltimer can often be much larger than the

non-preemptable section latency Lnp

• Where does it come from?

• Kernel timers are generally implemented by using
a hardware device that produces periodic
interrupts

• Can we do anything about it?



Example: Data Structures Consistency

Advanced Operating Systems Real-Time OS Kernels

• HW interrupt: breaks the regular execution flow

• If the CPU is executing in US, switch to KS

• If execution is already in KS, possible problems:

1. The kernel is updating a linked list
2. IRQ While the list is in an inconsistent state
3. Jump to the ISR, that needs to access the list...

• Must disable interrupts while updating the list!
• Similar interrupt disabling is also used in spinlocks

and mutex implementations...



Real-Time Executives

Advanced Operating Systems Real-Time OS Kernels

• Executive: Library code that can be directly linked to
applications

• Implements functionalities generally provided by
kernels

• Generally, no distinction between US and KS

• No CPU privileged mode, or application executes
in privileged mode

• “kernel” functionalities are invoked by direct
function call

• Applications can execute privileged instructions



Real-Time Executives - 2

Advanced Operating Systems Real-Time OS Kernels

• Advantages:

• Simple, small, low overhead
• Only the needed code is linked in the final image

• Disadvantages:

• No protection
• Applications can even disable interrupts → Lnp

risks to be unpredictable



Real-Time Executives - 3

Advanced Operating Systems Real-Time OS Kernels

• Consistency of the internal structures is generally
ensured by disabling interrupts

• Lnp is bounded by the maximum amount of time
interrupts are disabled

• ...Disabled by the executive or by applications!!!

• Generally used only when memory footprint is
important, or when the CPU does not provide a
privileged mode

• Example: TinyOS http://www.tinyos.net

http://www.tinyos.net


Monolithic Kernels

Advanced Operating Systems Real-Time OS Kernels

• Traditional Unix-like structure
• Protection: distinction between Kernel (running in

KS) and User Applications (running in US)
• The kernel behaves as a single-threaded program

• One single execution flow in KS at each time
• Simplify consistency of internal kernel structures

• Execution enters the kernel in two ways:

• Coming from upside (system calls)
• Coming from below (hardware interrupts)



Single-Threaded Kernels

Advanced Operating Systems Real-Time OS Kernels

• Only one single execution flow (thread) can execute
in the kernel

• It is not possible to execute more than 1 system
call at time

• Non-preemptable system calls
• In SMP systems, syscalls are critical sections

(execute in mutual exclusion)

• Interrupt handlers execute in the context of the
interrupted task



Bottom Halves

Advanced Operating Systems Real-Time OS Kernels

• Interrupt handlers split in two parts

• Short and fast ISR
• “Soft IRQ handler”

• Soft IRQ hanlder: deferred handler

• Traditionally known ass Bottom Half (BH)
• AKA Deferred Procedure Call - DPC - in

Windows
• Linux: distinction between “traditional” BHs and

Soft IRQ handlers



Synchronizing System Calls and BHs

Advanced Operating Systems Real-Time OS Kernels

• Synchronization with ISRs by disabling interrupts
• Synchronization with BHs: is almost automatic

• BHs execute atomically (a BH cannot interrupt
another BH)

• BHs execute at the end of the system call, before
invoking the scheduler for returning to US

• Easy synchronization, but large non-preemptable
sections!

• Achieved by reducing the kernel parallelism
• Can be bad for real-time



Latency in Single-Threaded Kernels

Advanced Operating Systems Real-Time OS Kernels

• Kernels working in this way are often called
non-preemptable kernels

• Lnp is upper-bounded by the maximum amount of
time spent in KS

• Maximum system call length
• Maximum amount of time spent serving interrupts



Evolution of the Monolithic Structure

Advanced Operating Systems Real-Time OS Kernels

• Monolithic kernels are single-threaded: how to run
then on multiprocessor?

• The kernel is a critical section: Big Kernel Lock
protecting every system call

• This solution does not scale well: a more
fine-grained locking is needed!

• Tasks cannot block on these locks → not mutexes,
but spinlocks!

• Remember? When the CS is busy, a mutex
blocks, a spinlock spins!

• Busy waiting... Not that great idea...



Removing the Big Kernel Lock

Advanced Operating Systems Real-Time OS Kernels

• Big Kernel Lock → huge critical section for everyone

• Bad for real-time...
• ...But also bad for troughput!

• Let’s split it in multiple locks...
• Fine-grained locking allows more execution flows in

the kernel simultaneously

• More parallelism in the kernel...
• ...But tasks executing in kernel mode are still

non-preemptable



Preemptable Kernels

Advanced Operating Systems Real-Time OS Kernels

• Multithreaded kernel

• Fine-grained critical sections inside the kernel
• Kernel code is still non-preemptable

• Idea: When the kernel is not in critical section,
preemptions can occurr

• Check for preemptions when exiting kernel’s
critical sections



Linux Kernel Preemptability

Advanced Operating Systems Real-Time OS Kernels

• Check for preemption when exiting a kernel critical
section

• Implemented by modifying spinlocks
• Preemption counter: increased when locking,

drecreased when unlocking
• When preemption counter == 0, check for

preemption

• In a preemptable kernel, Lnp is upper bounded by
the maximum size of a kernel critical section

• Critical section == non-preemptable... This is NPP!!!



Latency in a Preemptable Kernel

Advanced Operating Systems Real-Time OS Kernels

1

10

100

1000

10000

100000

10
00

70
00

80
00

90
00

10
00

0
11

00
0

17
00

0

20
00

0

La
te

nc
y 

(u
se

c)

Elapsed Time (msec)

m
em

or
y

ca
ps

 o
n

ca
ps

 o
ff

ch
vt

 3

ch
vt

 2

i/o pr
oc

 r
ea

d

fo
rk



NPP Drawbacks

Advanced Operating Systems Real-Time OS Kernels

• Preemptable Kernel: use NPP for kernel critical
sections

• NPP is known to have issues

• Low-priority tasks with large critical sections can
affect the schedulability of high-priority tasks not
using resources!

• In this context: low-priority (or NRT) tasks
invoking system calls with long critical sections
can compromise the schedulability of high priority
real-time tasks

• Even if they do not use those syscalls or
critical sections!

• Can we do better???



Doing Better than NPP

Advanced Operating Systems Real-Time OS Kernels

• Possible alternatives: HLP and PI
• HLP: easy to implement, but requires to know which

resources the tasks will use

• Possible to avoid high latencies on tasks not
using the “long critical sections”, but...

• ...Those tasks must be identified somehow!

• PI: does not impose restrictions or require a-priori
knowledge of the tasks behaviour, but requires more
changes to the kernel!



Using HLP

Advanced Operating Systems Real-Time OS Kernels

• Simple idea: distinction between RT tasks (do not
use the kernel!) and NRT tasks (can use the kernel)

• Do not use the kernel: simple way to avoid long
critical sections!

• How the hell can we execute a task without using the
OS kernel???

• Some “lower level RT-kernel” is needed

• Running below the kernel!
• Two possibilities: µkernels or dual-kernel systems



µKernels - 1

Advanced Operating Systems Real-Time OS Kernels

• Basic idea: simplify the kernel

• Reduce to the number of abstractions exported
by the kernel

• Address Spaces
• Threads
• IPC mechanisms (channels, ports, etc...)

• Most of the “traditional” kernel functionalities
implemented in user space

• Even device drivers can be in user space!



µKernels - 2

Advanced Operating Systems Real-Time OS Kernels

• Interactions via IPC (IRQs to drivers as messages,
...)

• Servers: US processes implementing OS
functionalities

• OS kernel as a single user-space process:
Single-server OSs

• Multiple user-space processes (a server per
driver, FS server, network server, ...):
Multi-server OSs



µKernels vs Multithreaded Kernels

Advanced Operating Systems Real-Time OS Kernels

• µKernels are known to be “more modular” (servers
can be stopped / started at run time)

• All the modern monolithic kernels provide a module
mechanism

• Modules are linked into the kernel, servers are
separate programs running in US

• Key difference between µKernels and traditional
kernels: each server runs in its own address space

• In some “µKernel systems”, some servers share the
same address space for some servers to avoid the
IPC overhead



Latency in µKernel-Based Systems - 1

Advanced Operating Systems Real-Time OS Kernels

• Non-preemptable sections latency is similar to
monolithic kernels

• Lnp is upper-bounded by the maximum amount of
time spent in the µKernel...

• ...But µKernels are simpler than monolithic
kernels!

• System calls and ISRs should be shorter ⇒ the
latency in a µKernel is generally smaller than in a
monolithic kernel



Latency in µKernel-Based Systems - 2

Advanced Operating Systems Real-Time OS Kernels

• Unfortunately, the latency reduction achieved by the
µKernel structure is often not sufficient for real-time
systems

• Even µKernels have to be modified like monolithic
kernels for obtaining good real-time performance

• (µ)kernel preemptability, ...



2nd Generation µKernels

Advanced Operating Systems Real-Time OS Kernels

• Problems with Mach-like “fat µKernels”

• The kernel is too big → does not fit in cache
memory

• Inefficient IPC mechanisms

• Second generation of µKernels (“MicroKernels Can
and Must be Small”): L4

• Very simple kernel (only few syscalls)
• Small (fits in cache memory)
• Super-optimized IPC (designed to be efficient,

not powerful)



2nd Generation µKernels: Performance

Advanced Operating Systems Real-Time OS Kernels

• L4 µkernel: optimised for performance

• Impact on global OS performance?
• Real-Time performance?

• Linux ported to L4: l4linux

• Single-Server OS
• Only 10% performance penalty!

• Real-time performance: not so good. L4 heavily
modified (introducing preemption points) to provide
low latencies (Fiasco)



L4Linux

Advanced Operating Systems Real-Time OS Kernels

• l4linux: single-server OS, providing the Linux ABI

• Linux applications run unmodified on it
• Actually the server is the Linux kernel (ported to

a new “l4” architecture)

• Idea: a µKernel is so simple and small that it does
not need to be preemptable

• False: Fiasco needed some special care to
obtain good real-time performance



L4Linux and Real-Time

Advanced Operating Systems Real-Time OS Kernels

• Real-Time OS: DROPS

• Non real-time applications run on l4linux (regular
Linux applications)

• Real-time applications directly run on L4
• The l4linux server should not disable interrupts,

or contain non-preemptable sections

• Use HLP instead of NPP

• Easy to identify RT tasks: native L4 tasks!
• The l4linux server must never have a priority

higher than RT applications



“Tamed” L4Linux - 1

Advanced Operating Systems Real-Time OS Kernels

• The Linux kernel often disables interrupts (example:
spin lock irq()) or preemption...

• ...So, l4linux risks to increase the latency for L4...
• Solution: in the “L4 architecture”, interrupt disabling

can be remapped to a soft interrupt disabling

• l4linux disables interrupts → no real cli
• IPCs notifying interrupts to l4linux are disabled
• When l4linux re-enables interrupts, pending

interrupts can be notified to the l4linux server via
IPC



“Tamed” L4Linux - 2

Advanced Operating Systems Real-Time OS Kernels

• l4linux does not really disable hw interrupts

• Lnp is high for the l4linux server (and for Linux
applications)...

• ...But is very low for L4 applications!

• l4linux cannot affect the latency experienced by L4
applications

• HLP requires to know which applications use the
resource...

• ...In this context, it means “which applications
use l4linux”



Dual Kernel Approach

Advanced Operating Systems Real-Time OS Kernels

• HLP idea: Linux applications are non real-time;
real-time applications run at lower level

• Instead of using µkernels, mix the real-time
executive approach with the monolithic approach

• Low-level real-time kernel: directly handles
interrupts and manage the hardware

• Non real-time interrupts: forwarded to Linux only
when they do not interfere with RT activities

• Linux cannot disable interrupts (no cli)
• can only disable (or delay) interrupt forwarding

• Real-time applications cannot use the Linux kernel



RTLinux

Advanced Operating Systems Real-Time OS Kernels

• Dual kernel approach: initially used by RTLinux

• Patch for the Linux kernel to intercept the
interrupts

• Small kernel module implementing a real-time
executive

• Handle real-time interrupts (low latency)
• Forward non real-time interrupts to Linux
• Provide real-time functionalities (POSIX API)

• Real-time applications are kernel modules

• There is a patent on interrupt forwarding ???



RTLinux & RTAI

Advanced Operating Systems Real-Time OS Kernels

• RTAI: “Free” implementation of a dual-kernel
approach

• Better maintained than RTLinux
• Real-time applications are Linux modules: must

have an (L)GPL compatible license
• No problem in Europe, maybe subject to RTLinux

patent in the US

• Big problem for adoption in the industry
• Would you use something that might be infringing

a patent?



RTAI & Friends

Advanced Operating Systems Real-Time OS Kernels

• I-Pipes: Interrupt Pipelines

• A small nanokernel handles interrupts by sending
them to pipelines of applications / kernels that
actually manage them

• Real-time application come first in the pipeline
• Same functionalities as RTLinux interrupt

forwarding, but different naming!

• Described in a paper that has been published before
the RTLinux patent → patent free



I-Pipes Implementation

Advanced Operating Systems Real-Time OS Kernels

• Adeos nanokernel: implements interrupt pipelines

• Same functionalities as RTLinux, but patent-free!
• Can be optionally used by RTAI

• Xenomai: similar to RTAI; based on Adeos

• Provides different real-time APIs

• Xenomai 3: both dual-kernel and user-space
• EVL (https://evlproject.org): next

generation of dual-kernel/co-kernel systems
(Xenomai 4)

https://evlproject.org


Summing Up...

Advanced Operating Systems Real-Time OS Kernels

• Monolithic kernel: high latencies (no real-time)
• Preemptable kernel: kernel critical sections → Use

NPP to protect them

• Upper bound for Lnp, but might be too high

• µkernel and dual-kernel: use HLP instead of NPP

• HLP requires to know in advance which tasks will
use a resource

• Distinction between RT and NRT tasks!

• Can we do better? How to use PI???



Real-Time in Linux User Space

Advanced Operating Systems Real-Time OS Kernels

• HLP Idea: do not care about Linux kernel latencies,
but make sure that they do not affect RT tasks

• RT tasks: not Linux tasks!

• Real-Time performance to Linux processes ⇒ need
to reduce Lnp for the Linux kernel, not for low-level
applications running under it

• How to reduce Lnp? Using PI directly is not easy...

• There is a reason for using NPP
• In some situations, the kernel cannot block!
• But PI is a blocking protocol...



RT in User Space: Requirements

Advanced Operating Systems Real-Time OS Kernels

• Linux is a multithreaded kernel ⇒ need:

1. Fine-grained locking
2. Preemptable kernel
3. Schedulable ISRs and BHs ⇒ threaded interrupt

handling
4. Replacing spinlocks with mutexes
5. A real-time synchronisation protocol (PI) for

these mutexes

• Remember Linux already provides high-resolution
timers (since 2.6.21)



Using Threads for BHs and ISRs

Advanced Operating Systems Real-Time OS Kernels

• Using threads for serving BHs and ISRs, it is
possible to schedule them

• The priority of interrupts not needed by real-time
applications can be decreased, to reduce Lnp

• Non-threaded handlers: ISRs and BHs always
preempt all tasks!!!

• NRT tasks can trigger high latencies by just
doing a lot of I/O!!!

• Threaded handlers: if an interrupt is not needed
by RT tasks, its priority can be lower than all the
RT tasks priorities



Threaded Interrupt Handlers and PI

Advanced Operating Systems Real-Time OS Kernels

• Non-threaded ISRs ⇒ use spinlocks to protect data
structures accessed by the ISR

• The ISR executes in the interrupted process
context ⇒ it cannot block

• Using threaded ISRs, spinlocks can be replaced with
mutexes

• Spinlocks implicitly use NPP, mutexes can use PI!!!



The Preempt-RT Patch

Advanced Operating Systems Real-Time OS Kernels

• The features presented in the previous slides can
surprisingly be implemented with a fairly small kernel
patch

• Preempt-RT patch, started by Ingo Molnar and other
Linux developers; now maintained by Thomas
Gleixner

• https://www.kernel.org/pub/linux/kernel/projects/rt

• Core RT patch: about 700KB of code
• Larger patches because of added features

(tracing, ...)

• Most of the code just changes spinlocks in mutexes
• Various real-time features can be enabled / disabled

at kernel configuration time

https://www.kernel.org/pub/linux/kernel/projects/rt


Preempt-RT: Performance

Advanced Operating Systems Real-Time OS Kernels

• Continuous Integration and testing:
https://www.osadl.org/QA-Farm-Realtime.qa-farm-about.0.html

• On a standard PC, Worst Case kernel latency less
than 50µs

• Remember: it was more than 10ms on a vanilla
kernel!

• Much more tested than many other “RT” kernels

• Long (continuous!) runs
• Multiple CPUs / architectures

https://www.osadl.org/QA-Farm-Realtime.qa-farm-about.0.html

	Latency
	Effects of the Latency
	Sources of Latency
	Analysis of the Various Sources
	Non-Preemptable Section Latency
	Interrupt Generation Latency
	The Timer Resolution Latency
	Example: Data Structures Consistency
	Real-Time Executives
	Real-Time Executives - 2
	Real-Time Executives - 3
	Monolithic Kernels
	Single-Threaded Kernels
	Bottom Halves
	Synchronizing System Calls and BHs
	Latency in Single-Threaded Kernels
	Evolution of the Monolithic Structure
	Removing the Big Kernel Lock
	Preemptable Kernels
	Linux Kernel Preemptability
	Latency in a Preemptable Kernel
	NPP Drawbacks
	Doing Better than NPP
	Using HLP
	Kernels - 1
	Kernels - 2
	Kernels vs Multithreaded Kernels
	Latency in Kernel-Based Systems - 1
	Latency in Kernel-Based Systems - 2
	2nd Generation Kernels
	2nd Generation Kernels: Performance
	L4Linux
	L4Linux and Real-Time
	``Tamed'' L4Linux - 1
	``Tamed'' L4Linux - 2
	Dual Kernel Approach
	RTLinux
	RTLinux & RTAI
	RTAI & Friends
	I-Pipes Implementation
	Summing Up...
	Real-Time in Linux User Space
	RT in User Space: Requirements
	Using Threads for BHs and ISRs
	Threaded Interrupt Handlers and PI
	The Preempt-RT Patch
	Preempt-RT: Performance

