Real-Time OS Kernels

Advanced Real Time Operating Systems

Luca Abeni
luca.abeni@santannapisa.it

e Latency: measure of the difference between the
theoretical and actual schedule

e Jask 7 expects to be scheduled at time ¢ . ..
e ...butis actually scheduled at time ¢’
e = latency L=t —t
e The latency L can be modelled as a blocking time =-
affects the guarantee test

e Similar to what done for shared resources
Blocking time due to latency, not to priority
Inversion

Advanced Operating Systems Real-Time OS Kernels

Effects of the Latency

e Upper bound for L? If not known, no schedulability
tests!!!

e The latency must be bounded: 3L . L < L™**

o If L™ is too high, only few task sets result to be
schedulable

e Large blocking time experienced by all tasks!
e [The worst-case latency L"“* cannot be too high

Advanced Operating Systems Real-Time OS Kernels

Sources of Latency

A task 7; is a stream of jobs J; ; arriving at time r; ;
Job J; ; is scheduled at time t' > r; ;
o (' — Ti.j IS given by

1. J;;’s arrival is signalled at time r; ; + L'
2. Such event is served at time r; ; + L' + L?
3. J;,is actually scheduled at r; ; + L' + L* + L?

Advanced Operating Systems Real-Time OS Kernels

Analysis of the Various Sources

L=L'4+1*+1L°
L3 is sometimes called scheduler latency

e Butitis not really a latency!!!
Interference from higher priority tasks

e Already accounted for by RTA / TDA or similar —
let’s not consider it

L? is the non-preemptable section latency (L")
L' is due to the delayed interrupt generation

Advanced Operating Systems Real-Time OS Kernels

Non-Preemptable Section Latency

e Delay between time when an event is generated and
when the kernel handles it

e Due to non-preemptable sections in the kernel,
which delay the response to hardware interrupts

e Composed by various parts: interrupt disabling,
bottom halves delaying, . ..

e Depends on how the kernel handles the various

events...
o Will talk about it later!
Event Time L aIenCy
x Event Delivery Dispatch
XI / I Scheduler f

Advanced Operating Systems Real-Time OS Kernels

Interrupt Generation Latency

Hardware interrupts: generated by devices
Sometimes, an interrupt should be generated at time

t...
... but it si actually generated at time ¢’ = ¢ + L

L™ is the Interrupt Generation Latency

It is due to hardware issues

It is generally small compared to L"”
Exception: if the device is a timer device, the
interrupt generation latency can be quite high

o Timer Resolution Latency Lt™me"

Advanced Operating Systems Real-Time OS Kernels

The Timer Resolution Latency

Interrupt generation latency for a hw timer device
Lmer can often be much larger than the
non-preemptable section latency L™

e Where does it come from?

e Kernel timers are generally implemented by using
a hardware device that produces periodic
Interrupts

e (Can we do anything about it?

Advanced Operating Systems Real-Time OS Kernels

Example: Data Structures Consistency

HW interrupt: breaks the regular execution flow
e If the CPU is executing in US, switch to KS
If execution is already in KS, possible problems:

1. The kernel is updating a linked list
2. |IRQ While the list is in an inconsistent state
3. Jump to the ISR, that needs to access the list...

Must disable interrupts while updating the list!
Similar interrupt disabling is also used in spinlocks
and mutex implementations...

Advanced Operating Systems Real-Time OS Kernels

Real-Time Executives

e Executive: Library code that can be directly linked to
applications

e Implements functionalities generally provided by
kernels

e Generally, no distinction between US and KS

e No CPU privileged mode, or application executes
In privileged mode

e “kernel” functionalities are invoked by direct
function call

e Applications can execute privileged instructions

Advanced Operating Systems Real-Time OS Kernels

Real-Time Executives - 2

e Advantages:

e Simple, small, low overhead
e Only the needed code is linked in the final image
e Disadvantages:

e No protection

Applications can even disable interrupts — L™
risks to be unpredictable

Advanced Operating Systems Real-Time OS Kernels

Real-Time Executives - 3

e Consistency of the internal structures is generally
ensured by disabling interrupts

e L™ Is bounded by the maximum amount of time
iInterrupts are disabled
e ...Disabled by the executive or by applications!!!

e Generally used only when memory footprint is
important, or when the CPU does not provide a
privileged mode

e Example: TinyOS http://www.tinyos.net

Advanced Operating Systems Real-Time OS Kernels

http://www.tinyos.net

Monolithic Kernels

Traditional Unix-like structure
Protection: distinction between Kernel (running in
KS) and User Applications (running in US)

e The kernel behaves as a single-threaded program

e One single execution flow in KS at each time
e Simplify consistency of internal kernel structures

e Execution enters the kernel in two ways:

e (Coming from upside (system calls)
e Coming from below (hardware interrupts)

Advanced Operating Systems Real-Time OS Kernels

Single-Threaded Kernels

e Only one single execution flow (thread) can execute
in the kernel

e |t is not possible to execute more than 1 system
call at time

e Non-preemptable system calls
e In SMP systems, syscalls are critical sections
(execute in mutual exclusion)

e Interrupt handlers execute in the context of the
interrupted task

Advanced Operating Systems Real-Time OS Kernels

Bottom Halves

e Interrupt handlers split in two parts

e Short and fast ISR
e “Soft IRQ handler”

e Soft IRQ hanlder: deferred handler

Traditionally known ass Bottom Half (BH)
AKA Deferred Procedure Call - DPC - in
Windows

e Linux: distinction between “traditional” BHs and
Soft IRQ handlers

Advanced Operating Systems Real-Time OS Kernels

Synchronizing System Calls and BHs

e 3Sync
Sync

e B

nronization with ISRs by disabling interrupts
nronization with BHs: i1s almost automatic

Hs execute atomically (a BH cannot interrupt

another BH)
e BHs execute at the end of the system call, before
invoking the scheduler for returning to US

e Easy

synchronization, but large non-preemptable

sections!

Achieved by reducing the kernel parallelism
Can be bad for real-time

Advanced Operating Systems Real-Time OS Kernels

Latency in Single-Threaded Kernels

e Kernels working in this way are often called
non-preemptable kernels

e ["|s upper-bounded by the maximum amount of
time spent in KS

e Maximum system call length
e Maximum amount of time spent serving interrupts

Advanced Operating Systems Real-Time OS Kernels

Evolution of the Monolithic Structure

e Monolithic kernels are single-threaded: how to run
then on multiprocessor?

e The kernel is a critical section: Big Kernel Lock
protecting every system call

e This solution does not scale well: a more
fine-grained locking is needed!

e Tasks cannot block on these locks — not mutexes,
but spinlocks!

e Remember? When the CS is busy, a mutex
blocks, a spinlock spins!
e Busy waiting... Not that great idea...

Advanced Operating Systems Real-Time OS Kernels

Removing the Big Kernel Lock

e Big Kernel Lock — huge critical section for everyone

e Bad for real-time...
e ...But also bad for troughput!

Let’s split it in multiple locks...
Fine-grained locking allows more execution flows in
the kernel simultaneously

e More parallelism in the kernel...
e ...But tasks executing in kernel mode are still
non-preemptable

Advanced Operating Systems Real-Time OS Kernels

Preemptable Kernels

e Multithreaded kernel

e Fine-grained critical sections inside the kernel
e Kernel code is still non-preemptable

e Idea: When the kernel is not in critical section,
preemptions can occurr

e C(Check for preemptions when exiting kernel’s
critical sections

Advanced Operating Systems Real-Time OS Kernels

Linux Kernel Preemptability

e C(Check for preemption when exiting a kernel critical
section

Implemented by modifying spinlocks

e Preemption counter: increased when locking,
drecreased when unlocking

e When preemption counter == 0, check for
preemption

e |In a preemptable kernel, L™ is upper bounded by
the maximum size of a kernel critical section
e Critical section == non-preemptable... This is NPP!!!

Advanced Operating Systems Real-Time OS Kernels

Latency in a Preemptable Kernel

Lo (= L ! !
T e o S :
o w0f B N e :
Q : b i : : : i i
%) s S s s
= | : %
P : ! !
= 3 : :
C . . .
g % % %
© s s s
— 100 [e A U 11— -
E
‘ 2
‘ 8 X
/ o
10 SRR R e 1 i e Tkl - e —
L Lty ; ;
o O O o0 o o o o
o © O O © o o o
o ©O O O o o o o
— ~ 0 & © « o
— AN

~
Elapsed Time (nigec)

Advanced Operating Systems Real-Time OS Kernels

NPP Drawbacks

e Preemptable Kernel: use NPP for kernel critical
sections
e NPP is known to have issues

e Low-priority tasks with large critical sections can
affect the schedulability of high-priority tasks not
using resources!

e In this context: low-priority (or NRT) tasks
Invoking system calls with long critical sections
can compromise the schedulability of high priority
real-time tasks

e Even if they do not use those syscalls or
critical sections!

e (Can we do better???
Advanced Operating Systems Real-Time OS Kernels

Doing Better than NPP

Possible alternatives: HLP and Pl
HLP: easy to implement, but requires to know which
resources the tasks will use

e Possible to avoid high latencies on tasks not
using the “long critical sections”, but...
e ...Those tasks must be identified somehow!

e PIl: does not impose restrictions or require a-priori
knowledge of the tasks behaviour, but requires more
changes to the kernel!

Advanced Operating Systems Real-Time OS Kernels

Using HLP

e Simple idea: distinction between RT tasks (do not
use the kernell) and NRT tasks (can use the kernel)

e Do not use the kernel: simple way to avoid long
critical sections!

e How the hell can we execute a task without using the
OS kernel???
e Some “lower level RT-kernel” is needed

Running below the kernel!
Two possibilities: pkernels or dual-kernel systems

Advanced Operating Systems Real-Time OS Kernels

uKernels - 1

e Basic idea: simplify the kernel

e Reduce to the number of abstractions exported
by the kernel

e Address Spaces
e Threads
e |PC mechanisms (channels, ports, etc...)

e Most of the “traditional” kernel functionalities
Implemented in user space
e Even device drivers can be in user space!

Advanced Operating Systems Real-Time OS Kernels

uKernels - 2

e Interactions via IPC (IRQs to drivers as messages,
...

e Servers: US processes implementing OS
functionalities

e OS kernel as a single user-space process:
Single-server OSs

e Multiple user-space processes (a server per
driver, FS server, network server, ...):
Multi-server OSs

Advanced Operating Systems Real-Time OS Kernels

uKernels vs Multithreaded Kernels

e 1 Kernels are known to be “more modular” (servers
can be stopped / started at run time)

e All the modern monolithic kernels provide a module
mechanism

e Modules are linked into the kernel, servers are
separate programs running in US

e Key difference between uKernels and traditional

Kernels: each server runs in its own address space

e |n some “uKernel systems”, some servers share the
same address space for some servers to avoid the
IPC overhead

Advanced Operating Systems Real-Time OS Kernels

Latency in ;Kernel-Based Systems - 1

e Non-preemptable sections latency is similar to
monolithic kernels

e [is upper-bounded by the maximum amount of
time

e ...But uKernels are simpler than monolithic
kernels!

e System calls and ISRs should be shorter = the
latency in a uKernel is generally smaller than in a
monolithic kernel

Advanced Operating Systems Real-Time OS Kernels

Latency in ;Kernel-Based Systems - 2

e Unfortunately, the latency reduction achieved by the
uKernel structure is often not sufficient for real-time

systems
e Even uKernels have to be modified like monolithic
kernels for obtaining good real-time performance

e (u)kernel preemptabillity, ...

Advanced Operating Systems Real-Time OS Kernels

2"t Generation yKernels

e Problems with Mach-like “fat Kernels”

e The kernel is too big — does not fit in cache
memory
e Inefficient IPC mechanisms

e Second generation of uKernels (“MicroKernels Can
and Must be Small”): L4

e Very simple kernel (only few syscalls)
Small (fits in cache memory)
Super-optimized IPC (designed to be efficient,
not powerful)

Advanced Operating Systems Real-Time OS Kernels

2"! Generation ;Kernels: Performance

e L4 ukernel: optimised for performance

e Impact on global OS performance?
e Real-Time performance?

e LinuxportedtolL4: 141inux

e Single-Server OS
e Only 10% performance penalty!

e Real-time performance: not so good. L4 heavily
modified (introducing preemption points) to provide
low latencies (Fiasco)

Advanced Operating Systems Real-Time OS Kernels

e |4linux: single-server OS, providing the Linux ABI

Linux applications run unmodified on it
Actually the server is the Linux kernel (ported to
a new “14” architecture)

e Idea: a uKernel is so simple and small that it does
not need to be preemptable

e [alse: Fiasco needed some special care to
obtain good real-time performance

Advanced Operating Systems Real-Time OS Kernels

L4Linux and Real-Time

e Real-Time OS: DROPS

e Non real-time applications run on l4linux (regular
Linux applications)
Real-time applications directly run on L4
The l4linux server should not disable interrupts,
or contain non-preemptable sections

e Use HLP instead of NPP

e Easy to identify RT tasks: native L4 tasks!
e The l4linux server must never have a priority
higher than RT applications

Advanced Operating Systems Real-Time OS Kernels

“Tamed” L4Linux - 1

e The Linux kernel often disables interrupts (example:
spin_lock_irqg()) or preemption...
...90, l4linux risks to increase the latency for L4...
Solution: in the “L4 architecture”, interrupt disabling
can be remapped to a soft interrupt disabling

l4linux disables interrupts — no real c1i

IPCs notifying interrupts to [4linux are disabled
When l|4linux re-enables interrupts, pending
interrupts can be notified to the l4linux server via
IPC

Advanced Operating Systems Real-Time OS Kernels

“Tamed” L4Linux - 2

e l|4linux does not really disable hw interrupts

e L™ is high for the 14linux server (and for Linux
applications)...
e ...Butisvery low for L4 applications!

e l4linux cannot affect the latency experienced by L4
applications

e HLP requires to know which applications use the
resource...

e ...Inthis context, it means “which applications
use l4linux”

Advanced Operating Systems Real-Time OS Kernels

Dual Kernel Approach

e HLP idea: Linux applications are non real-time;
real-time applications run at lower level

e Instead of using pkernels, mix the real-time
executive approach with the monolithic approach

e Low-level real-time kernel: directly handles
interrupts and manage the hardware

e Non real-time interrupts: forwarded to Linux only
when they do not interfere with RT activities

e Linux cannot disable interrupts (no c11i)

e can only disable (or delay) interrupt forwarding

e Real-time applications cannot use the Linux kernel

Advanced Operating Systems Real-Time OS Kernels

e Dual kernel approach: initially used by RTLinux

e Patch for the Linux kernel to intercept the
iInterrupts

e Small kernel module implementing a real-time
executive

e Handle real-time interrupts (low latency)
e Forward non real-time interrupts to Linux
e Provide real-time functionalities (POSIX API)

e Real-time applications are kernel modules
e There is a patent on interrupt forwarding ?7??

Advanced Operating Systems Real-Time OS Kernels

RTLinux & RTAI

e RTAI: “Free” implementation of a dual-kernel
approach
Better maintained than RTLinux
Real-time applications are Linux modules: must
have an (L)GPL compatible license

e No problem in Europe, maybe subject to RTLinux
patent in the US

e Big problem for adoption in the industry
e Would you use something that might be infringing
a patent?

Advanced Operating Systems Real-Time OS Kernels

RTAI & Friends

e |-Pipes: Interrupt Pipelines

e A small nanokernel handles interrupts by sending
them to pipelines of applications / kernels that
actually manage them

e Real-time application come first in the pipeline
Same functionalities as RTLinux interrupt
forwarding, but different naming!

e Described in a paper that has been published before
the RTLinux patent — patent free

Advanced Operating Systems Real-Time OS Kernels

I-Pipes Implementation

e Adeos nanokernel: implements interrupt pipelines

e Same functionalities as RTLinux, but patent-free!
e Can be optionally used by RTAI

e Xenomai: similar to RTAI; based on Adeos
e Provides different real-time APIs

e Xenomai 3: both dual-kernel and user-space
EVL (https://evlproject.org): next
generation of dual-kernel/co-kernel systems
(Xenomai 4)

Advanced Operating Systems Real-Time OS Kernels

https://evlproject.org

Monolithic kernel: high latencies (no real-time)
Preemptable kernel: kernel critical sections — Use
NPP to protect them

e Upper bound for L™, but might be too high
e ukernel and dual-kernel: use HLP instead of NPP

e HLP requires to know in advance which tasks will

use a resource
e Distinction between RT and NRT tasks!

e (Can we do better? How to use P1???

Advanced Operating Systems Real-Time OS Kernels

Real-Time in Linux User Space

e HLP Idea: do not care about Linux kernel latencies,
but make sure that they do not affect RT tasks

e RT tasks: not Linux tasks!

e Real-Time performance to Linux processes = need
to reduce L™ for the Linux kernel, not for low-level
applications running under it

e How to reduce L""*? Using Pl directly is not easy...

e Thereis areason for using NPP
e |n some situations, the kernel cannot block!
But Pl is a blocking protocol...

Advanced Operating Systems Real-Time OS Kernels

RT in User Space: Requirements

e Linux is a multithreaded kernel = need:

1.
2.
3.

4.
5

Fine-grained locking

Preemptable kernel

Schedulable ISRs and BHs =- threaded interrupt
handling

Replacing spinlocks with mutexes

A real-time synchronisation protocol (Pl) for
these mutexes

e Remember Linux already provides high-resolution
timers (since 2.6.21)

Advanced Operating Systems Real-Time OS Kernels

Using Threads for BHs and ISRs

e Using threads for serving BHs and ISRs, it is
possible to schedule them

e The priority of interrupts not needed by real-time
applications can be decreased, to reduce L™

e Non-threaded handlers: ISRs and BHs always
preempt all tasks!!!

e NRT tasks can trigger high latencies by just
doing a lot of I/O!ll

e Threaded handlers: if an interrupt is not needed
by RT tasks, its priority can be lower than all the
RT tasks priorities

Advanced Operating Systems Real-Time OS Kernels

Threaded Interrupt Handlers and PI

e Non-threaded ISRs = use spinlocks to protect data
structures accessed by the ISR

e The ISR executes in the interrupted process
context = it cannot block

e Using threaded ISRs, spinlocks can be replaced with
mutexes

e Spinlocks implicitly use NPP, mutexes can use PI!!!

Advanced Operating Systems Real-Time OS Kernels

The Preempt-RT Patch

e The features presented in the previous slides can
surprisingly be implemented with a fairly small kernel
patch

e Preempt-RT patch, started by Ingo Molnar and other
Linux developers; now maintained by Thomas
Gleixner

® https://www.kernel.org/pub/linux/kernel/projects/rt

e C(Core RT patch: about 700KB of code
Larger patches because of added features
(tracing, ...)

Most of the code just changes spinlocks in mutexes
Various real-time features can be enabled / disabled
at kernel configuration time

Advanced Operating Systems Real-Time OS Kernels

https://www.kernel.org/pub/linux/kernel/projects/rt

Preempt-RT: Performance

e (Continuous Integration and testing:
https://www.osadl.org/QA-Farm—Realtime.ga-farm—about.0.html

e On a standard PC, Worst Case kernel latency less
than 50us

e Remember: it was more than 10ms on a vanilla
kernel!

e Much more tested than many other “RT” kernels

Long (continuous!) runs
Multiple CPUs / architectures

Advanced Operating Systems Real-Time OS Kernels

https://www.osadl.org/QA-Farm-Realtime.qa-farm-about.0.html

	Latency
	Effects of the Latency
	Sources of Latency
	Analysis of the Various Sources
	Non-Preemptable Section Latency
	Interrupt Generation Latency
	The Timer Resolution Latency
	Example: Data Structures Consistency
	Real-Time Executives
	Real-Time Executives - 2
	Real-Time Executives - 3
	Monolithic Kernels
	Single-Threaded Kernels
	Bottom Halves
	Synchronizing System Calls and BHs
	Latency in Single-Threaded Kernels
	Evolution of the Monolithic Structure
	Removing the Big Kernel Lock
	Preemptable Kernels
	Linux Kernel Preemptability
	Latency in a Preemptable Kernel
	NPP Drawbacks
	Doing Better than NPP
	Using HLP
	Kernels - 1
	Kernels - 2
	Kernels vs Multithreaded Kernels
	Latency in Kernel-Based Systems - 1
	Latency in Kernel-Based Systems - 2
	2nd Generation Kernels
	2nd Generation Kernels: Performance
	L4Linux
	L4Linux and Real-Time
	``Tamed'' L4Linux - 1
	``Tamed'' L4Linux - 2
	Dual Kernel Approach
	RTLinux
	RTLinux & RTAI
	RTAI & Friends
	I-Pipes Implementation
	Summing Up...
	Real-Time in Linux User Space
	RT in User Space: Requirements
	Using Threads for BHs and ISRs
	Threaded Interrupt Handlers and PI
	The Preempt-RT Patch
	Preempt-RT: Performance

