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Again on Preemptable Kernels

e Preemptable Linux kernel — reduces L"
e Isitjusta hack?
e Theoretical foundation: spinlocks end up using NPP

e Oh, no! Real-time jargon, once again!
e S0, whatis NPP?

e Latencies can still be high... Why?
e Once again, theory can explain...

e [wo possible ways around: HLP and PI!

e HLP? PI? WTH!!I
Recap on resource sharing protocols...
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Reconciliating Practice and (RT) Theory

Latency: can be modelled as a blocking time
RT Theory — lot of work on blocking times

e Mainly seen as due to priority inversion

e In OS kernels, blocking times due to someting
different...

e ...Butto re-use RT theory, let's see them as
priority inversion due to kernel critical sections!

Non-preemptable (monolithic) kernels: the kernel is
a critical section!

Preemptable kernels: fine-grained critical sections
iInside the kernel

e |Issue: they affect even tasks not using syscalls /
IRQs!
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Dealing with Priority Inversion

e Priority inversion can be reduced...

e ..Buthow?
By introducing an appropriate resource sharing
protocol (concurrency protocol)

e Provides an upper bound for the blocking time

e Non Preemptive Protocol (NPP) / Highest
_ocking Priority (HLP)

Priority Inheritance Protocol (Pl)

Priority Ceiling Protocol (PC)

mmediate Priority Ceiling Protocol (Part of the
OSEK and POSIX standards)

e Mmutexes/spinlocks (not generic semaphores) must

be used
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Non Preemptive Protocol (NPP)

e Theidea is very simple inhibit preemption when in a
critical section. How would you implement that?

e Advantages: simplicity
e Drawbacks: tasks which are not involved in a critical
section suffer blocking
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Non Preemptive Protocol (NPP)

e Theidea is very simple inhibit preemption when in a
critical section. How would you implement that?

e Raise the task’s priority to the maximum available
priority when entering a critical section

Advantages: simplicity

Drawbacks: tasks which are not involved in a critical
section suffer blocking
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NPP Example

e Remember the previous example...
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Some Observations

e The blocking (priority inversion) is bounded by the
length of the critical section of task 73
Medium priority tasks (7») cannot delay r
5 experiences some blocking, but it does not use
any resource

e Indirect blocking: 1 IS In the middle between a
higher priority task 7 and a lower priority task 73
which use the same resource

e Must be computed and taken into account in the
admission test as any other blocking time

e What's the maximum blocking time B; for 7,7
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A Problem with NPP

e Consider the following example, with
Po = P1 > P2 > P3-

70 —— .

7_1 T L(S . U(S l N

Ty { e N

73| =1 = .
0 2 4 6 8 10 12 14 16 18 20 22 24

e 7 Misses its deadline (suffers a blocking time equal
to 3) even though it does not use any resource!!

e Solution: raise 73 priority to the maximum between
tasks accessing the shared resource (" priority)
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e This time, everyone is happy
Problem: we must know in advance which task will
access the resource
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Blocking Time and Response Time

e NPP introduces a blocking time on all tasks bounded
by the maximum lenght of a critical section used by
lower priority tasks
How does blocking time affect the response times?
Response Time Computation:
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e B, Is the blocking time from lower priority tasks
o i1 [ w C', Is the interference from higher
priority tasks
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Response Time Computation - |

Task Cz 1 &’1 D;
n 20| 70 | O | 30
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3 (395200 2 | 130
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Response Time Computation - |l

Task Cz ik &’1 D; B,
n 200 70 | 0 | 30 | 2
™ 1200 80 | 1 | 45 | 2
3 1351200 2 {130 O
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Response Time Computation - |l

Task | C; | T; |&a| Di | B R;
nn 120 70 | O | 30 || 2 20+2=22
> (201 80 | 1 | 45 | 2 20+20+2=42
= |35(1200] 2 [130 || O | 35+2*20+2*20=115
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The Priority Inheritance protocol

e Another possible solution to the priority inversion:
e a low priority task 735 blocking an higher priority
task 7, inherits its priority
e — medium priority tasks cannot preempt 73

71
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The Priority Inheritance protocol
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The Priority Inheritance protocol

e Another possible solution to the priority inversion:
e a low priority task 735 blocking an higher priority
task 7, inherits its priority
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The Priority Inheritance protocol

e Another possible solution to the priority inversion:

e a low priority task 735 blocking an higher priority
task 7, inherits its priority
e — medium priority tasks cannot preempt 73
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e Task 73 inherits the priority of 7
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The Priority Inheritance protocol

e Another possible solution to the priority inversion:

e a low priority task 735 blocking an higher priority
task 7, inherits its priority
e — medium priority tasks cannot preempt 73
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e Task 73 inherits the priority of 7
e TJask m, cannot preempt 73 (p2 < p1)
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The Priority Inheritance protocol

e Another possible solution to the priority inversion:
e a low priority task 735 blocking an higher priority
task 7, inherits its priority
e — medium priority tasks cannot preempt 73
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e Task 73 inherits the priority of 7
e TJask m, cannot preempt 73 (p2 < p1)

Advanced Operating Systems RTOS Kernels and NPP/HLP/PI



The Priority Inheritance protocol

e Another possible solution to the priority inversion:
e a low priority task 735 blocking an higher priority
task 7, inherits its priority
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e Task 73 inherits the priority of 7
e TJask m, cannot preempt 73 (p2 < p1)

Advanced Operating Systems RTOS Kernels and NPP/HLP/PI



Some PI Properties

e Summarising, the main rules are the following:

e |f atask 7; blocks on a resource protected by a
mutex .S, and the resource is locked by task 7;,
then 7; inherits the priority of 7;

o If 7; itself blocks on another mutex by a task ,
then 7, inherits the priority of 7, (multiple
Inheritance)

e If 7 Is blocked, the chain of blocked tasks is
followed until a non-blocked task is found that
iInherits the priority of 7;

e When a task unlocks a mutex, it returns to the
priority it had when locking it
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Using HLP and PI

e Remember: Linux with kernel preemption uses NPP

e Worst-case latency: maximum size of a kernel
critical section

e Latencies affect all the tasks (even tasks not
using the kernel!)

e Improvements: use Pl or HLP

e Using HLP: u-kernel and dual-kernel (co-kernel)
systems

e NRT tasks using linux: only block Linux (NRT)
tasks

e RT tasks using a real-time co-kernel (or a
u-kernel) < higher priority than NRT tasks

e Using Pl: Preempt-RT (full kernel preemption!)
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