
Real-Time Operating

Systems

Luca Abeni

luca.abeni@santannapisa.it

RT Scheduling: Why?

Advanced Operating Systems Real-Time

• The task set T = {(1, 3), (4, 8)} is not schedulable by
FCFS

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

• T = {(1, 3), (4, 8)} is schedulable with other
algorithms

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

Fixed Priority Scheduling

Advanced Operating Systems Real-Time

• Very simple preemptive scheduling algorithm

• Every task τi is assigned a fixed priority pi
• The active task with the highest priority is

scheduled

• Priorities are integer numbers: the higher the
number, the higher the priority

• In the research literature, sometimes authors use
the opposite convention: the lowest the number,
the highest the priority

• In the following we show some examples,
considering periodic tasks, constant execution times,
and deadlines equal to the period

Example of Schedule

Advanced Operating Systems Real-Time

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Advanced Operating Systems Real-Time

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Advanced Operating Systems Real-Time

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Advanced Operating Systems Real-Time

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Advanced Operating Systems Real-Time

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Advanced Operating Systems Real-Time

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Advanced Operating Systems Real-Time

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Advanced Operating Systems Real-Time

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Advanced Operating Systems Real-Time

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Advanced Operating Systems Real-Time

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Advanced Operating Systems Real-Time

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Advanced Operating Systems Real-Time

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Advanced Operating Systems Real-Time

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Advanced Operating Systems Real-Time

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Advanced Operating Systems Real-Time

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Another Example (non-schedulable)

Advanced Operating Systems Real-Time

• Consider the following task set: τ1 = (3, 6, 6), p1 = 3,
τ2 = (2, 4, 8), p2 = 2, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

In this case, task τ2 misses its deadline!

Another Example (non-schedulable)

Advanced Operating Systems Real-Time

• Consider the following task set: τ1 = (3, 6, 6), p1 = 3,
τ2 = (2, 4, 8), p2 = 2, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

In this case, task τ2 misses its deadline!

Another Example (non-schedulable)

Advanced Operating Systems Real-Time

• Consider the following task set: τ1 = (3, 6, 6), p1 = 3,
τ2 = (2, 4, 8), p2 = 2, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

In this case, task τ2 misses its deadline!

Notes about Priority Scheduling

Advanced Operating Systems Real-Time

• Some considerations about the schedule shown
before:

• The response time of the task with the highest
priority is minimum and equal to its WCET

• The response time of the other tasks depends on
the interference of the higher priority tasks

• The priority assignment may influence the
schedulability of a task set

• Problem: how to assign tasks’ priorities so
that a task set is schedulable?

Response Time Analysis

Advanced Operating Systems Real-Time

• Necessary and sufficient test: compute the
worst-case response time for every task

• For every task τi:

• Compute worst case response time Ri for τi

• Remember? Ri = maxj{ρi,j}; ρi,j = fi,j − ri,j

• If Ri ≤ Di, then the task is schedulable
• otherwise, the task is not schedulable

• No assumption on the priority assignment

• Algorithm valid for arbitrary priority assignments
• Not only RM / DM...

• Periodic tasks with no offsets, or sporadic tasks

The Critical Instant

Advanced Operating Systems Real-Time

• Tasks ordered by decreasing priority (i < j → pi > pj)

• No assumptions about tasks offsets

• ⇒ Consider the worst possible offsets combination

• A job Ji,j released at the critical instant experiences the

maximum response time for τi: ∀k, ρi,j ≥ ρi,k

• Simplified definition (jobs deadlines should be

considered...)

• Theorem: The critical instant for task τi occurs
when job Ji,j is released at the same time with a
job in every high priority task

• If all the offsets are 0, the first job of every task is
released at the critical instant!!!

Worst Case Response Time

Advanced Operating Systems Real-Time

• Worst case response time Ri for task τi depends on:

• Its execution time. . .
• . . .And the execution time of higher priority tasks

• Higher priority tasks can preempt task τi, and
increase its response time

0 2 4 6 8 10 12 14 16 18

τ1
τ2
τ3

• Ri = Ci +
∑i−1

h=1

⌈

Ri

Th

⌉

Ch

Computing the Response Time - I

Advanced Operating Systems Real-Time

Ri = Ci +
i−1
∑

h=1

⌈

Ri

Th

⌉

Ch

• Urk!!! Ri = f(Ri)... How can we solve it?
• There is no closed-form expression for computing

the worst case response time Ri

• We need an iterative method to solve the equation

R
0

1

R
2

R

Computing the Response Time - II

Advanced Operating Systems Real-Time

• Iterative solution

• Ri = limk→∞R
(k)
i

• R
(k)
i : worst case response time for τi, at step k

• R
(0)
i : first estimation of the response time

• We can start with R
(0)
i = Ci

• R
(0)
i = Ci +

∑i−1
h=1Ch saves 1 step

R
(0)
i = Ci(+

i−1
∑

h=1

Ch)

R
(k)
i = Ci +

i−1
∑

h=1











R
(k−1)
i

Th











Ch

Computing the Response Time - III

Advanced Operating Systems Real-Time

• Problem: are we sure that we find a valid solution?
• The iteration stops when:

• R
(k+1)
i = R

(k)
i or

• R
(k)
i > Di (non schedulable);

• This is a standard method to solve non-linear
equations in an iterative way

• If a solution exists (the system is not overloaded),

R
(k)
i converges to it

• Otherwise, the “R
(k)
i > Di” condition avoids infinite

iterations

Example

Advanced Operating Systems Real-Time

Task set: τ1 = (2, 5), τ2 = (2, 9), τ3 = (5, 20); U = 0.872

R
(k)
i = Ci +

i−1
∑

h=1











R
(k−1)
i

Th











Ch

R
(0)
3 = C3 + 1 · C1 + 1 · C2 = 9

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Example

Advanced Operating Systems Real-Time

Task set: τ1 = (2, 5), τ2 = (2, 9), τ3 = (5, 20); U = 0.872

R
(k)
i = Ci +

i−1
∑

h=1











R
(k−1)
i

Th











Ch

R
(1)
3 = C3 + 2 · C1 + 1 · C2 = 11

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Example

Advanced Operating Systems Real-Time

Task set: τ1 = (2, 5), τ2 = (2, 9), τ3 = (5, 20); U = 0.872

R
(k)
i = Ci +

i−1
∑

h=1











R
(k−1)
i

Th











Ch

R
(2)
3 = C3 + 3 · C1 + 2 · C2 = 15

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Example

Advanced Operating Systems Real-Time

Task set: τ1 = (2, 5), τ2 = (2, 9), τ3 = (5, 20); U = 0.872

R
(k)
i = Ci +

i−1
∑

h=1











R
(k−1)
i

Th











Ch

R
(3)
3 = C3 + 3 · C1 + 2 · C2 = 15 = R

(2)
3

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Another Example with DM

Advanced Operating Systems Real-Time

What about different priority assignments and deadlines
different from periods?
τ1 = (1, 4, 4), p1 = 3, τ2 = (4, 6, 15), p2 = 2,
τ3 = (3, 10, 10), p3 = 1; U = 0.72

R
(k)
i = Ci +

i−1
∑

h=1











R
(k−1)
i

Th











Ch

R
(0)
3 = C3 + 1 · C1 + 1 · C2 = 8

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Another Example with DM

Advanced Operating Systems Real-Time

What about different priority assignments and deadlines
different from periods?
τ1 = (1, 4, 4), p1 = 3, τ2 = (4, 6, 15), p2 = 2,
τ3 = (3, 10, 10), p3 = 1; U = 0.72

R
(k)
i = Ci +

i−1
∑

h=1











R
(k−1)
i

Th











Ch

R
(1)
3 = C3 + 2 · C1 + 1 · C2 = 9

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Another Example with DM

Advanced Operating Systems Real-Time

What about different priority assignments and deadlines
different from periods?
τ1 = (1, 4, 4), p1 = 3, τ2 = (4, 6, 15), p2 = 2,
τ3 = (3, 10, 10), p3 = 1; U = 0.72

R
(k)
i = Ci +

i−1
∑

h=1











R
(k−1)
i

Th











Ch

R
(2)
3 = C3 + 3 · C1 + 1 · C2 = 10

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Another Example with DM

Advanced Operating Systems Real-Time

What about different priority assignments and deadlines
different from periods?
τ1 = (1, 4, 4), p1 = 3, τ2 = (4, 6, 15), p2 = 2,
τ3 = (3, 10, 10), p3 = 1; U = 0.72

R
(k)
i = Ci +

i−1
∑

h=1











R
(k−1)
i

Th











Ch

R
(3)
3 = C3 + 3 · C1 + 1 · C2 = 10 = R

(2)
3

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Considerations

Advanced Operating Systems Real-Time

• The response time analysis is an efficient algorithm

• In the worst case, the number of steps N for the
algorithm to converge is exponential

• Depends on the total number of jobs of higher
priority tasks in the interval [0, Di]:

N ∝
i−1
∑

h=1

⌈

Dh

Th

⌉

• If s is the minimum granularity of the time,
then in the worst case N = Di

s
;

• However, such worst case is very rare: usually,
the number of steps is low.

Interacting Tasks

Advanced Operating Systems Real-Time

• Until now, only independent tasks...

• A job never blocks or suspends
• A task only blocks on job termination

• In real world, jobs might block for various reasons:

• Tasks exchange data through shared memory →
mutual exclusion

• A task might need to synchronize with other
tasks while waiting for some data

• A job might need a hardware resource which is
currently not available

Interacting Tasks - Example

Advanced Operating Systems Real-Time

• Example: control application composed by three
periodic tasks

• τ1 reads the data from the sensors and applies a
filter. The results are stored in memory

• τ2 reads the filtered data and computes some
control law (updating the state and the outputs);
both the state and the outputs are stored in
memory

• τ3 reads the outputs and writes on an actuator

• All of the three tasks access data in shared memory
• Conflicts on accessing this data concurrently

• ⇒ The data structures can become inconsistent

Task Intraction Paradigms - Private Resources

Advanced Operating Systems Real-Time

• How to handle interactions between tasks?

• Private Resources → Client / Server paradigm
• Shared Resources

• Something like “processes vs threads”
• Let’s start with processes...
• Private Resources

• A Resource Manager (server task) per resource
• Tasks needing to access a resource send a

message to its manager
• Interaction via IPC
• Example: the X server

Task Intraction Paradigms - Shared Resources

Advanced Operating Systems Real-Time

• What about threads?
• Shared Resources

• Must be accessed in mutual exclusion
• Interaction via mutexes, semaphores, condition

variables, . . .

• Real-Time analysis presente here: will focus on
shared resources

• We will use mutexes, not semaphores
• Extensions to IPC based communication are

possible

Resources and Critical Sections

Advanced Operating Systems Real-Time

• Shared data structure representing a resource (hw
or sw)

• Piece of code accessing the data structure: critical
section

• Critical sections on the same resource must be
executed in mutual exclusion

• Therefore, each data structure should be
protected by a mutual exclusion mechanism;

• This is ok for enforcing data consistency...
• ...But what is the effect on real-time performance?

• Assume that resources are protected by mutual
exclusion semaphores (mutexes)

• Why Mutexes and not semaphores? ...

Remember... - Some Definitions

Advanced Operating Systems Real-Time

• Task

• Schedulable entity (thread or process)
• Flow of execution

• Object Oriented terminology: task ≡ active
object

• Informally speaking: task ≡ active entity that
can perform operations on private or shared
data

• Now, we need to model the “private or shared data”...

• As said, focus on shared data

Key Concepts - Protected Objects

Advanced Operating Systems Real-Time

• Shared data: protected by mutexes ⇒ protected
objects

• Protected Objects

• Encapsulate shared information (Resources)
• Passive objects (data) shared between different

tasks
• Operations on protected objects are mutually

exclusive (this is why they are “protected”!)

• As said, protected by mutexes

• Locking a mutex, a task “owns” the associate
resource...

• ...So, I can ask: “who is the owner of this
resource”?

Shared Resources - Definition

Advanced Operating Systems Real-Time

• Shared Resource Si

• Used by multiple tasks
• Protected by a mutex (mutual exclusion

semaphore)
• 1 ↔ 1 relationship between resources and

mutexes

• Convention: Si can be used to indicate either
the resource or the mutex

• The system model must be extended according to
this definition

• Now, the system is not limited to a set of tasks...

Shared Resources - System Model

Advanced Operating Systems Real-Time

• System / Application:

• Set T of N periodic (or sporadic) tasks:
T = {τi : 1 ≤ i ≤ N}

• Set S of M shared resources:
S = {Si : 1 ≤ i ≤ M}

• Task τi uses resource Sj if it accesses the
resource (in a critical section)

• k-th critical section of τi on Sj: cs
k
i,j

• Length of the longest critical section of τi on Sj: ξi,j

Posix Example

Advanced Operating Systems Real-Time

pthread_mutex_t m;
...
pthread_mutex_init(&m, NULL);
...
void *tau1(void * arg) {

pthread_mutex_lock(&m);
<critical section>
pthread_mutex_unlock(&m);

};
...
void *tau2(void * arg) {

pthread_mutex_lock(&m);
<critical section>
pthread_mutex_unlock(&m);

};

Blocking Time - 1

Advanced Operating Systems Real-Time

• Mutual exclusion on a shared resource can cause
blocking time

• When task τi tries to access a resource S already
held from task τj, τi blocks

• Blocking time: time between the instant when τi
tries to access S (and blocks) and the instant
when τj releases S (and τi unblocks)

• This is needed for implementing mutual exclusion,
and cannot be avoided

• The problem is that this blocking time might
become unpredictable/too large...

Blocking Time - 2

Advanced Operating Systems Real-Time

• Blocking times can be particularly bad in priority
scheduling if a high priority tasks wants to access a
resource that is held by a lower priority task

• A low priority task executes, while a high priority
one is blocked...

• ...Schedulability guarantees can be
compromised!

• Schedulability tests must account for blocking times!
• Blocking times must be deterministic (and not too

large!!!)

Blocking and Priority Inversion

Advanced Operating Systems Real-Time

• Consider the following example, where p1 > p2.

0 2 4 6 8 10 12 14 16 18 20 22

τ1

τ2
L(S)

S

L(S)

S

U(S)

S

U(S)

• From time 4 to 7, task τ1 is blocked by a lower priority
taskτ2; this is a priority inversion.

• This priority inversion is not avoidable; in fact, τ1
must wait for τ2 to leave the critical section.

• However, in some cases, the priority inversion could
be too large.

Example of Priority Inversion

Advanced Operating Systems Real-Time

• Consider the following example, with p1 > p2 > p3.

0 2 4 6 8 10 12 14 16 18 20 22

τ1

τ2

τ3
L(S)

S

L(S)

S S

U(S)

S

U(S)

• Here, priority inversion is very large: from 4 to 12.
• Problem: while τ1 is blocked, τ2 arrives and preempts

τ3 before it can leave the critical section.
• Other medium priority tasks could preempt τ3 as

well...

What Happened on Mars?

Advanced Operating Systems Real-Time

• Not only a theoretical problem; it happened for real
• Most (in)famous example: Mars Pathfinder

A small robot, the Sojourner rover, was sent to Mars to explore the martian
environment and collect useful information. The on-board control software
consisted of many software threads, scheduled by a fixed priority scheduler. A
high priority thread and a low priority thread were using the same software data

structure (an “information bus”) protected by a mutex. The mutex was actually
used by a library that provided high level communication mechanisms among
threads, namely the pipe() mechanism. At some instant, it happened that the
low priority thread was interrupted by a medium priority thread while blocking the

high priority thread on the mutex.
At the time of the Mars Pathfinder mission, the problem was already known. The
first accounts of the problem and possible solutions date back to early ’70s.
However, the problem became widely known in the real-time community since

the seminal paper of Sha, Rajkumar and Lehoczky, who proposed the Priority
Inheritance Protocol and the Priority Ceiling Protocol to bound the time a
real-time task can be blocked on a mutex.

More Info

Advanced Operating Systems Real-Time

A more complete (but maybe biased) description of the
incident can be found here:
http://www.cs.cmu.edu/˜rajkumar/mars.html

http://www.cs.cmu.edu/~rajkumar/mars.html

Dealing with Priority Inversion

Advanced Operating Systems Real-Time

• Priority inversion can be reduced...

• ...But how?
• By introducing an appropriate resource sharing

protocol (concurrency protocol)

• Provides an upper bound for the blocking time

• Non Preemptive Protocol (NPP) / Highest
Locking Priority (HLP)

• Priority Inheritance Protocol (PI)
• Priority Ceiling Protocol (PC)
• Immediate Priority Ceiling Protocol (Part of the

OSEK and POSIX standards)

• mutexes/spinlocks (not generic semaphores) must
be used

Non Preemptive Protocol (NPP)

Advanced Operating Systems Real-Time

• The idea is very simple inhibit preemption when in a
critical section. How would you implement that?

• Advantages: simplicity
• Drawbacks: tasks which are not involved in a critical

section suffer blocking

Non Preemptive Protocol (NPP)

Advanced Operating Systems Real-Time

• The idea is very simple inhibit preemption when in a
critical section. How would you implement that?

• Raise the task’s priority to the maximum available
priority when entering a critical section

• Advantages: simplicity
• Drawbacks: tasks which are not involved in a critical

section suffer blocking

NPP Example

Advanced Operating Systems Real-Time

• Remember the previous example...

0 2 4 6 8 10 12 14 16 18 20 22

τ1
τ2
τ3

L(S)
S

L(S)

S S
U(S)

S
U(S)

• Using NPP, we have:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

U(S)

L(S)

S

U(S)

Some Observations

Advanced Operating Systems Real-Time

• The blocking (priority inversion) is bounded by the
length of the critical section of task τ3

• Medium priority tasks (τ2) cannot delay τ1
• τ2 experiences some blocking, but it does not use

any resource

• Indirect blocking: τ2 is in the middle between a
higher priority task τ1 and a lower priority task τ3
which use the same resource

• Must be computed and taken into account in the
admission test as any other blocking time

• What’s the maximum blocking time Bi for τi?

A Problem with NPP

Advanced Operating Systems Real-Time

• Consider the following example, with
p0 > p1 > p2 > p3.

0 2 4 6 8 10 12 14 16 18 20 22 24

τ0

τ1

τ2

τ3
L(S)

S
U(S)

L(S)
S

U(S)

• τ0 misses its deadline (suffers a blocking time equal
to 3) even though it does not use any resource!!

• Solution: raise τ3 priority to the maximum between
tasks accessing the shared resource (τ1’ priority)

HLP

Advanced Operating Systems Real-Time

• So....

0 2 4 6 8 10 12 14 16 18 20 22 24

τ0

τ1

τ2

τ3
L(S)

S S
U(S)

L(S)
S

U(S)

• This time, everyone is happy
• Problem: we must know in advance which task will

access the resource

Blocking Time and Response Time

Advanced Operating Systems Real-Time

• NPP introduces a blocking time on all tasks bounded
by the maximum lenght of a critical section used by
lower priority tasks

• How does blocking time affect the response times?
• Response Time Computation:

Ri = Ci +Bi +
i−1
∑

j=1









Ri

Tj









Cj

• Bi is the blocking time from lower priority tasks

•
∑i−1

h=1

⌈

Ri

Th

⌉

Ch is the interference from higher

priority tasks

Response Time Computation - I

Advanced Operating Systems Real-Time

Task Ci Ti ξi,1 Di

τ1 20 70 0 30
τ2 20 80 1 45
τ3 35 200 2 130

Response Time Computation - II

Advanced Operating Systems Real-Time

Task Ci Ti ξi,1 Di Bi

τ1 20 70 0 30 2
τ2 20 80 1 45 2
τ3 35 200 2 130 0

Response Time Computation - III

Advanced Operating Systems Real-Time

Task Ci Ti ξi,1 Di Bi Ri

τ1 20 70 0 30 2 20+2=22
τ2 20 80 1 45 2 20+20+2=42
τ3 35 200 2 130 0 35+2*20+2*20=115

The Priority Inheritance protocol

Advanced Operating Systems Real-Time

• Another possible solution to the priority inversion:

• a low priority task τ3 blocking an higher priority
task τ1 inherits its priority

• → medium priority tasks cannot preempt τ3

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

The Priority Inheritance protocol

Advanced Operating Systems Real-Time

• Another possible solution to the priority inversion:

• a low priority task τ3 blocking an higher priority
task τ1 inherits its priority

• → medium priority tasks cannot preempt τ3

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

The Priority Inheritance protocol

Advanced Operating Systems Real-Time

• Another possible solution to the priority inversion:

• a low priority task τ3 blocking an higher priority
task τ1 inherits its priority

• → medium priority tasks cannot preempt τ3

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

The Priority Inheritance protocol

Advanced Operating Systems Real-Time

• Another possible solution to the priority inversion:

• a low priority task τ3 blocking an higher priority
task τ1 inherits its priority

• → medium priority tasks cannot preempt τ3

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

S

• Task τ3 inherits the priority of τ1

The Priority Inheritance protocol

Advanced Operating Systems Real-Time

• Another possible solution to the priority inversion:

• a low priority task τ3 blocking an higher priority
task τ1 inherits its priority

• → medium priority tasks cannot preempt τ3

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

S

• Task τ3 inherits the priority of τ1
• Task τ2 cannot preempt τ3 (p2 < p1)

The Priority Inheritance protocol

Advanced Operating Systems Real-Time

• Another possible solution to the priority inversion:

• a low priority task τ3 blocking an higher priority
task τ1 inherits its priority

• → medium priority tasks cannot preempt τ3

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

S S

U(S)

• Task τ3 inherits the priority of τ1
• Task τ2 cannot preempt τ3 (p2 < p1)

The Priority Inheritance protocol

Advanced Operating Systems Real-Time

• Another possible solution to the priority inversion:

• a low priority task τ3 blocking an higher priority
task τ1 inherits its priority

• → medium priority tasks cannot preempt τ3

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

S S

U(S)

S

U(S)

• Task τ3 inherits the priority of τ1
• Task τ2 cannot preempt τ3 (p2 < p1)

The Priority Inheritance protocol

Advanced Operating Systems Real-Time

• Another possible solution to the priority inversion:

• a low priority task τ3 blocking an higher priority
task τ1 inherits its priority

• → medium priority tasks cannot preempt τ3

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

S S

U(S)

S

U(S)

• Task τ3 inherits the priority of τ1
• Task τ2 cannot preempt τ3 (p2 < p1)

The Priority Inheritance protocol

Advanced Operating Systems Real-Time

• Another possible solution to the priority inversion:

• a low priority task τ3 blocking an higher priority
task τ1 inherits its priority

• → medium priority tasks cannot preempt τ3

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

S S

U(S)

S

U(S)

• Task τ3 inherits the priority of τ1
• Task τ2 cannot preempt τ3 (p2 < p1)

The Priority Inheritance protocol

Advanced Operating Systems Real-Time

• Another possible solution to the priority inversion:

• a low priority task τ3 blocking an higher priority
task τ1 inherits its priority

• → medium priority tasks cannot preempt τ3

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

S S

U(S)

S

U(S)

• Task τ3 inherits the priority of τ1
• Task τ2 cannot preempt τ3 (p2 < p1)

Some PI Properties

Advanced Operating Systems Real-Time

• Summarising, the main rules are the following:

• If a task τi blocks on a resource protected by a
mutex S, and the resource is locked by task τj,
then τj inherits the priority of τi

• If τj itself blocks on another mutex by a task τk,
then τk inherits the priority of τi (multiple
inheritance)

• If τk is blocked, the chain of blocked tasks is
followed until a non-blocked task is found that
inherits the priority of τi

• When a task unlocks a mutex, it returns to the
priority it had when locking it

Real-Time Operating Systems

Advanced Operating Systems Real-Time

• Real-Time operating system (RTOS): OS providing
support to Real-Time applications

• Real-Time application: the correctness depends not
only on the output values, but also on the time when
such values are produced

• Operating System:

• Set of computer programs
• Interface between applications and hardware
• Control the execution of application programs
• Manage the hardware and software resources

Different Visions of an OS

Advanced Operating Systems Real-Time

• An OS manages resources to provide services...
• ...hence, it can be seen as:

• A Service Provider for user programs

• Exports a programming interface...

• A Resource Manager

• Implements schedulers...

Operating System Services

Advanced Operating Systems Real-Time

• Services (Kernel Space):

• Process Synchronisation, Inter-Process
Communication (IPC)

• Process / Thread Scheduling
• I / O
• Virtual Memory

RT-POSIX API?

Task Scheduling

Advanced Operating Systems Real-Time

• Kernel: core part of the OS, allowing multiple tasks
to run on the same CPU

• Task set T composed by N tasks running on M

CPUs (M < N)
• All tasks τi have the illusion to run in parallel
• Temporal multiplexing between tasks

• Two core components:

• Scheduler: decides which task to execute
• Dispatcher: actually switches the CPU context

(context switch)

Synchronization and IPC

Advanced Operating Systems Real-Time

• The kernel must also provide a mechanism for
allowing tasks to communicate and synchronize

• Two possible programming paradigms:

• Shared memory (threads)
• Message passing (processes)

Programming Paradigms

Advanced Operating Systems Real-Time

• Shared memory (threads)

• The kernel must provide mutexes + condition
variables

• Real-time resource sharing protocols (PI, HLP,
NPP, ...) must be implemented

• Message passing (processes)

• Interaction models: pipeline, client / server, ...
• The kernel must provide some IPC mechanism:

pipes, message queues, mailboxes, RPC, ...
• Some real-time protocols can still be used

Real-Time Scheduling in Practice

Advanced Operating Systems Real-Time

An adequate scheduling of system resources
removes the need for over-engineering the
system, and is necessary for providing a

predictable QoS

• Algorithm + Implementation = Scheduling
• RT theory provides us with good algorithms...
• ...But which are the prerequisites for correctly

implementing them?

Theoretical and Actual Scheduling

Advanced Operating Systems Real-Time

• Scheduler, IPC subsystem, ... → must respect the
theoretical model

• Scheduling is simple: fixed priorities
• IPC, HLP, or NPP are simple too...
• But what about (for example) timers?

• Problem:

• Is the scheduler able to select a high-priority task
as soon as it is ready?

• And the dispatcher?

Periodic Task Example

Advanced Operating Systems Real-Time

• Consider a periodic task
/* ... */
while(1) {
/* Job body */
clock_nanosleep(CLOCK_REALTIME,

TIMER_ABSTIME, &r, NULL);
timespec_add_us(&r, period);

}

• The task expects to be executed at time r

(= r0 + jT)...
• ...But is sometimes delayed to r0 + jT + δ

Example - Theoretical Schedule

Advanced Operating Systems Real-Time

0 2 4 6 8 10 12 14 16 18 20 22

τ1

τ2

Example - Actual Schedule

Advanced Operating Systems Real-Time

0 2 4 6 8 10 12 14 16 18 20 22

τ1

τ2

• What happens if the 2nd job of τ1 arrives a little bit
later???

• The 2nd job of τ2 misses a deadline!!!

Kernel Latency

Advanced Operating Systems Real-Time

• The delay δ in scheduling a task is due to kernel
latency

• Kernel latency can be modelled as a blocking time

•
∑N

k=1
Ck

Tk

≤ Ulub → ∀i, 1 ≤ i ≤ n,
∑i−1

k=1
Ck

Tk

+ Ci+δ
Ti

≤
Ulub

• Ri = Ci+
∑i−1

h=1

⌈

Ri

Th

⌉

Ch → Ri = Ci+δ+
∑i−1

h=1

⌈

Ri

Th

⌉

Ch

• ∃0 ≤ t ≤ Di : Wi(0, t) = Ci +
∑i−1

h=1

⌈

t
Th

⌉

Ch ≤ t →

∃0 ≤ t ≤ Di : Wi(0, t) = Ci +
∑i−1

h=1

⌈

t
Th

⌉

Ch ≤ t− δ

Kernel Latency

Advanced Operating Systems Real-Time

• Scheduler → triggered by internal (IPC, signal, ...) or
external (IRQ) events

• Time between the triggering event and dispatch:

• Event generation
• Event delivery (interrupts may be disabled)
• Scheduler activation (nonpreemptable sections)
• Scheduling time

Scheduler

Event Delivery Dispatch
Event Time Latency

Theoretical Model vs Real Schedule

Advanced Operating Systems Real-Time

• In real world, high priority tasks often suffer from
blocking times coming from the OS (more precisely,
from the kernel)

• Why?
• How?
• What can we do?

• To answer the previous questions, we need to recall
how the hardware and the OS work...

	RT Scheduling: Why?
	Fixed Priority Scheduling
	Example of Schedule
	Another Example (non-schedulable)
	Notes about Priority Scheduling
	Response Time Analysis
	The Critical Instant
	Worst Case Response Time
	Computing the Response Time - I
	Computing the Response Time - II
	Computing the Response Time - III
	Example
	Another Example with DM
	Considerations
	Interacting Tasks
	Interacting Tasks - Example
	Task Intraction Paradigms - Private Resources
	Task Intraction Paradigms - Shared Resources
	Resources and Critical Sections
	Remember... - Some Definitions
	Key Concepts - Protected Objects
	Shared Resources - Definition
	Shared Resources - System Model
	Posix Example
	Blocking Time - 1
	Blocking Time - 2
	Blocking and Priority Inversion
	Example of Priority Inversion
	What Happened on Mars?
	More Info
	Dealing with Priority Inversion
	Non Preemptive Protocol (NPP)
	NPP Example
	Some Observations
	A Problem with NPP
	HLP
	Blocking Time and Response Time
	Response Time Computation - I
	Response Time Computation - II
	Response Time Computation - III
	The Priority Inheritance protocol
	Some PI Properties
	Real-Time Operating Systems
	Different Visions of an OS
	Operating System Services
	Task Scheduling
	Synchronization and IPC
	Programming Paradigms
	Real-Time Scheduling in Practice
	Theoretical and Actual Scheduling
	Periodic Task Example
	Example - Theoretical Schedule
	Example - Actual Schedule
	Kernel Latency
	Kernel Latency
	Theoretical Model vs Real Schedule

