
Something More about

µKernels

Advanced Operating Systems

Luca Abeni

luca.abeni@santannapisa.it



Traditional OS Structure

Advanced Operating Systems Real-Time Applications

• OS: Set of computer programs interfacing user
applications with the hardware

• Kernel: part of the OS running at high privilege
level

• Traditionally includes a lot of things (drivers,
network stack, fs, ...)

• Do we really need high privileges for all of this?

• Special-purpose OSs often propose different
structures

• For virtualization, hypervisor running “below the
kernel”

• For real-time, dual-kernel approach
• For security, reduced trusted code base...



µKernels - The Idea

Advanced Operating Systems Real-Time Applications

• Basic idea: simplify the kernel

• Reduce to the number of abstractions
implemented by the kernel

• Address Spaces
• Threads
• IPC mechanisms (channels, ports, etc...)

• Most of the “traditional” kernel functionalities
implemented in user space

• Even device drivers can be in user space!



µKernels and Servers

Advanced Operating Systems Real-Time Applications

• Interactions via IPC (IRQs to drivers as messages,
...)

• Servers: US processes implementing OS
functionalities

• OS kernel as a single user-space process:
Single-server OSs

• Multiple user-space processes (a server per
driver, FS server, network server, ...):
Multi-server OSs



µ-Kernels as Resource Managers

Advanced Operating Systems Real-Time Applications

• A µ-kernel handles some “software resources”

• Sometimes referred as “objects”

• Debatable name: an object is generally
(encapsulated) data + methods

• Must be protected

• Example: address spaces, tasks, ...

• The number / kind of abstractions / resource
types depends on the µ-kernel details

• Tasks can “operate” on these resources

• How to control the accesses / implement
protection?



Message Passing Interactions

Advanced Operating Systems Real-Time Applications

• Most of the interactions happen through message
passing

• Operation on a resource: send a message (and
eventually wait for a reply)

• Send message... To who?

• The µ-kernel / kernel?
• The resource / its manager?
• Something else?

• Different IPC mechanisms depending on the
µ-kernel

• Synchronous / Asynchronous
• Different security mechanisms
• ...



Capabilities

Advanced Operating Systems Real-Time Applications

• µ-kernels are often capability-based systems

• Why? Because this is the most natural solution
for an IPC-based system

• What is a “capability”? Informally speaking:
protected reference to a software resource,
associated with access rights

• The exact definition might vary from system to
system

• Intuition: to operate on something I must “own” the
right capability

• More advanced than a simple access control list



Capabilities as (Protected) References

Advanced Operating Systems Real-Time Applications

• To access resource R, task τ needs a reference to it

• Example: you cannot open a file if you do not
know its name

• Protected reference: tasks cannot forge capabilities

• Capabilities are created and manipulated by the
capability system

• So, a file name is not a good example!

• Capabilities are opaque

• You do not really know what a capability is: you
just use it to access a resource

• Think about pointers



Capabilities and Access Rights

Advanced Operating Systems Real-Time Applications

• A capability is not a simple protected reference
• It is associated to access rights

• A capability can be used to perform an action on
a resource, but not other actions

• Example: read/receive capability, write/send
capability, ...

• Using the read capability for a file, I can read it, but I
cannot write on it!

• Each task owns capabilities for accessing some
resources

• The µ-kernel / capability system is responsible for
enforcing the respect of capabilities



Capabilities Management

Advanced Operating Systems Real-Time Applications

• Tasks cannot create capabilities → a task “receives”
a capability from someone else

• Can be the µ-kernel / capability system
• ... Someone else? ...

• Capabilities can be transferred

• A task owning a capability can send it to another
task

• What happens when a capability is tranferred?

• The capability system defines the exact behaviour of
capability transfer



Capabilities and Messages

Advanced Operating Systems Real-Time Applications

• Capabilities can be used for IPC access control

• Used to send / receive messages
• Used to check if a task has the rights to send /

receive a message
• ...

• Object Oriented vision: resource → Object

• Invocation of a method → send a message to the
object



Example: Mach

Advanced Operating Systems Real-Time Applications

• Mach µ-kernel: capability-based, tries to implement
some OO concepts

• Tasks can operate on “objects” by sending
messages to them

• IPC mechanism provided by the (µ)kernel

• Mach IPC: indirect addressing

• The destination of a message is indicated by
specifying a “communication channel”

• Tasks send messages to ports → queues of
messages

• Capabitilies implemented through ports

• Capability ↔ read or write reference to a port



Mach Ports and Capabilities

Advanced Operating Systems Real-Time Applications

• Port rights: secure, location-independent way of
naming ports

• The receive right for a port can be owned only by
one single task

• A task can send a message to a port by using a
“send capability” (send right) for the port

• A task can receive a message from a port by
using a “receive capability” (receive right) for the
port

• Each task is created with some ports for
communicating with the kernel (and owns the “send
rights” - capabilities for such ports)



Sending Capabilities

Advanced Operating Systems Real-Time Applications

• A task can send one of its “port right” in a message
• The task receiving the message will be able to

access the port
• When a receive right is contained in the message,

the right is revoked from the sender

• The sender “donates” its capability to the receiver

• Remember: the receive right for a port cannot be
owned by multiple tasks!



Example: Scheduling Capabilities

Advanced Operating Systems Real-Time Applications

• Capabilities can be used for scheduling too!

• Temporal capabilities

• Distinction between scheduling context and
execution context

• In traditional systems, a “task context” contains
both scheduling information and the task state
used for dispatching

• Scheduling context: data structure used by the
scheduler

• Execution context: rest of the task state

• Scheduling capability: reference to the scheduling
context



Scheduling and Dispatching

Advanced Operating Systems Real-Time Applications

• A task can execute only if it owns a scheduling
capability

• Will be dispatched when the scheduler selects
the corresponding scheduling context

• Generally, a scheduling context is associated to a
core / CPU

• Migration: the scheduling capability of a task is
replaced with a different one (referencing a
scheduling context associated to a different core /
CPU)



Flexibility

Advanced Operating Systems Real-Time Applications

• Inheritance is simple: donate the scheduling
capability to a different task!

• Easy form of proxy execution... Useful for
client/server interactions!

• User space scheduling is possible: a user-space
server manages the scheduling capabilities of the
tasks!


	Traditional OS Structure
	Kernels - The Idea
	Kernels and Servers
	-Kernels as Resource Managers
	Message Passing Interactions
	Capabilities
	Capabilities as (Protected) References
	Capabilities and Access Rights
	Capabilities Management
	Capabilities and Messages
	Example: Mach
	Mach Ports and Capabilities
	Sending Capabilities
	Example: Scheduling Capabilities
	Scheduling and Dispatching
	Flexibility

