
Hierarchical Scheduling for

Components

Luca Abeni

luca.abeni@santannapisa.it

October 14, 2019



Component-Based Development

CBSD Luca Abeni

• Complex software systems built by “connecting”
smaller components

• Component: described by an interface

• Software Interface
• Described using an IDL (Interface Definition

Language), or similar technologies
• Should fully describe the component, so that it

can be used without knowing the internals

• Components often run on different physical nodes
• Or are isolated using a VM!

• Can even use different OSs!



Non Functional Interfaces

CBSD Luca Abeni

• Component interfaces often tend to focus on
functional aspects of the component

• What about non-functional properties?
• For example: temporal behaviour...

• Do the component interfaces consider the respect of
timing constraints?

• In other words: can I build a real-time system using a
component-based approach?



Component-Based Real-Time Systems

CBSD Luca Abeni

• Assume to have N components...

• Each component is described by its interface...
• ...But a description of its temporal behaviour is

also somehow provided...

• Component are assumed to respect some temporal
constraints

• Some kind of “contract” provided by real-time
guarantees

• Is it possible to combine the components so that the
timing of the system is predictable?

• Can real-time guarantees be combined? How?



Combining Real-Time Guarantees

CBSD Luca Abeni

?
• Schedulability analysis in each component...
• What about the resulting system?



Real-Time Components

CBSD Luca Abeni

• Single-thread/process components → combining
them is easy...

• Components can be modelled as real-time tasks
• Simple (C,D, T ) model, or something more

complex...

• What about components composed by multiple
execution flows?

• Each component is composed by multiple
real-time tasks...

• Model for a component?
• How to summarize its temporal requirements?
• Scheduler in the component? How to model it?



Multi-Task Real-Time Components

CBSD Luca Abeni

• Component Ci composed by ni tasks
• More complex component model... How to handle it?

• We only know how to schedule single tasks...
• And we need to somehow “summarise” the

requirements of a compoment!

Ci = {(C i
0, D

i
0, T

i
0), (C

i
1, D

i
1, T

i
1), . . . , (C

i
ni, D

i
ni, T

i
ni)}

• So, 2 main issues:

1. Describe the temporal requirements of a
component in a simple way

2. Schedule the components, and somehow
“combine” their temporal guarantees



The “not so smart” Solution

CBSD Luca Abeni

• Each component is a set of real-time tasks:

Ci = {(C i
j, D

i
j, T

i
j )}

• Build the “global taskset” composed by all the tasks
from all the components

Γ =
⋃

i

Ci

• ...And use some known real-time scheduler (RM,
EDF, ...) on Γ!



Flattened Scheduling

CBSD Luca Abeni

• One single “flattened” scheduler seeing all the tasks



Why it is “not so smart”

CBSD Luca Abeni

• One single scheduler, that must “see” all the tasks of
all the components

• Internals of the components have to be exposed!
• Components cannot have their own “local”

schedulers
• Misbehaving tasks in a component can affect

other components

• No isolation!!!

• Using fixed priorities might be “not so simple”

• Think about RM: priorities in a component might
depend on other components...

• Components are not “inter-changeable” anymore!



Practical Issues

CBSD Luca Abeni

• Components can be isolated using VMs

• The scheduler only sees a VM per component,
but cannot see the tasks inside it

• Para-virtualization (of the OS scheduler) could be
used to address this issue, but it is not so
simple...

• ...And requires huge modifications to host, guest,
and components!

• So, how to schedule VMs?
• Two-level hierarchical scheduling system

• Host (global / root) scheduler, scheduling VMs
• Each VM contains its (local / 2nd level) scheduler



From a 1-Level Scheduler...

CBSD Luca Abeni

1τ
1τ

1ττn

τn

2

τn

τ

Scheduler

• Scheduler assigns CPU to tasks “inside the
components”



...To a 2-Levels Hierarchy

CBSD Luca Abeni

1τ
1τ

1ττn

τn

Local Scheduler Local Scheduler Local Scheduler

2

τn

τ

Global
Scheduler

• Global Scheduler assigns CPU to components
• Local Schedulers assign CPU to single tasks



Hierarchical Scheduling

CBSD Luca Abeni

• The global scheduler does not see the components’
tasks

• Components are free to define their own (fixed
priorities, EDF, whatever) schedulers

• No problems in assigning fixed priorities to tasks!

• Possible implementation: a VM per component

• Global scheduler: host / hypervisor scheduler
• Local scheduler: guest scheduler

• Problem: what to use as a global scheduler?

• We must have a model for it
• Must allow to compose the “local guarantees”

• Before going on, summary of RT definitions and
concepts



Processes, Threads, and Tasks

CBSD Luca Abeni

• Algorithm → logical procedure used to solve a
problem

• Program → formal description of an algorithm, using
a programming language

• Process → instance of a program (program in
execution)

• Program: static entity
• Process: dynamic entity

• The term task is used to indicate a schedulable
entity (either a process or a thread)

• Thread → flow of execution
• Process → flow of execution + private resources

(address space, file table, etc...)



Real-Time Tasks

CBSD Luca Abeni

• A task can be seen as a sequence of actions . . .

• . . . and a deadline must be associated to each one
of them!

• Some kind of formal model is needed to identify
these “actions” and associate deadlines to them



Mathematical Model of a Task - 1

CBSD Luca Abeni

• Real-Time task τi: stream of jobs (or instances) Ji,k
• Each job Ji,k = (ri,k, ci,k, di,k):

• Arrives at time ri,k (activation time)
• Executes for a time ci,k
• Finishes at time fi,k
• Should finish within an absolute deadline di,k

ri,k
fi,k

di,k

ci,k



Mathematical Model of a Task - 2

CBSD Luca Abeni

• Job: abstraction used to associate deadlines
(temporal constraints) to activities

• ri,k: time when job Ji,k is activated (by an external
event, a timer, an explicit activation, etc...)

• ci,k: computation time needed by job Ji,k to
complete

• di,k: absolute time instant by which job Ji,k must
complete

• job Ji,k respects its deadline if fi,k ≤ di,k

• Response time of job Ji,k: ρi,k = fi,k − ri,k



Periodic / Sporadic Tasks

CBSD Luca Abeni

Periodic task τi = (Ci, Di, Ti): stream of jobs Ji,k, with

ri,k+1 = ri,k + Ti (or, ≥ ri,k + Ti)

di,k = ri,k +Di

Ci = max
k

{ci,k}

• Ti is the task period (or minimum inter-arrival time),
Di is the task relative deadline, Ci is the task
worst-case execution time (WCET)

• Ri: worst-case response time →
Ri = maxk{ρi,k} = maxk{fi,k − ri,k}

• for the task to be correctly scheduled, it must be
Ri ≤ Di



Definitions

CBSD Luca Abeni

• Algorithm → logical procedure used to solve a
problem

• Program → formal description of an algorithm, using
a programming language

• Process → instance of a program (program in
execution)

• Program: static entity
• Process: dynamic entity

• The term task is used to indicate a schedulable
entity (either a process or a thread)

• Thread → flow of execution
• Process → flow of execution + private resources

(address space, file table, etc...)



Executing Concurrent Tasks

CBSD Luca Abeni

• Tasks do not run on bare hardware...

• How can multiple tasks execute on one single
CPU?

• The OS kernel creates the illusion of having more
CPUs, so that multiple tasks execute in parallel

• Tasks have the illusion of executing
concurrently

• A dedicated CPU per task



Scheduling Concurrent Tasks

CBSD Luca Abeni

• Concurrency is implemented by multiplexing tasks
on the same CPU...

• Tasks are alternated on a real CPU...
• ...And the task scheduler decides which task

executes at a given instant in time

• Tasks are associated temporal constraints
(deadlines)

• The scheduler must allocate the CPU to tasks so
that their deadlines are respected



Scheduler - 1

CBSD Luca Abeni

• Scheduler: generates a schedule from a set of tasks

• Interesting definition: the scheduler is the thing
that generates the schedule

• Let’s be serious... Start from a mathematical model

• First, consider UP systems (simpler definition)

• A schedule σ(t) is a function mapping time t

into an executing task

σ : t → T ∪ τidle

where T is the taskset and τidle is the idle task

• For an SMP system (m CPUs), σ(t) can be
extended to map t in vectors τ ∈ (T ∪ τidle)

m



Scheduler - 2

CBSD Luca Abeni

• Scheduler: implements σ(t)

• The scheduler is responsible for selecting the
task to execute at time t

• From an algorithmic point of view

• Scheduling algorithm → Algorithm used to select
for each time instant t a task to be executed on a
CPU among the ready task

• Given a task set T , a scheduling algorithm A
generates the schedule σA(t)

• A task set is schedulable by an algorithm A if σA
does not contain missed deadlines

• Schedulability test → check if T is schedulable by A



Real-Time Guarantees in a Component

CBSD Luca Abeni

• First requirement: analyse the schedulability of a
component independently from other components

• This means that the root scheduler must provide
some kind of temporal protection between
components

• Various possibilities

• Resource Reservations / server-based approach
• Static time partitioning
• ...

• In any case, the root scheduler must
guarantee that each VM receives a
minimum amount of resources in a
time interval



Schedulability Analysis: the Basic Idea

CBSD Luca Abeni

• (Over?)Simplifying things a little bit...
• ...Suppose to know the amount of time needed by a

component to respect its temporal constraints and
the amount of time provided by the global scheduler

• A component is “schedulable” if

demanded time ≤ supplied time

• “demanded time”: amount of time (in a time
interval) needed by a component

• “supplied time”: amount of time (in a time
interval) given by the global scheduler to a
component

• Of course the devil is in the details



Demanded Time

CBSD Luca Abeni

• Amount of time needed by a component to respect
its temporal constraints

• Depends on the time interval we are considering
• Depends on the component’s local scheduler

• EDF → dbf(t) =
∑

j max{0,
⌊

t+Tj−Dj

Tj

⌋

}Cj

• RM: → workload W (t) = Ci +
∑

j<i

⌈

t
Ti

⌉

Cj

• Note: W (t) is very pessimistic, dbf(t) is not

• This is the description of the temporal requirements
of a component we were searching for...

• And what about the supplied time?



Supplied Time

CBSD Luca Abeni

• Description of the root scheduler temporal behaviour
• More formally:

• Depends on the time interval t we are
considering

• Depends on the root scheduler A

• Minimum amount of time given by A to a VM in a
time interval of size s

• Given all the time interval (t0, t1) : t1 − t0 = s...
• ...Compute the size of the sub-interval in which

σ(t) = VM ...
• ...And then find the minimum!



Supplied Time Bound Function

CBSD Luca Abeni

• Even more formally:

• Define s(t) =







1 if α(t) = VM

0 otherwise

• Time for VM in (t0, t0 + s):
∫ t0+s
t0 s(t)dt

• Then, compute the minimum over t0

• sbf(t) = mint0
∫ t0+t
t0 s(x)dx



Example: Static Time Partitioning

CBSD Luca Abeni

• First (very simple) example of VM scheduling: static
time partitioning

• Static schedule describing when time is assigned
to each VM

• Pre-computed σ(t)

• Generally, periodic!

• Otherwise, need to store an infinite schedule...
• ...Might be problematic!

• Example: VMA is scheduled in (3, 4), (9, 10), (15, 16),
...

• More formally: s(t) = 1 if 6k + 3 ≤ t ≤ 6k + 4,
s(t) = 0 otherwise



Example: Static Time Partitioning - 2

CBSD Luca Abeni

s(t) =







1 if 6k + 3 ≤ t ≤ 6k + 4
0 otherwise

• What is the supply bound function sbf(t) in this
case?

• Let’s try different supply functions compatibe with
this schedule...

• ...And see what is the worst case!

• Intervals of size t starting at different times...



Example: Static Time Partitioning - 3

CBSD Luca Abeni

• Different supply functions depending on when the
considered interval begins

• Which one is the worst case (supply bound
function)?



Example: Static Time Partitioning - 4

CBSD Luca Abeni

• Different supply functions depending on when the
considered interval begins

• Which one is the worst case (supply bound
function)?

• The red one!



Example: Static Time Partitioning - 5

CBSD Luca Abeni


	Component-Based Development
	Non Functional Interfaces
	Component-Based Real-Time Systems
	Combining Real-Time Guarantees
	Real-Time Components
	Multi-Task Real-Time Components
	The ``not so smart'' Solution
	Flattened Scheduling
	Why it is ``not so smart''
	Practical Issues
	From a 1-Level Scheduler...
	...To a 2-Levels Hierarchy
	Hierarchical Scheduling
	Processes, Threads, and Tasks
	Real-Time Tasks
	Mathematical Model of a Task - 1
	Mathematical Model of a Task - 2
	Periodic / Sporadic Tasks
	Definitions
	Executing Concurrent Tasks
	Scheduling Concurrent Tasks
	Scheduler - 1
	Scheduler - 2
	Real-Time Guarantees in a Component
	Schedulability Analysis: the Basic Idea
	Demanded Time
	Supplied Time
	Supplied Time Bound Function
	Example: Static Time Partitioning
	Example: Static Time Partitioning - 2
	Example: Static Time Partitioning - 3
	Example: Static Time Partitioning - 4
	Example: Static Time Partitioning - 5

