Supplied Time for an Periodic Server

Luca Abeni luca.abeni@santannapisa.it

May 8, 2018

Periodic Servers

- Periodic Server S = (Q, P): guarantees Q units of time every period P
 - Can be implemented in different ways (example: CBS)
- Different from static allocation: we do not know where in the period the Q time units are allocated
 - Execution inside a period can even be preempted!

Periodic Servers — Supplied Time

- sbf(t): minimum amount of time that a VM is guaranteed to receive in a time interval of size t
 - Consider all the possible intervals of size *t*...
 - As already seen for static time partitioning
 - …And all the possible "legal CPU allocations" generated by the periodic server!
- Big difference with static time partitioning: consider all the possible allocations of Q in the period

The Wrong Solution

- Immagine Q is allocated at the beginning of the period
 - Worst case allocation: t0 immediately after Q
 - The time interval starts when the root scheduler deschedules the component

The Wrong Solution — 2

- Supplied time: 0 until P Q...
- ... Then increases with slope 1 until P...
- ... Then flat again until 2P Q...

$$sbf(t) = \begin{cases} 0 & \text{if } t < (P - Q) \\ (n - 1)Q & \text{if } (n - 1)P \leq t < nP - Q \\ t + nQ - (n - 1)P & \text{if } nP - Q \leq t < nP \end{cases}$$

. . .

Why Wrong?

- The previous computation assumed Q always at the beginning of a period...
- ...But this is not the worst case!
 - Think about the second period...
 - ...What happens if the root scheduler delays the allocation?
 - The initial "0 allocation period" increases!!!
- Worst-case schedule: Q at the beginning of the first period and at the end of the second one
 - See the difference with static time partitioning?

Considering the Worst-Case Situation

$$sbf(t) = \begin{cases} 0 & \text{if } t < 2(P - Q) \\ (n - 1)Q & \text{if } nP - Q \le t < (n + 1)P - 2Q \\ t - (n + 1)(P - Q) & \text{if } (n + 1)P - 2Q \le t < (n + 1)P - Q \end{cases}$$

Luca Abeni