Again on Supplied Bound Functions

Luca Abeni luca.abeni@santannapisa.it

October 14, 2019

Understanding the Supplied Bound Function

- Supplied bound function sbf(t): minimum amount of time that a VM is guaranteed to receive in a time interval of size t
 - Considers all the possible intervals of size t...
- Strange looking function!
 - Flat for large intervals of time...
 - $\frac{\delta sbf(t)}{\delta t} = 1$ in the other intervals
- Can we "summarise" it with something simpler?
- What about a line (y = ax + b)?
 - sbf(t) < 0 makes no sense...
 - So, better $sbf(t) = max\{0, at + b\}$

A Linear Approximation

• $sbf(t) = max\{0, at + b\}... at + b$ is below 0 for t < -b/a

• Let's rewrite the equation... $at + b = a(t - \Delta)$ with $\Delta = -b/a$

$$sbf(t) = \begin{cases} 0 & \text{if } t < \Delta \\ a(t - \Delta) & \text{otherwise} \end{cases}$$

Interpreting the Linear Approximation

- $t < \Delta \Rightarrow sbf(t) = 0$: Δ is the *allocation delay* for the VM
 - Worst-case delay between the VM becoming active and the root scheduler scheduling it
 - How much time should I wait before the root scheduler starts giving the CPU to my VM?
- a (sometimes referred as α) is the *bandwidth* of the VM
 - Minimum fraction of CPU time reserved for the VM after the initial delay
- Of course, (a, Δ) should be so that $a(t \Delta)$ is below the real sbf()

Periodic Servers Revisited

• How to compute (a, Δ) for a periodic server (Q^s, T^s) ?

•
$$a = \frac{Q^s}{T^s}$$
, $\Delta = 2(T^s - Q^s)$

- So, after the initial delay $2(T^s Q^s)$ the VM is really receiving the expected fraction of CPU time (Q^s/T^s)
 - If we reduce T^s (keeping Q^s/T^s unchanged)...
 - ...sbf(t) tends to the "fluid allocation"!
- Why not using very very small server periods?
 - Of course there is a reason...

The Design Problem

- Given a component (set of tasks and a local scheduler)...
 - Described by a time demand function (workload for fixed priorities)
- ...Find a root scheduler (and scheduling parameters) able to respect the components' temporal constraints
- Problem reduced to solving " $sbf(t) \ge dbf(t)$ " for a set of points
 - Must be verified for all the points in case of EDF
 - Must be verified for at least one point in case of fixed priorities

Simplified Design

- $sbf(t) \ge dbf(t)$
- Using $sbf(t) = a(t \Delta)...$

$$a(t - \Delta) \ge dbf(t) \Rightarrow \Delta \le t - \frac{dbf(t)}{a}$$

- Solve this for every (t, dbf(t)), and plot the solution on a $a \Delta$ plane...
- ...Then compute the intersection (for EDF) or union (for fixed priorities)

Multi-CPU VMs

- What about multiple CPUs?
 - Much more complex problem...
 - How to schedule the VMs on multiple CPUs?
 - Which local scheduler for multi-CPU VMs?
- How to model multi-CPU VMs?
 - Simplest (but pessimistic) solution: a supply function per CPU
- How to perform the schedulability analysis?
 - Depends on the (local and/or global) scheduler
- Multi-processor scheduling strategies: global vs partitioned

- Global scheduler model:
 - Multi Supply Function
 - Pessimistic, because the worst cases often cannot happen simultaneously
- How to use MSF? Depends on the local scheduler
 - Global EDF (or Global FP) analysis...
 - Compute a (pessimistic) workload and compare it with the multi supply function
- What about a simpler solution? Let's try partitioned scheduling
 - But... What does "global" or "partitioned" mean?
 - Let's see... Multi-processor real-time scheduling in less than 10 slides!

- UniProcessor Systems
 - A schedule $\sigma(t)$ is a function mapping time t into an executing task $\sigma: t \to T \cup \{\tau_{idle}\}$ where T is the set of tasks running in the system
 - τ_{idle} is the *idle task*
- For a multiprocessor system with M CPUs, $\sigma(t)$ is extended to map t in vectors $\tau \in (\mathcal{T} \cup \{\tau_{idle}\})^M$
- Scheduling algorithms for M > 1 processors?
 - Partitioned scheduling
 - Global scheduling

The Quest for Optimality

- UP Scheduling:
 - N periodic tasks with $D_i = T_i$: (C_i, T_i, T_i)
 - Optimal scheduler: if $\sum \frac{C_i}{T_i} \leq 1$, then the task set is schedulable
 - EDF is optimal
- Multiprocessor scheduling:
 - Goal: schedule periodic task sets with $\sum \frac{C_i}{T_i} \leq M$
 - Is this possible?
 - Optimal algorithms

Partitioned Scheduling - 1

- Reduce $\sigma : t \to (\mathcal{T} \cup \{\tau_{idle}\})^M$ to M uniprocessor schedules $\sigma_p : t \to \mathcal{T} \cup \{\tau_{idle}\}, 0 \le p < M$
 - Statically assign tasks to CPUs
 - Reduce the problem of scheduling on *M* CPUs to *M* instances of uniprocessor scheduling
 - Problem: system underutilisation

Partitioned Scheduling - 2

- Reduce an M CPUs scheduling problem to M single CPU scheduling problems and a bin-packing problem
- CPU schedulers: uni-processor, EDF can be used
- Bin-packing: assign tasks to CPUs so that every CPU has load ≤ 1
 - Is this possible?
- Think about 2 CPUs with $\{(6, 10, 10), (6, 10, 10), (6, 10, 10)\}$

Global Scheduling

- One single task queue, shared by *M* CPUs
 - The first *M* ready tasks are selected
 - What happens using fixed priorities (or EDF)?
 - Tasks are not bound to specific CPUs
 - Tasks can often migrate between different CPUs
- Problem: schedulers designed for UP...

Global Scheduling - Problems

- Dhall's effect: U^{lub} for global multiprocessor scheduling can be 1 (for RM or EDF)
 - Pathological case: M CPUs, M + 1 tasks. M tasks $(\epsilon, T 1, T 1)$, a task (T, T, T).
 - $U = M \frac{\epsilon}{T-1} + 1. \ \epsilon \to 0 \Rightarrow U \to 1$
- Global scheduling can cause a lot of useless migrations
 - Migrations are overhead!
 - Decrease in the throughput
 - Migrations are not accounted for...

Global Scheduling for Soft Tasks

- Dhall's Effect \rightarrow global EDF and global RM have $U^{lub} = 1$
 - With U > 1, deadlines can be missed
 - Global EDF / RM are not useful for hard tasks
- However, global EDF can be useful for scheduling soft tasks...
- When U ≤ M, global EDF guarantees an upper bound for the *tardiness*!
 - Deadlines can be missed, but by a limited amount of time

Multi-Core Root and Local Schedulers

- Two different cases: multiple physical CPUs and multiple virtual CPUs
 - The host has multiple CPUs / cores: global or partitioned root scheduler
 - The VM is composed by multiple (virtual) CPUs / cores: global or partitioned local scheduler
- Root scheduler: using a global or partitioned approach only changes the admission test
 - Partitioned scheduler: *M* instances of uni-processor admission test
 - Global scheduler: more complex admission test (multi-CPU TDA)
- Local scheduler: things are more complex...

Multi-Core Scheduling in the Guest

- Guest scheduler (local scheduler): once a VM / component has been selected by the root scheduler, select a component's task
 - If the component runs on multiple (virtual) CPUs, can use a partitioned or global approach...
- Partitioned scheduling in the guest is easy
 - Every (virtual) CPU has its sbf; use it for schedulability analysis
- Global scheduling: on a physical machine, the *M* highest priority tasks are scheduled
 - VM: the m' highest priority tasks of the guest must be scheduled on physical CPUs
 - *m*': number of scheduled virtual CPUs

Global Scheduling in the Guest

- Assume a component is scheduled on 2 virtual CPUs...
- ...And has 3 fixed priority ready tasks
- The guest/local scheduler selects the 2 highest priority tasks and schedules them
 - Now, assume that the root scheduler schedules one of the 2 virtual CPUs and preempt the other one...
 - What happens if the guest schedules the highest priority task on the virtual CPU that is not scheduled???
- The guest/local scheduler must be aware of what the root scheduler is doing!!!
- If it is not, use partitioned scheduling in the guest!