
Again on Supplied Bound

Functions

Luca Abeni

luca.abeni@santannapisa.it

October 14, 2019



Understanding the Supplied Bound Function

CBSD Luca Abeni

• Supplied bound function sbf(t): minimum amount of
time that a VM is guaranteed to receive in a time
interval of size t

• Considers all the possible intervals of size t...

• Strange looking function!

• Flat for large intervals of time...

• δsbf(t)
δt

= 1 in the other intervals

• Can we “summarise” it with something simpler?
• What about a line (y = ax+ b)?

• sbf(t) < 0 makes no sense...
• So, better sbf(t) = max{0, at+ b}



A Linear Approximation

CBSD Luca Abeni

• sbf(t) = max{0, at+ b}... at+ b is below 0 for
t < −b/a

• Let’s rewrite the equation... at+ b = a(t−∆) with
∆ = −b/a

sbf(t) =







0 if t < ∆
a(t−∆) otherwise



Interpreting the Linear Approximation

CBSD Luca Abeni

• t < ∆ ⇒ sbf(t) = 0: ∆ is the allocation delay for the
VM

• Worst-case delay between the VM becoming
active and the root scheduler scheduling it

• How much time should I wait before the root
scheduler starts giving the CPU to my VM?

• a (sometimes referred as α) is the bandwidth of the
VM

• Minimum fraction of CPU time reserved for the
VM after the initial delay

• Of course, (a,∆) should be so that a(t−∆) is below
the real sbf()



Periodic Servers Revisited

CBSD Luca Abeni

• How to compute (a,∆) for a periodic server (Qs, T s)?

• a = Qs

T s , ∆ = 2(T s −Qs)

• So, after the initial delay 2(T s −Qs) the VM is really
receiving the expected fraction of CPU time (Qs/T s)

• If we reduce T s (keeping Qs/T s unchanged)...
• ...sbf(t) tends to the “fluid allocation”!

• Why not using very very small server periods?

• Of course there is a reason...



The Design Problem

CBSD Luca Abeni

• Given a component (set of tasks and a local
scheduler)...

• Described by a time demand function (workload
for fixed priorities)

• ...Find a root scheduler (and scheduling parameters)
able to respect the components’ temporal
constraints

• Problem reduced to solving “sbf(t) ≥ dbf(t)” for a
set of points

• Must be verified for all the points in case of EDF
• Must be verified for at least one point in case of

fixed priorities



Simplified Design

CBSD Luca Abeni

• sbf(t) ≥ dbf(t)
• Using sbf(t) = a(t−∆)...

a(t−∆) ≥ dbf(t) ⇒ ∆ ≤ t−
dbf(t)

a

• Solve this for every (t, dbf(t)), and plot the solution
on a a−∆ plane...

• ...Then compute the intersection (for EDF) or union
(for fixed priorities)



Multi-CPU VMs

CBSD Luca Abeni

• What about multiple CPUs?

• Much more complex problem...
• How to schedule the VMs on multiple CPUs?
• Which local scheduler for multi-CPU VMs?

• How to model multi-CPU VMs?

• Simplest (but pessimistic) solution: a supply
function per CPU

• How to perform the schedulability analysis?

• Depends on the (local and/or global) scheduler

• Multi-processor scheduling strategies: global vs
partitioned



Multi-CPU Schedulers

CBSD Luca Abeni

• Global scheduler model:

• Multi Supply Function
• Pessimistic, because the worst cases often

cannot happen simultaneously

• How to use MSF? Depends on the local scheduler

• Global EDF (or Global FP) analysis...
• Compute a (pessimistic) workload and compare it

with the multi supply function

• What about a simpler solution? Let’s try partitioned
scheduling

• But... What does “global” or “partitioned” mean?
• Let’s see... Multi-processor real-time scheduling

in less than 10 slides!



Multiprocessor Scheduling

CBSD Luca Abeni

• UniProcessor Systems

• A schedule σ(t) is a function mapping time t into
an executing task σ : t → T ∪ {τidle} where T is
the set of tasks running in the system

• τidle is the idle task

• For a multiprocessor system with M CPUs, σ(t) is
extended to map t in vectors τ ∈ (T ∪ {τidle})

M

• Scheduling algorithms for M > 1 processors?

• Partitioned scheduling
• Global scheduling



The Quest for Optimality

CBSD Luca Abeni

• UP Scheduling:

• N periodic tasks with Di = Ti: (Ci, Ti, Ti)
• Optimal scheduler: if

∑ Ci

Ti

≤ 1, then the task set
is schedulable

• EDF is optimal

• Multiprocessor scheduling:

• Goal: schedule periodic task sets with
∑ Ci

Ti

≤ M
• Is this possible?
• Optimal algorithms



Partitioned Scheduling - 1

CBSD Luca Abeni

• Reduce σ : t → (T ∪ {τidle})
M to M uniprocessor

schedules σp : t → T ∪ {τidle}, 0 ≤ p < M

• Statically assign tasks to CPUs
• Reduce the problem of scheduling on M CPUs to

M instances of uniprocessor scheduling
• Problem: system underutilisation

CPU CPU CPU CPU

M



Partitioned Scheduling - 2

CBSD Luca Abeni

• Reduce an M CPUs scheduling problem to M single
CPU scheduling problems and a bin-packing
problem

• CPU schedulers: uni-processor, EDF can be used
• Bin-packing: assign tasks to CPUs so that every

CPU has load ≤ 1

• Is this possible?

• Think about 2 CPUs with
{(6, 10, 10), (6, 10, 10), (6, 10, 10)}



Global Scheduling

CBSD Luca Abeni

• One single task queue, shared by M CPUs

• The first M ready tasks are selected
• What happens using fixed priorities (or EDF)?
• Tasks are not bound to specific CPUs
• Tasks can often migrate between different CPUs

• Problem: schedulers designed for UP...
M

CPU CPU CPU CPU

{M



Global Scheduling - Problems

CBSD Luca Abeni

• Dhall’s effect: U lub for global multiprocessor
scheduling can be 1 (for RM or EDF)

• Pathological case: M CPUs, M + 1 tasks. M
tasks (ǫ, T − 1, T − 1), a task (T, T, T ).

• U = M ǫ
T−1 + 1. ǫ → 0 ⇒ U → 1

• Global scheduling can cause a lot of useless
migrations

• Migrations are overhead!
• Decrease in the throughput
• Migrations are not accounted for...



Global Scheduling for Soft Tasks

CBSD Luca Abeni

• Dhall’s Effect → global EDF and global RM have
U lub = 1

• With U > 1, deadlines can be missed
• Global EDF / RM are not useful for hard tasks

• However, global EDF can be useful for scheduling
soft tasks...

• When U ≤ M , global EDF guarantees an upper
bound for the tardiness!

• Deadlines can be missed, but by a limited
amount of time



Multi-Core Root and Local Schedulers

CBSD Luca Abeni

• Two different cases: multiple physical CPUs and
multiple virtual CPUs

• The host has multiple CPUs / cores: global or
partitioned root scheduler

• The VM is composed by multiple (virtual) CPUs /
cores: global or partitioned local scheduler

• Root scheduler: using a global or partitioned
approach only changes the admission test

• Partitioned scheduler: M instances of
uni-processor admission test

• Global scheduler: more complex admission test
(multi-CPU TDA)

• Local scheduler: things are more complex...



Multi-Core Scheduling in the Guest

CBSD Luca Abeni

• Guest scheduler (local scheduler): once a VM /
component has been selected by the root scheduler,
select a component’s task

• If the component runs on multiple (virtual) CPUs,
can use a partitioned or global approach...

• Partitioned scheduling in the guest is easy

• Every (virtual) CPU has its sbf; use it for
schedulability analysis

• Global scheduling: on a physical machine, the M
highest priority tasks are scheduled

• VM: the m′ highest priority tasks of the guest
must be scheduled on physical CPUs

• m′: number of scheduled virtual CPUs



Global Scheduling in the Guest

CBSD Luca Abeni

• Assume a component is scheduled on 2 virtual
CPUs...

• ...And has 3 fixed priority ready tasks
• The guest/local scheduler selects the 2 highest

priority tasks and schedules them

• Now, assume that the root scheduler schedules
one of the 2 virtual CPUs and preempt the other
one...

• What happens if the guest schedules the highest
priority task on the virtual CPU that is not
scheduled???

• The guest/local scheduler must be aware of what the
root scheduler is doing!!!

• If it is not, use partitioned scheduling in the guest!


	Understanding the Supplied Bound Function
	A Linear Approximation
	Interpreting the Linear Approximation
	Periodic Servers Revisited
	The Design Problem
	Simplified Design
	Multi-CPU VMs
	Multi-CPU Schedulers
	Multiprocessor Scheduling
	The Quest for Optimality
	Partitioned Scheduling - 1
	Partitioned Scheduling - 2
	Global Scheduling
	Global Scheduling - Problems
	Global Scheduling for Soft Tasks 
	Multi-Core Root and Local Schedulers
	Multi-Core Scheduling in the Guest
	Global Scheduling in the Guest

