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1 Identifiers, Bindings, and Environment

Almost all of the programming languages allow to associate symbolic names to the various “entities”
composing the programs (values, memory locations, variabiles, functions, etc...).

More formally, a programming language is composed of denotable entities that can be referred through
symbolic names (identifiers). This mechanism is implemented by a function named environment, having
the set of possible identifiers as a domain and the set of denotable entities as a codomain. This function
can change during the program runtime, as it is possible to create new bindings between identifier and
denotable entities, or to destroy existing bindings. Moreover, some bindings between identifiers and
denotable entities only exist in some parts of the code1. Hence, the following definitions hold:

Definition 1 (Binding) A binding between an identifier I and a denotable entity E is a pair (I, E)
associating name and entity.

Definition 2 (Environment) The environment is the set {(I, E)} of bindings existing in a specific
moment of the program execution, while the code of a specific program block is being executed.

this definition is not surprising, since the environment is a function env : I → E (where I is the set of
possible identifiers, and E is the set of denotable entities) and from the mathematical point of view a
function is a set of (I, E) pairs, so env ⊂ I × E .

The set of denotable entities is clearly language-dependent; for example:

• in the Assembly language, identifiers can be associated only to memory locations (so, the only
possible denotable entities are memory addresses)

• in higher-level imperative languages, identifiers can be associated to values, variables, functions, or
data types

• in λ-calculus, identifiers can only be associated to functions (so, functions are the only possible
denotable entities)

• in higher-level functional programming languages, identifiers can be associated to values (mutable
variables do not exist, and functions are values!)

In programming languages having the “code block” concept, it is possible to make a distinction
between local environment (the environment valid inside a code block), non-local environment, and global
environment.

Definition 3 (Local Environent) The local environment of a code block is the subset of the environ-
ment composed of the bindings that have been created inside the code block (and are hence valid only
inside this block)

Definition 4 (Non-Local Environment) The non-local environment of a code block is the subset of
the environment which is not part of the local environment (and hence contains all the bindings that have
been created outside of this block and will remain valid when the execution exits the block)

Definition 5 (Global Environment) The global environment is the subset of the environment con-
taining bindings that are not created inside any code block

1As an example, the environment is modified by a declaration, or by the first usage of a denotable entity.
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2 Mutable Variables

According to the imperative approach, the execution of programs happens by modifying the values
contained in some memory locations, which are called variables in high-level languages.

Definition 6 (Mutable Variable) A mutable variable is a denotable entity representing some memory
locations that can contain storable entities

The definition above is based on “storable entities”, which, again, are a language-dependent concept...
But in general a storable entity is some value that can be stored in a variable.

From the conceptual point of view, mutable variables imply the existance of a second function, after
the environment, named “store”, associating each variable with the storable entity contained into it.

Definition 7 (Store) The store is a set of pairs (V,E) (where V is a variable and E is a storable entity)
associating each variable with the value contained into it

The store is hence a function (representing the memory used by the program to store its data, or the
mutable state of the program) which has the set of program’s variables as a domain, and the set of
storable entities used by the program as a codomain.

When, using an imperative programming language, the value stored in variable “x” is used, the
(abstract) machine applies the store function to the value returned by the environment function applied
to identifier “x”: “x”: store(env(x)) (where “env” is the environment).

3 Denotable, Storable, and Expressible Entities

As discussed, a program is composed of some “entities” (whose definition depends on the programming
languages, but can be data types, values, variables, functions, etc...). Such entities can be denotable,
storable, and expressible.

(Note: in literature the definitions of “storable”, “expressible”, and “denotable” are often associated
to values)

Definition 8 (Denotable Entities) A denotable entity is a language entity that can be associated to a
symbolic name / identifier

Definition 9 (Storable Entities) A storable entity is a language entity that can be stored in a variable

Definition 10 (Expressible Entities) An expressible entity is a program entity that can be generated
computing an expression

A denotable entity is hence a generic entity that can be referred through a name (defined by the user or
pre-defined in the language); the set of denotable entities is the codomain of the environment function.
An expressible entity is a generic entity that “can be computed/allocated” somehow using the language’s
constructs. Finally, the storable entities (which only exist in imperative programming languages) form
the codomain of the store function.

In a functional programming language, all entities are denotable and expressible, whereas in an im-
perative programming language there can be entities that are denotable but not expressible or storable
(for example, functions in the C programming language).

4 Functions

Almost all the high-level programming languages allow some form of code modularization by decomposing
programs into a set of components (subprograms/subroutines/functions/procedures). Each one of these
components implements a specific functionality according to a well-specified interface.

Each subroutine is hence an entity implementing a self-contained part of the code which can be invoked
exchanging some values (parameters and return values) with the caller. A subroutine which can return
a value is generally called “function” (clearly, this is a very different thing respect to a mathematical
function!!!).

Definition 11 (Function) A function is a denotable entity composed of a block of code associated to a
name that can be used to invoke its execution. When the execution of a function is invoked, the caller can
exchange some data with it through its parameters, its return value and some global state of the program.
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void wrong swap ( int a , int b)
{

int tmp ;

tmp = a ; a = b ; b = tmp ;
}

void cor r ec t swap ( int ∗a , int ∗b)
{

int tmp ;

tmp = ∗a ; ∗a = ∗b ; ∗b = tmp ;
}

Figure 1: Example of C function trying to exchange the values of two variables. Since the C language
mandates parameters passing by value, the “wrong swap()” will have no effect (as its name suggests);
the “correct swap()” function, instead, receives as parameters some pointers to the variables, and can
hence work correctly.

void r e f e r ence swap ( int &a , int &b)
{

int tmp ;

tmp = a ; a = b ; b = tmp ;
}

Figure 2: Example of function swapping the contents of two variables, implemented in C++ passing
parameters by reference.

Definition 12 (Foramal Parameter) A formal parameter of a function (specified in the function’s
definition) identifies a variable that can be used by the caller to pass data to the function when invoking
it

Definition 13 (Actual Parameter) An actual parameter is an expression (specified when invoking a
function) that will be associated to the corresponding formal parameter during the function’s execution

The fact that a function is composed of a block of code makes it clear that the function is characterised
by a local environment (containing bindings between names and local variables, names and function
parameters, etc...). Moreover, since a function is defined as a denotable entity this block of code (the
function body) can be associated to a name (but this is not always necessary: anonymous functions do
exist!).

The way actual parameters are associated to formal parameters depends on the mechanism used to
invoke the function, and to the parameters passing style that is used. For example, a formal parameter
identifies a variable which can be created when the function is invoked (and is hence a local variable of
the function), or can exist before the function is invoked. Different parameters passing styles can be used,
and the most important are: parameters passing by value, by reference, and by name.

When parameters are passed by name, a new local variable for each formal parameter is allocated
when the function is invoked (and is deallocated when the function returns). The simplest way to
manage these variables is allocating them on the stack. The local environment of the function then
binds the formal parameter name to this variable, and the variable is initialized with the value of the
actual parameter (hence the name “by value”). If the function modifies the value stored in this variable,
the modifications are discarded when the function returns and the variable is deallocated. In other
words, passing parameters by value it is possible to pass data from the caller to the called, but not
vice-versa. This mechanism is the only one supported by the C programming language; as a result, the
“wrong swap()” function in Figure 1 does not work correctly (and pointers are needed to code a working
“swap” function).

When parameters are passe by reference, instead, no new variable is allocated when the function is
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int f ( int v )
{

int a = 666 ;

return a + v ;
}

Figure 3: Example of function passing parameters by name.

invoked. Parameters are passed by modifying the local environment of the function so that the formal
parameter’s name is bound to the actual parameter. Hence, the actual parameter has to be a denotable
entity (for example, things like “x + 1” are not valid actual parameters when passing parameters by
reference). Using the C/C++ jargon, this means that actual parameters have to be L-values. This
parameters passing style is not supported by the C language, but is supported by C++; as an example,
see the “reference swap()” function in Figure 2 (comparing this code with Figure 1 it is possible to
better understand the differences between passing parameters by name and by reference).

Finally, when parameters are passed by name invoking a function requires to replace each formal
parameter with the corresponding actual parameter (this is just text replacement). This mechanism is
typically used to evaluate (reduce) functional programs. Although parameters passing by name might
look simple to simplement, there are some subtle issues to be addressed. For example, consider the “f()”
function from Figure 3: the goal of the function is to sum 666 to the value received as input, and if param-
eters are passed by name the “f(n)” is evaluated as “{ int a = 666; return a + n;}”, which is reduced
to “{ return 666 + n;}”, and the return value is correctly “666 + n”. But if “f(a)” is invoked, things be-
come more complex: a simple replacement of “v” with “a” would result in “{ int a = 666; return a + a;}”
which reduces to “666 + 666”, clearly not the expected result... The issue is that when replacing “v”
with “a” it is not possible to make a distinction between two different entities (a local variable and a non
local one) which have the same name “a”.

This issue is generally addressed in functional programming by properly changing the variables’
names: if “f()” is invoked using as an actual parameter an expression containing “a”, then the lo-
cal variable “int a” must be renamed (for example to “a1”) so that the replacement can result in
“{ int a1 = 666; return a1 + a;}” which correctly evaluates to “666 + a”.

From an implementation point of view, parameter passing by name has been historically implemented
by passing “thunks”, which are (environment,expression) pairs, as parameters. Hence, a function receiving
parameters passed by name can be implemented as a function receiving (environment,expression) pairs
as parameters2.

5 Closures

void−>int counter (void )
{

int n = 0 ;

int f (void ) {
return n++;

}

return f ;
}

Figure 4: Example of a function returning a closure.

In some programming languages, functions are storable entities (there are variables that can store
functions) or expressible entities (it is possible to build expressions evaluating to a function). As a result,

2the expressions are the actual parameters, and the environments are used to evaluate such expressions; in the example
of Figure 3, the expression is “a” and the environment binds this “a” name to the global “a” variable).
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they can be used as actual parameters for other functions, or as return values for functions. In these
cases, the values to be stored, returned, or passed as parameters are technically “closures”

Definition 14 (Closure) A closure is a pair composed of a function and its non-local environment

Basically, a closure is needed to find the entities bound to identifiers for which there are no bindings in
the local environment of the function.

#include <s t d i o . h>

int (∗ counter (void ) ) ( void )
{

int n = 0 ;

int f (void ) {
return n++;

}

return f ;
}

int main ( )
{

int (∗ c1 ) ( void ) = counter ( ) ;
int (∗ c2 ) ( void ) = counter ( ) ;
int (∗ c3 ) ( void ) = counter ( ) ;

p r i n t f ( ” %d %d\n” , c1 ( ) , c1 ( ) ) ;
p r i n t f ( ”%d %d %d\n” , c2 ( ) , c2 ( ) , c2 ( ) ) ;
p r i n t f ( ” %d %d\n” , c3 ( ) , c3 ( ) ) ;

return 0 ;
}

Figure 5: Example showing the function pointers in C are not closures (the example also uses a non-
standard extension provided by the gcc compiler).

As an example, look at the function “void->int contatore(void)” from Figure 4, is coded using a
pseudo-language with a C-like syntax in which “void->int” is the type of the functions withot arguments
that return a value of type int. The “counter()” function receives no arguments and returns a function
that generates all the integer numbers starting from 0. It is possible to notice that “n;; is a local variable
of the “counter()” function, and not a variable or an argument of the “f()” function. Hence, when
“counter()” is invoked its local variable contains a binding from “n” to a local variable initialized to 0.
Such a binding is not in the local environment of “f()” (it is in its non-local environment) and when
“counter()” returns the variable bound to “n” is deallocated. So, in order for the program to work 2
things are needed:

1. The variable bound to identifier “n” should not be deallocated when “counter()” returns. Hence,
it cannot be allocated on the stack, but must be allocated on the heap

2. The binding between identifier “n” and such a variable has to be somehow associated to the returned
function. It is hence copied in a new environment that will be part of a closure returned by
“counter()’’

To better understand the differences between closures and function pointers, look at Figure 5, that
uses a gcc extension to implement the function of Figure 4 in C. In this case, the “int n” variable is
deallocated when function “counter()” returns, hence the program has an undefined behaviour.

6 Closures and Classes
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#include <f unc t i ona l>
#include <iostream>

auto counter (void )
{

int n = 0 ;

return [ n ] ( void ) mutable {
return n++;

} ;
}

int main ( )
{

auto c1 = counter ( ) ;
auto c2 = counter ( ) ;
auto c3 = counter ( ) ;

s td : : cout << c1 ( ) << ” ” << c1 ( ) << std : : endl ;
s td : : cout << c2 ( ) << ” ” << c2 ( ) << ” ” << c2 ( ) << std : : endl ;
s td : : cout << c3 ( ) << ” ” << c3 ( ) << std : : endl ;

return 0 ;
}

Figure 6: Example showing how to use C++ lambda functions, which implement closures.

#include <iostream>

class Counter {
private :

int n ;
public :

Counter (void ) : n (0 ) {
}
int operator ( ) (void ) {

return n++;
}

} ;

int main ( )
{

auto c1 = Counter ( ) ;
auto c2 = Counter ( ) ;
auto c3 = Counter ( ) ;

s td : : cout << c1 ( ) << ” ” << c1 ( ) << std : : endl ;
s td : : cout << c2 ( ) << ” ” << c2 ( ) << ” ” << c2 ( ) << std : : endl ;
s td : : cout << c3 ( ) << ” ” << c3 ( ) << std : : endl ;

return 0 ;
}

Figure 7: Implementing the “counter()” function in C++ using classes.
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Closures allow associating a non-local environment to a function, and have been originally introduced
to implement high-order functions (functions returning functions as a result, or accepting functions as
parameters). But the resulting abstraction is much more powerful than this, and allow associating data
(the state contained in the variables bound by the non-local environment) to code (the code implementing
the function’s body). And this is very similar to what classes do.

To better understand the relationship between closures and classes, look at the C++ implementation
of a counter as a closure or as a class, as shown in Figures 6 and 7. As it is possible to notice, the “int n”
variable in the first case is a local variable of the “counter()” function (then embedded in the closure)
and in the second case is encapsulated in a class as a private member.
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