
On Fixed Point Combinators and Similar Amenities

Luca Abeni

January 11, 2023

1 Fixed Point Combinators

In general, a combinator is a higher-order function (function that takes other functions as arguments
and/or returns functions as a result) with no free variables (that is, all variables used in the combinator
are bound in its local environment: they are therefore local variables or parameters)1.

The fixed point combinators (fixpoint combinators) are particularly important in the context of func-
tional programming (and its theoretical foundation, λ calculus). A fixed point combinator is a combinator
that computes the fixed point of its argument. In other words, if g is a function, a fixpoint combinator is
a function Fix with no free variables such that Fix(g) = g(Fix(g)).

Note that defining a generic higher order function Fix that computes the fixed point of the function
passed as an argument is quite easy: by definition

Fix(g) = g(Fix(g))

and this expression can also be seen as a definition of Fix if we consider a small extension of the λ

calculus that allows us to associate names with λ expressions

Fix(g) = g(Fix(g)) ⇒ Fix = λg.g(Fix(g)). (1)

As a first consideration, it is interesting to note that if we try to evaluate the equation 1 using an
eager strategy (evaluation by value), we get

Fix(g) = (λg.g(Fix(g)))g →β g(Fix(g)) = g((λg.g(Fix(g)))g) →β g(g(Fix(g))) = ...

and the reduction diverges. This happens because an eager evaluation strategy will always evaluate
the innermost expression “Fix(g)” by expanding it to “g(Fix(g))” and so on... Using instead a lazy

(evaluation by name) strategy, “Fix(g)” is evaluated only when g actually invokes it recursively (hence,
it is not evaluated when arriving at the inductive basis... This guarantees that if if the various recursive
invocations lead to the inductive basis then the evaluation of Fix(g) does not diverge). This observation
is important when trying to implement a fixed point combinator in eager languages Standard ML.

Another important observation is that the “Fix” function defined in Equation 1 allows (by construc-
tion) to compute the fixed point of its argument g, but it is not a combinator: in particular, the definition
of Fix uses the “Fix” variable which is free, not being bound by any λ (while the definition of a combi-
nator should contain only bound variables). This is especially relevant because “Fix” is just the name
of the function being defined, so the definition of “Fix” is recursive. In other words, we just moved the
recursion from the definition of g to the definition of Fix.

There are many different fixed point combinators that can be used to compute the fixed point of a
function without using explicit recursion either in the definition of the function or in the definition of
the combinator. The existence of fixed point combinators has a remarkable theoretical importance (in
practice, it shows that “pure” λ-calculus - without environment or extensions that allow to associate
names to expressions - can implement the recursion and is Turing complete). From a practical point of
view, it means instead that a functional language that does not implement “val rec” (or the equivalent
“fun”), “let rec’ ’ or similar...) may still allow the implementation of recursive functions!

The most famous of the fixed-point combinators is the Y combinator, developed by Haskell Curry
(yes, the names are always the same at the end...), whose definition (using the λ-calculus) is:

Y = λf.(λx.f(xx))(λx.f(xx)). (2)

1Remember that in the particular case of λ calculus a combinator is defined as a λ expression which does not contain
free variables, consistently with this more generic definition.

1

It is very important (especially when searching for information on the internet!) to notice that in
the literature there are some small terminological inconsistencies: while in general the Y combinator is a
particular fixed point combinator, some people tend to use the term “Y combinator” to identify a generic
fixed point combinator (and thus write that there is an infinity of Y combinators).

2 Haskell Implementation

The Y Combinator is defined as
Y = λf.(λx.f(xx))(λx.f(xx))

Trying a simple conversion from the λ-calculus syntax to the Haskell syntax (“λ” becomes “\” and
“.” becomes “->”) we obtain

y = \ f −> (\x −> f (x x)) (\ x −> f (x x))

However, this expression is not accepted by a Haskell compiler or interpreter. For example, ghci
generates the following error:

Prelude> y = \ f −> (\x −> f (x x)) (\ x −> f (x x))

< i n t e r a c t i v e > : 1 : 23 : error :
o Occurs check : cannot cons t ruc t the i n f i n i t e type : t0 ˜ t0 −> t

Expected type : t0 −> t
Actual type : (t0 −> t) −> t

o In the f i r s t argument of ’ x ’ , namely ’x ’
In the f i r s t argument of ’ f ’ , namely ’ (x x) ’
In the exp r e s s i on : f (x x)

o Relevant b ind ings in c lude
x : : (t0 −> t) −> t (bound at < i n t e r a c t i v e > : 1 :13)
f : : t −> t (bound at < i n t e r a c t i v e > : 1 : 6)
y : : (t −> t) −> t (bound at < i n t e r a c t i v e > : 1 : 1)

. . .

The meaning of this error becomes clear when trying to figure out the type of “x”. Assuming that “x”
has type “t0”, we have:

• Since “(xx)” indicates that “x” is a function applied to an argument, the type “t0 ” of “x” must
be a function. Let us consider the more generic case: a function α → β, therefore t0 = α → β

• On the other hand, the function “x” is applied to the argument “x”. So the type α of the function
argument “x” must be equal to the type of “x” (“t0”): t0 = α.

Putting it all together you get

t0 = α → β ∧ t0 = α ⇒ α = α → β

which defines the type “t0” recursively (as indicated by the error message, “t0” must be equivalent
to “t0 -> t”). Since Haskell supports recursive data types, one would think that it should be able to
support the “t0” type we are talking about. However, a recursion like α = α → β doesn’t make much
sense in a language performing strict type checks like Haskell. To understand why, it is necessary to go
into a little more details about recursive data types.

When faced with a definition such as α = α → β, we speak of equi-recursive data types (equi-recursive
data types) if α and α → β represent the same data type (same values, same operations on values,
etc...). We speak instead of iso-recursive data types (iso-recursive data types) if the type α and the type
α → β are not equal, but there is an isomorphism (function 1 → 1, invertible, which for each value of α
associates a value of α → β and vice versa) from one to the other. This isomorphism (which establishes
that the two types are essentially equivalent) is the “constructor” function of the algebraic data types.
Understanding that Haskell supports iso-recursive types (a value of α can be generated using a special
constructor starting from a value of α → β), but not equi-recursive (α and α → β cannot be the same
type!) tt then becomes clear why the definition of Y given above generates a syntax error (in particular,
a type error).

2

This error does not mean that the definition of the Y combinator (Equation 2) is “wrong”, but simply
that it is not directly implementable in Haskell (or in any other language that uses strong typing). The
Y combinator is defined using the λ-calculus, where each identifier is bound to a function, whose type is
not important. Using languages with “less strict” type checking than Haskell (for example, Lisp, Scheme,
Python, Javascript, etc...) or languages that support equi-recursive types (for example, OCaml with
appropriate options), Equation 2 can be implemented without issues.

To better understand how to solve this problem, let us consider the “problematic part” of the previous
expression (the application of function “(xx)”), focusing on the function “\x -> (xx)”.

Since in Haskell a recursive data type t0 can be defined using the data construct and (at least) a
constructor mapping values of a type that depends on t0 into values of t0 (iso-recursive type definition),
one can define something like T = F (T → β) to “simulate” the (equi-recursive) type α = α → β of
function x. The resulting type T will then be a function of the type β and in Haskell this is denoted by
“T b”. Remebering the syntax of the “data” keyword, we can write

data T b = F (T b −> b)

where (as mentioned) “T b” is the name of the type and “F” is the name of the constructor that maps
values of T b -> b into values of T b.

At this point, it is possible to use “T b” to correctly type “x” by writing “x” as a function T b -> b

from T b to b. The argument (actual parameter) of this function must therefore be of type T b, which
can be generated from “x” using the constructor F. Instead of “\x −> x x” we can then write:

\x −> (x (F x))

so that Haskell is able to understand and compile this definition.
Note how the impossibility of using equi-recursive types forced us to use the F constructor. The type

of the function defined above is (T b -> b) -> b (function that maps values “x” of type “T b-> b ” to
values of type “b”).

Now that we have seen how to solve the “x” type issue, it is possible to go back to the original Y
combinator expression, which still has a similar problem: “\x - > f(x (F x))” applies to itself, so its
type is recursive like the type of “x”! Again the problem can be solved by using the previously defined “T
b” datatype: “\f −> (\x −> f (x (F x)))” has type “(b -> c) -> (T b -> b) -> c”, so assuming “b
-> c ” as type for “f” we have that “\x -> f (x (F x))” has type “(T b - > b) -> c”... The value
“\x -> f (x (F x))” to which it is applied must therefore have type “Tb -> b”. Hence, “(T b -> b)”
(type of “x”) must be replaced with “T b” (obtainable from “x” by applying the constructor “F”). The
argument will then be “\f −> (\ (F x) −> f (x (F x)))”.

As a result, the expression of the Y combinator should be:

y = \ f −> (\x −> f (x (F x))) (\ (F x) −> f (x (F x)))

and in theory this expression should be accepted by Haskell! Unfortunately, however, some ghc (and
therefore ghci) versions have problems correctly inferring data types2. Other programs, such as the
Hugs interpreter (https://www.haskell.org/hugs) are able to parse and evaluate this definition without
problems.

The problem encountered by some versions of ghc can be overcome by somehow “helping” the compiler
to correctly infer the types of the various subexpressions. For example, you could replace “F x” with a
variable “z” gaving the right type (T b). To do this, however, you need a function that allows you to
extract “x” from “F x”; in practice, the inverse function of the “F” constructor:

invF (F x) = x

At this point it is possible to replace “\(F x)” with “\z” and the following “x” with “invF z”,
obtaining

y = \ f −> (\x −> f (x (F x))) (\ z −> f ((invF z) z))

and this expression is accepted by all versions of ghci!
Summing up, the first part of the expression (“\x -> f(x (F x))”) has type “(T b -> b) -> c’

’, while the second part (“\z -> f((invF z) z)”) has type “T b -> c” and is therefore usable as an
argument to the former simply by setting β = γ.

The type of the resulting function is “(b -> b) -> b”, where “b” is clearly a function type (for the
factorial, for example , is a function “Int -> Int”).

2This is probably related to a bug described in https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/bugs.html.

3

https://www.haskell.org/hugs
https: //downloads.haskell.org/~ghc/latest/docs/html/users_guide/bugs.html

The above discussion, which shows how it is possible to implement the fixed point combinator Y in
strictly typed languages (like Haskell) that do not support equi-recursive data types, allows us to intuit
one important thing: Y “eliminates recursion ” by the fixed point operator (Equation 1 uses explicit
recursion) by moving the recursion to the data type (indeed it requires using recursive data types of some
kind). This is not immediately visible in Equation 2 or scheme (or similar) implementations of Y, but it
becomes clearer trying to implement Y in (for example) Haskell.

Once Haskell has “accepted and understood” our definition of Y, one can, for example, use this Y
combinator to define the factorial function. First of all, let’s define a “closed” version fact closed3 of
the factorial function as

f a c t c l o s e d = \ f −> \n −> i f n == 0 then 1 else n ∗ f (n − 1)

At this point the factorial function can be defined as

f a c t = y f a c t c l o s e d

Note that the type of “fact closed” is “(Eq p, Num p) => (p -> p) -> p -> p”, therefore, since
Y has type “(b -> b) -> b” “y fact closed” has type “(Eq p, Num p) => p -> p”.

So, a possible definition of the Y combinator in Haskell (there are many others) can be:

data T b = F (T b −> b)
invF (F x) = x
y = \ f −> (\x −> f (x (F x))) (\ y −> f ((invF y) y))

Based on this definition it is possible to use ghci to do:

Prelude> f a c t c l o s e d = \ f −> \n −> i f n == 0 then 1 else n ∗ f (n − 1)
Prelude> : t f a c t c l o s e d
f a c t c l o s e d : : (Eq p , Num p) => (p −> p) −> p −> p
Prelude> f a c t = y f a c t c l o s e d
Prelude> : t y
y : : (b −> b) −> b
Prelude> : t f a c t
f a c t : : (Eq p , Num p) => p −> p
Prelude> f a c t 3
6
Prelude> f a c t 4
24
. . .

3This function is called “closed” because it has no free variables. The traditional recursive definition of the factorial
function instead uses a free variable (its name) to call itself recursively.

4

	Fixed Point Combinators
	Haskell Implementation

