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The λ calculus is a formalism (or, if we prefer to see it from a CS point of view, a programming
language) which allows us to define the fundamental concepts of functional programming: functions,
definition of functions and application of functions.

If we see λ calculus as a programming language, we can notice how it introduces the basic mechanisms
needed to write functional programs without introducing the abstractions that characterize higher-level
functional programming languages. Thus, λ calculus can be seen as the FP version of the Assembly
language. It is interesting, however, to note that even lower-level functional languages exist, because
they introduce even fewer abstractions (for example, we will see that the function definition construct
can be omitted).

From a different point of view, the λ calculus can be seen as the theoretical foundation for functional
programming, as it can be proved to be turing-complete. This result has a remarkable importance, because
it means that the functional programming paradigm allows to implement any computable algorithm (ie:
it has the same expressive power as the imperative programming paradigm).

Summing up, the basic elements of λ calculus are just names, the concept of abstraction (definition
of functions), and function application. Therefore, higher-level concepts such as data types, global en-
vironment, and the like do not exist. Since there are no different types of data, the basic elements of
the λ calculation are generic “functions”, which receive another function as an argument and generate
a function as a result. The domain and codomain of these functions are generic expressions (better,
λ-expressions) and are not explicitly specified.

We will see that there is a typed version of the λ calculus, in which the type of a function is specified
by the function’s domain and codomain (as traditionally done in the various analysis or algebra courses).
Paradoxically, however, this formalism loses the expressive power of the original λ calculus and is no
longer Turing-complete.

The basic idea of λ calculus is to express algorithms (or to code programs) as expressions, called
λ-expressions in the following. As we will see, the execution of a program then consists in evaluation of
a λ-expression (using a simplification mechanism called “reduction”). So let’s see how λ-expressions are
composed The incredibly simple syntax reflects the fact that λ-expressions are built starting from the
three simple concepts already mentioned:

1. Variables (which actually represent functions). They constitute the terminal elements of the lan-
guage and are indicated by names (identifiers), which will be represented by single letters written
in italic (for example, “x”, “y” or “f” ) in the following

2. Abstractions, which allow you to specify that a variable “x” is an argument in the following expres-
sion. Technically, an abstraction is said to “bind” a variable into an expression (the reason for this
terminology will become clear later). In practice, an abstraction “creates” (informally speaking) a
function starting from a λ expression, specifying the argument of the function (the bound variable)

3. Functions applications. They represent the inverse operation of abstraction and allow to trans-
form an abstraction and a λ expression into a single λ expression by removing the bound variable
(actually, the whole abstraction is removed)

Using BNF notation, the syntax of a λ-expression is:

<expre s s i on> ::= <name> ; l owercase l e t t e r in i t a l i c
| ( λ<name>.<expre s s i on >) ; ab s t r a c t i on
| (< expre s s i on> <expre s s i on >) ; f unc t i on app l i c a t i o n

This is equivalent to the following inductive definition:

• A name / variable / function (indicated with a single italic letter below) is a λ expression
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• If e is a λ expression and x is a name, then (λx.e) is a λ expression

• If e1 and e2 are λ expressions, then (e1e2) is a λ expression

Based on the definitions above, the following are examples of λ expressions:

• x (variable / function)

• (λx.(xy)) (abstraction: bind variable “x” in the expression “xy”, transforming that expression into
a function of variable “x”)

• ((xy)z) (application: apply function “x” to “y”, then apply the result to “z”)

• (λx.(xy))z (more complex expression)

According to what explained so far, any abstraction or application of a function should be enclosed
in parentheses (to make the syntax less ambiguous); actually, the following conventions are assumed to
reduce the number of parentheses used:

• Function application is left-associative: ((xy)z) is therefore equivalent to xyz

• The “λ” operator is right-associative and has lower precedence than function application: (λx.(xy))
is therefore equivalent to λx.xy

Another convention often used in the literature is that the variables linked by several immediately
successive abstractions are grouped together; for example, λx.λy.f can be written as λxy.f . However,
this convention will not be used in the following and we will keep only one variable for λ.

It is interesting to notice how the syntax of the λ-calculus allows to distinguish the definition of a
function from its application: in the commonly used mathematical notation, the term “f(x)” is used
both to indicate that the function “f()” is applied to the value “x” and to define this function (as in
“f(x) = x2”). In the λ-calculus, however, “fx” represents the application of “f” to “x”, while “λx.f”
represents the definition of a function with argument “x”.

Another interesting thing to note is that given the absence of a global environment it is not possible
to dynamically create associations between λ expressions and non-local names. In other words, not only
the λ-calculus has no concept of “assignment” of values to a mutable variable, but it also lacks the
equivalent of variable declaration (not even immutable variables). For convenience it is possible to use
symbolic names for complex λ expressions (see applied λ calculus, below), but these are macro-like, static
definitions (not bindings in a global environment that may vary dynamically at runtime).

As a result, only anonymous expressions and anonymous functions can be created in the λ-calculus
(similar to what was done in standard ML with the fn construct, in Haskell with “\” or in C++ with
lambda expressions “[](...){...}”). This could imply that λ-calculus does not allow defining recursive
functions (and consequently is not Turing complete); we will see later how it is instead possible to define
functions that require recursion by using the concepts of fixed point and fixed point combinator.

The only (name,value) bindings that can be created dynamically are the local bindings between formal
parameters and actual parameters that are created during function application. This means that at least
the concept of a local environment exists in the λ-calculus.

1 Semantic of the Lambda Calculus

As previously mentioned, λ-calculus allows programs to be encoded as expressions, which are “executed”
by evaluating them via a process called reduction. Informally speaking, we can say that this process is
based on the meanings that have been associated with the various basic elements of a λ expression. To
define the semantics of the λ-calculus in a more formal way, it is first necessary to introduce some basic
concepts, such as “free variables” and “bound variables”.

Intuitively, a variable “x” is bound by a construct “λx.E” (where E is a generic λ expression), while
it is free in an expression “E” if in “E” there is no λx abstraction that binds “x”. To give a more formal
definition, we must refer to the recursive definition of λ expressions: in particular, if B(E) represents the
set of bound variables in “E” and F(E) represents the set of free variables in “ E”, we can say that:

• For each variable “x”, F(x) = {x} and B(x) = ∅

• F(E1E2) = F(E1) ∪ F(E2); B(E1E2) = B(E1) ∪ B(E2)

2



• F(λx.E) = F(E)− {x}; B(λx.E) = B(E) ∪ {x}

Basically, this definition says that if an expression is composed of only one variable, that variable is
free; composing two expressions (applying one expression to another) does not change the state of the
variables (free variables remain free and bound variables remain bound) and the operator “λx.E” binds
the variable “ x” in the expression “E” (it removes “x” from the set of free variables of “E” and adds
it to the set of bound variables). The λ operator is said to bind variable “x” in “λx.E” because when
the expression “λx.E” is applied to an expression E1 a binding between x and E1 is created in the local
environment of E.

Based on this simple recursive definition it is possible to compute the set of free variables and bound
variables for each λ expression. A λ expression which contains no free variables but is composed only of
bound variables) is called a “combinator” and has the important property that the result of its evaluation
only depends on the arguments (current parameters) used to evaluate it. More formally, a λ expression
E is a combinator if F(E) = ∅.

We can now define the concept of α equivalence between two λ expressions. Informally, two λ ex-
pressions E1 and E2 are α equivalent (E1 ≡α E2) if they differ only in the parameters’ names. This
means that when defining a function the name of the function argument is not important (using a more
familiar mathematical notation, f1(x) = x2 and f2(y) = y2 represent the same function); so, for example,
λx.xy ≡α λz.zy. The correct definition of α equivalence is obviously more complex, because, for exam-
ple, λx.xλx.xy is not α equivalent to λz.z.λx.zy but is α equivalent to λz.z.λx.xy. Basically, λx.E is α
equivalent to λz.E[x → z], where E[x → z] represents the expression “E” with variable “x” is replaced
by expression “z” only if it is free:

• If “x” and “y” are variables and E is a λ expression, x[x → E] = E and y 6= x ⇒ y[x → E] = y

• Given two λ expressions E1 and E2, (E1E2)[x → E] = (E1[x → E]E2[x → E])

• If “x” and “y” are variables and E is a λ expression,

– y 6= x ∧ y /∈ F(E′) ⇒ (λy.E)[x → E′] = λy.(E[x → E′])

– y = x ⇒ (λy.E)[x → z] = λy.E

Looking back at the previous example, we can see how the rule “y = x ⇒ (λy.E)[x → z] = λy.E”
allows us to obtain the correct result: λx.xλx.xy ≡α λz.(xλx.xy)[x → z] = λz.x[x → z](λx.xy)[x → z] =
λx.zλx.xy as expected. It is also interesting to note that the rule “y 6= x ∧ y /∈ F(E′) ⇒ (λy.E)[x →
E′] = λy.(E[x → E′])” contains the condition “y /∈ F(E′)”: this condition is needed to avoid wrong
substitutions like (λx.xy)[y → x] = λx.xx which would lead to α equivalences like λy.λx.xy ≡α λx.λx.xx,
clearly incorrect. This phenomenon, in which a free variable “y” in “λx.xy” becomes bound after a
substitution is called variable capture (because a simple substitution transforms a variable free in a
bound variable) and should be avoided during substitutions. The substitution mechanism E[x → y]
defined above is then called capture-avoiding substitution and can be used to formally define the α
equivalence relation:

λx.E ≡α λy.E[x → y]

As suggested by the name, α equivalence is an equivalence relation: E1 ≡α E2 is therefore a symmetric,
reflexive and transitive relation between λ expressions:

• E ≡α E

• E1 ≡α E2 ⇒ E2 ≡α E1

• E1 ≡α E2 ∧ E2 ≡α E3 ⇒ E1 ≡α E3

Capute-avoiding substitutions play a fundamental role in the λ-calculus , as they are used in the
reduction mechanism to simplify λ expressions as well as for α equivalences. Informally speaking, reducing
a λ expression consists in applying functions (removing abstractions) as in (λx.xy)z → zy. This procedure
may appear simple, but it hides a series of complications; for example, the reduction (λx.(xλy.xy))y →
yλy.yy is clearly wrong, because the “y” variable is bound in the process (this is one of the reasons
why the capture-avoiding substitution mechanism was defined earlier!). Thus, whenever you have an
abstraction (“λx.E”) applied to an expression E1, you can use a capture-avoiding substitution of E1

in E (replacing x) to reduce the λ expression eliminating the abstraction.
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More formally, a redex (reducible expression) is defined as a λ expression of the type (λx.E)E1 and
E[x → E1] is defined as is its reduced. Based on this, the β reduction “→β” can be defined as the
replacement of a redex by its reduction:

(λx.E)E1 →β E[x → E1]

It might appear that some redexes cannot be reduced because capture-avoiding reduction cannot be
used (for example, a variable “y” is bound in “E” and “y” appears among the free variables of E1 - in this
case, a simple replacement would capture the free “y”). Consider the λ expression (λy. lambdax.xy)(xz):
this expression clearly represents a redex, so one could try to reduce it using the β reduction mechanism,
which would lead to (λx.xy)[y → (xz)]. Note however that x ∈ F(xz), so none of the rules presented in the
definition of the capture-free substitution mechanism can be used (again: (λx.xy)[y → (xz)] = λx.x(xy)
is not a capture-avoiding substitution, because it would capture the red “ x”). How can this kind of redex
be reduced, then? The concept of α equivalence comes to our aid, allowing us to rename the variables
which are bound in E so that they do not appear among the free variables of E1. In the previous example:

(λy.λx.xy)(xz) ≡α (λy.λk.ky)(xz) →β (λk.ky)[y → (xz)] = λk.k(xz)

this time the reduction does not capture any free variable, and is correct (the capture-avoiding substitution
(λk.ky)[y → (xz)] is now possible because k /∈ F(xz) ).

The β reduction is not an equivalence relation, as it does not have the reflexive property: E1 →β E2

does not imply E2 →β E1. However, an equivalence relation (called β equivalence “≡β”) can be created
by computing the β reduction reflexive and transitive closure. In practice, E1 ≡β E2 means that there
is some chain of β reductions which “connect” E1 and E2 (β reducing E1 and E2 multiple times it is
possible to arrive at the same expression E).

More formally, the β equivalence ≡β is defined as:

• E1 →β E2 ⇒ E1 ≡β E2

• ∀E,E ≡β E

• ∀E1, E2 : E1 ≡β E2, E2 ≡β E1

• E1 ≡β E2 ∧ E2 ≡β E3 ⇒ E1 ≡β E3

Finally, it is interesting to note that a generic λ expression usually contains multiple redexes and the
rules of the λ computation do not define an order for applying the possible β reductions. In this case it is
possible to reduce the expression following any order for the β reductions (provided that the parentheses
and the rules of associativity and precedence between operators are respected).

The order in which to evaluate the various redexes is decided by defining an evaluation strategy in
addition to the reduction rules of the λ-calculus (for example, proceed to the right starting from the
leftmost redex, or start from the “innermost” redex, etc...). The various evaluation strategies (lazy vs
eager, by name vs by value, etc...) used by higher level programming languages derive from this evaluation
strategy.

An important theorem (the Church-Rosser Theorem) proves that if a λ expression E can be reduced
to E1 by 0 or more β reductions and E can be reduced to E2 6= E1 by 0 or more β reductions, then
there exists E3 such that both E1 and E2 can be reduced to E3 by 0 or more β reductions (E →β ... →β

E1 ∧ E →β ... →β E2 ⇒ ∃E3 : E1 →β ... →β E3 ∧ E2 →β ... →β E3).
An important corollary of this theorem is that if E is reducible to a normal form (λ expression which

no longer contains any redex), then this normal form does not depend on the order of β reductions. In
other words, every λ expression E has at most 1 normal form. Note the use of the term “at most”, as
there are λ expressions which cannot be reduced to a normal form (the reduction process never ends). A
typical example is the combinator Ω = ωω, where ω = λx.xx:

Ω = ωω = (λx.xx)(λx.xx) →β (xx)[x → (λx.xx)] = (λx.xx)(λx.xx) = ωω = Ω

therefore, Ω →β Ω!!! This is the equivalent of an infinite loop in an imperative language, or an in-
finite recursion in a functional language. The existence of this type of expression (which generates a
non-terminating sequence of reductions) is necessary for the Turing-completeness of the λ-calculus (the
Turing machine allows to encode infinite computations; if the λ calculus did not allow to encode infinite
reductions, then it could not implement such Turing machine programs).
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2 Encoding High-Level Languages

After seeing the most important definitions of the λ-calculus and the details of the reduction mechanism,
it is quite difficult to understand how such a simple and seemingly inexpressive formalism can be Turing
complete. In fact, it might seem that the λ computation could only be useful for manipulating functions
or the like.

Making a parallelism with imperative programming, we can remember that programs written in a
high-level languages are transformed into Assembly (by a compiler or an interpreter) to be executed by
a physical CPU. Just as the λ-calculus allows you to work only with functions (and to perform relatively
simple reduction operations on expressions composed only of functions, abstractions and applications),
the Assembly language also allows you to operate only on binary numbers (stored in CPU registers or
RAM) and has no concept of datatypes or global environment. Yet we have no problem in thinking
that a program written in a high-level language with a global environment and strictly typed variables
is converted to Assembly: we “just” need to implement all the high-level concepts based on Assem-
bly instructions that operate on registers or memory. Similarly, the same high-level concepts can be
implemented by using just functions, abstractions, and function applications.

In general, the various high-level abstractions we will be encoded by using combinators (which, as
already said, are λ expressions in which no free variables appear). This is because the encoding must not
depend on the context (hence, it must not refer to any symbol that is not a formal parameter / argument
of the expression). As an example, some notable combinators known in the literature are:

• The combinator representing the identity function: I = λx.x

• The combinator representing function composition: B = λf.λg.λx.f(gx)

• K = λx.λy.x

• S = λf.λg.λx.fx(gx)

• ω = λx.xx

• Ω = ωω

• Y = λf.(λx.f(xx))(λx.f(xx))

The importance of the Y combinator is fundamental for the λ-calculus, as it is a so-called fixed point

combinator (this will be discussed later). The K and S combinators are interesting as they allow to define
a subset of the λ calculus (called “SK calculus” or “SKI calculus”) in which the abstraction operator λ
is not explicitly used (!!!) (this will also be explained later) Before going on, note that the “=” symbol
that has been informally used above to define the various combinators represents some kind of equality
/ equivalence (indicating, for example, that writing “I ” is equivalent to writing “λx.x”) and is not a
formally defined construct in the λ-calculus. Remember that the λ-calculus does not allow to modify
some kind of non-local environment or to create bindings between names and symbols (again: in the λ
calculation, there is no construct that allows you to create links between names and symbols at a global
level!).

After these necessary premises, we can start to see how to implement the high-level constructs we are
interested in using the λ calculus. The first thing to do is find a “λ encoding” for the natural numbers
(and for the operations that can be performed on them). These encodings can then be used to encode
integers (natural numbers with sign), rational numbers, real numbers, and so on.

Then, λ expressions will be used to also represent boolean values, basic logical operations and the
so-called “arithmetic if” (which allows to evaluate an expression E1 or an expression E2 depending on
the truth value of a boolean expression). Finally, more complex data structures can be implemented to
show how higher-level data types can be represented by λ expressions.

Recalling that the λ-calculus is a functional formalism, it is quite clear that it will be necessary to
use an inductive definition of the natural numbers, similar to Peano’s:

• 0 is a natural number

• Given a natural number n, the successor of n (computable as succ(n)) is a natural number

The idea is therefore to use a λ expression to represent the natural number 0 and define a combinator
which, applied to the representation of a natural number n, computes the representation of n + 1. The
Church numerals implement this idea:
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• 0 is represented by the λ expression λf.λx.x

• The succ() function (which calculates the successor of a natural number n) is represented by the λ
expression λn.λf.λx.f(nfx)

This encoding has the interesting property that the natural number n ∈ N is represented by the

function f applied n times to x: n ≡ λf.λx.

n
︷ ︸︸ ︷

f(. . . f(x) . . .) (to simplify the notation, the expression

“

n
︷ ︸︸ ︷

f(. . . f(x) . . .)” is sometimes written as “fn(x)”).
As an exercise, we can try to compute the representation of the natural number 1 as 1 = succ(0):

1 = succ(0) = (λn.λf.λx.f((nf)x))(λf.λx.x)

(λn.λf.λx.f((nf)x))(λf.λx.x) →β (λf.λx.f((nf)x))[n → (λf.λx.x)] = λf.λx.f(((λf.λx.x)f)x) →β

→β λf.λx.f(((λx.x)[f → f ])x) = λf.λx.f((λx.x)x) →β λf.λx.f((x)[x → x]) = λf.λx.f(x)

Similarly, it is possible to compute the encoding of 2:

2 = succ(1) = (λn.λf.λx.f((nf)x))(λf.λx.f(x))

(λn.λf.λx.f((nf)x))(λf.λx.f(x)) →β (λf.λx.f((nf)x))[n → (λf.λx.f(x))] = λf.λx.f(((λf.λx.f(x))f)x) →β

→β λf.λx.f(((λx.f(x))[f → f ])x) = λf.λx.f((λx.f(x))x) →β λf.λx.f(f(x))

Without pretending to give rigorous proofs, let’s try to better understand the encoding of succ():
informally speaking, succ must transform λf.λx.fn(x) in λf.λx.f(fn(x)). This can be done:

1. By somehow “removing” the two abstractions λf.λ.x. from the encoding of n

2. Then applying f to the expression obtained above

3. Then adding back the two abstractions λf.λ.x. removed in step 1

4. And finally abstracting everything from the number n

The first step (removal of the abstractions λf.λ.x.) can easily be accomplished by applying the nat-
ural number encoding to f and x: in fact, (λf.λx.fn(x))f →β λx.fn(x) and ((λf.λx.fn(x))f)x →β

(λx.fn(x))x →β fn(x). Thus, if the function n represents the encoding of a natural, then (nf)x is an
expression containing f applied n times to x. As mentioned (step 2), f must be applied to this expres-
sion once again, obtaining f((nf)x); after step 3 we obtain λf.λx.f((nf)x) and abstracting everything
with respect to n (so that n is an argument of the combinator succ and not a free variable) we get
λn.λf.λx.f((nf)x) which is just the encoding of succ presented above.

Based on the definitions of Church numerals, it is possible to define the encoding of the various
operations on the natural numbers. For example, the sum can be encoded using a combinator which,
applied to the encodings of two natural numbers n and m, generates the encoding of their sum. The
expression of this combinator is λm.λn.λf.λx.(mf)((nf)x) and can be obtained in this way:

1. First, we apply n to f and x to remove the abstractions λf.λx., similar to what we did for encoding
succ

2. Next, apply m to f to remove the abstraction λf.

3. Next, applying the result of mf (that is, “m” without “λf”) to the result of ((nf)x) (which is
“fnx”), we add m “f(” to the left of “fnx”. The result is “fn+mx”

4. As done for succ, we abstract again with respect to f and x to add the λf.λx. removed in step 1

5. Finally, we abstract with respect to n and m, in order to obtain a combinator

It is then possible to define the encoding of the other operations on natural numbers, but the the details
are omitted here for the sake of brevity. Coding a “pred” operator (which calculates the predecessor of
a natural number) is possible, but not easy (and there are strange anecdotes involving Alonso Church
- inventor of the λ calculus - one of his PhD students - who solved the pred encoding problem - and a
barber). Without going into details, the encoding of this operator involves transforming the encoding
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of n into a pair containing the encoding of n and the encoding of n − 1, and then taking the second
element of the pair. The encoding of (n, n− 1) is generated from the encoding of n by starting from the

encoding of (0, 0) and iterating n times a function f̂ which transforms the pair (n,m) into (n + 1, n).
Now, remembering that the encoding of n is a combinator that applies n times its first argument to its
second argument, it becomes clear that (n, n − 1) can be obtained applying n to f̂ and then applying
the resulting function to the encoding of (0, 0). At this point, as mentioned, the encoding of n − 1 can
be obtained by applying to the result a function that returns the second element of a pair. As usual,
everything must be abstracted from n. In light of this, it is therefore important to understand how to
encode pairs using the lambda-calculus.

The “(a, b)” pair can be encoded as λz.zab and in general the function that generates the encoding of
the “(a, b)” pair from “a” and “b’is λx.λy.λz.zxy. Given the encoding of a pair, it is possible to obtain
the first element using the function “first” = “λz.z(λx.λy.x)” and the second element using the function
‘ ‘second” = “λz.z(λx.λy.y)”.

As already mentioned, in addition to natural numbers and arithmetic operations, the λ-calculus allows
you to encode everything needed to implement any algorithm. It is hence important to encode the boolean
values true and false, and the selection operation (arithmetic if). A simple encoding for true could be
“λt.λf.t”, while false could be encoded as “λt.λf.f”: informally speaking, true and false are encoded
as λ expressions with two arguments, which return the first or second argument.

The selection function (arithmetic if), on the other hand, can be encoded as “λc.λa.λb.cab”: it is a
λ-expression that receives 3 arguments “c”, “a” and “b”, where “c” is the encoding of a boolean value.
If “c” is the encoding of true, then the expression evaluates to “a”, otherwise it evaluates to “b”:

(λc.λa.λb.cab)(λt.λf.t) →β λa.λb.(λt.λf.t)ab →β λa.λb.(λf.a)b →β λa.λb.a

And
(λc.λa.λb.cab)(λt.λf.f) →β λa.λb.(λt.λf.f)ab →β λa.λb.(λf.f)b →β λa.λb.b

Based on these encodings it is then possible to implement the boolean operators and (λp.λq.pqp), or
(λp.λq.ppq), and so on1.

It is then possible to encode boolean predicates such as “is zero” (which receives the encoding of a
natural number as an argument and evaluates to true if the number is 0), “less than” , “equal” and
similar.

Although the encodings of values and operations presented so far allow to implement generic functions
(a mechanism to implement / encode recursion or iteration is still missing, but will be shown shortly),
the resulting lambda expressions risk to be too complex. For example, the simple arithmetic expression
“2 + 3” is encoded as “2 + 3 ≡ (λn.λm.λf.λx.(nf)((mf)x))(λf.λx.f(fx))(λf.λx.f(f(fx)))”!!! And the
encoding of the function “f(a) = a+2” is “λa.(λn.λm.λf.λx.(nf)((mf)x))a(λf.λx.f(fx))” . To simplify
the expressions, it is possible to use a notation sometimes known as “applied lambda calculus”, in which
the encodings of the various values and operations are replaced with more common mathematical symbols.
Thus, “+” is a synonym for “(λn.λm.λf.λx.(nf)((mf)x))”, “2” is a synonym for “(λf.λx.f(fx))” and
so on. It then becomes possible to write “λa.a+ 2” instead of the lambda expression mentioned above.

At this point, the most important thing that seems to be missing is a loop construct (or rather,
recursion, since we are talking about functional programming!). As already mentioned, the lack of a
global environment seems to make it impossible to implement recursion. But the latest surprise of λ-
calculus, the concept of fixed point combinator, comes to our aid.

As known, if the “imperative” version of an algorithm contains a loop, its implementation according
to the functional paradigm is based on recursion: in other words, the implementation of a function calls
the function itself (the typical example is the factorial). But the λ-calculus allows you to define only
anonymous functions (λ abstractions) and without a global environment, a function cannot call itself, as
it has no name. In other words, a recursive function contains at least one free variable (therefore it is
not a combinator), which indicates the name of the function itself, to be called recursively. The first step
to implement recursion in the λ-calculus is therefore to eliminate this free variable (thus transforming
the recursive function into a combinator). This can be done by passing the name of the function as an
argument. Therefore, if f = E is an expression that recursively calls f (itself), it is transformed into
fc = λf.E, binding the variable f , which then becomes the first argument of fc.

In other words, f can be seen as the result obtained by passing f as an argument to fc: f = fcf ,
where in this case “=” means “ ≡β” (β equivalent). This is not simply a syntactic trick, but allows
us to reformulate our problem as an equation whose solution f is the recursive function we are looking

1The reader can verify the correctness of the encodings of and and or as a simple exercize.
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unsigned int f a c t o r i a l (unsigned int n)
{

unsigned int i r e s = 1 ;

for ( i = 2 ; i <= n ; i++) {
r e s = r e s ∗ i ;

}

return r e s ;
}

Figure 1: Iterative implementation of the factorial() function.

unsigned int f a c t o r i a l (unsigned int n)
{

i f (n == 0) return 1 ;
return n ∗ f a t t o r i a l e (n − 1 ) ;

}

Figure 2: Recursive implementation of the factorial() function.

for. Such an equation f ≡β fcf is solved by finding the “fixed point” of fc. The existence of fixed

point combinators (combinators that given a function fc compute its fixed point f = fcf) shows us that
recursion is implementable in λ-calculus, even if only anonymous functions exist.

The most famous fixed point combinator is Y = λf.(λx.f(xx))(λx.f(xx)).
As an example, let’s see how to use the fixed point combinator Y to calculate the factorial function.

A possible imperative implementation of the factorial is shown in Figure 1, while the traditional recursive
implementation is shown in Figure 2. Figure 3 shows a “more functional” implementation of this function.
A first attempt (not too successful, actually) of conversion to λ-calculus could be

factorial = λn.cond (n = 0)1(n ∗ (factorial (pred n))

Note that this function, which might look strange when talking about pure λ-calculus (as it contains
functions like “pred”,predicates like n = 0, and expressions like n − 1, which are not part of the pure
λ-calculus), was written using the applied λ-calculus. Remember that the selection “cond” (arithmetic
if) can be replaced with the λ-expression λc.λa.λb.cab, the predicate “n = 0” can be replaced with the
λ-expression encoding of “is zero” and pred can be replaced with its encoding mentioned earlier.

As already noted several times, this is a strange form of definition because it requires the presence of
a binding for its own name in the global environment. This problem is solved by defining the function fc
as

λf.λn.cond(n = 0)1(n ∗ (f(pred n))

and finding the function factorial such that factorial= fcfactorial (fixed point of fc). This function
f can be calculated using the fixed point combinator Y : factorial= Y fc.

Finally, it should be noted that the encodings of data types2 and high-level functions presented above
are not unique. For example, using Church numerals it is possible to define operations such as addition
or predecessor in different ways (of course all the definitions will be functionally equivalent).

Going further, it can be seen that Church encoding is only one of the possible way to encode high-level
data structures and functions and other alternative encodings are possible. For example, the so-called
Scott’s numerals propose an alternative encoding of natural numbers (and operations on them) to that
of Church:

• The natural number 0 is represented by the λ expression λf.λx.f

• The function succ which calculates the next of a natural number n is encoded by the λ expression
λn.λf.λx.xn

2Actually, only the encoding of natural numbers has been presented... But it is possible to encode in λ-calculus any type

of data.
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unsigned int f a c t o r i a l (unsigned int n)
{

return (n == 0) ? 1 : n ∗ f a t t o r i a l e (n − 1 ) ;
}

Figure 3: Functional implementation of the factorial() function.

Although Scott’s coding is less known (and less used!) than Church’s, in some cases it has advantages
(for example, it allows simplifying the definition of the predecessor function pred which is codable as
λn.n(0)(λx.x)).

3 Removing Abstractions

As seen, the main constructs of the λ-calculus are abstraction (definition of functions) and function
application. Actually, it is possible to define a minimal functional programming language even without
using the abstraction mechanism, provided that an adequate set of predefined functions is provided.
What you get in this way is a “combinatory calculus”, so called because of the predefined combinators
(the set of predefined functions mentioned above) on which it is based.

The syntax of an expression of this type of calculus can be defined as:

<expre s s i on> ::= <name> ; l owercase l e t t e r
| <Combinator> ; d e f au l t f unc t i on
| (< expre s s i on> <expre s s i on >) ; a pp l i c a t i o n

where <name> is the name of a variable and <Combinator> is a built-in function (with a well-defined
behavior). This is equivalent to the following inductive definition:

• A name / variable (denoted by a single lowercase letter) is an expression of combinatory calculus

• A combinator (denoted by a single uppercase letter) is an expression of combinatory calculus

• If e1 and e2 are expressions of the calculus, then (e1e2) is an expression too

Note how all the variables appearing in an expression are free variables (because there is no concept of
abstraction that can bind them).

The details of a combinatory calculus clearly depend on the predefined combinators and it is clear
that not all the combinations of combinators result in a turing complete calculus.

The most important of the combinatory calculus is probably the “SK calculus” (sometimes known as
“SKI calculus”), where the default combinators are S and K (plus optionally the identity combinator I)
defined by the following properties:

Kxy = x

Sxyz = xz(yz)

Ix = x

The combinator I is often used to simplify calculus expressions, but it is not strictly necessary, as it
can be obtained as I = SKK: (SKK)x = SKKx = Kx(Kx) = x.

The S and K combinators presented in Section 2 (S = λf.λg.λx.fx(gx) and K = λx.λy.x) enjoy the
properties described above (and the proof of this is is left to the reader). It is therefore easy to convert
an expression of the SK calculus (or SKI calculus) into a λ-expression. Since it is also possible to convert
any λ-expression into an expression of the SK calculus, the SK calculus has the same expressive power
as the λ-calculus and is therefore Turing-complete.

The conversion of a generic λ-expression E into an expression of the SK calculus can be performed
proceeding by cases. In particular, E can be:

• An identifier x, which maps to the expression x of the SK calculus

• An application E1E2, which maps to the expression E1E2 of the SK calculation

• An abstraction λx.E′, which must be converted into an expression E′′ of the SK calculus proceeding
by case:
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– If E′ is an identifier, it can be x, in which case E = λx.x maps to E′′ = I = SKK, or a
symbol y 6= x, in which case E = λx.y maps to E′′ = Ky

– If E′ is an application E′

1E
′

2, E = λx.E′

1E
′

2 must be converted into E′′ such that (λx.E′1E′

2)v =
E′′v. This implies that

(λx.E′

1E
′

2)v = E′′v ⇒ E′

1[x → v]E′

2[x → v] = E′′v ⇒

(λx.E′

1v)(λx.E
′

2v) = E′′v ⇒ S(λx.E′

1)(λx.E
′

2)v = E′′v ⇒

E′′ = S(λx.E′

1)(λx.E
′

2)

– If E′ is an abstraction λy.E′

1, E = λx.λy.E′

1 must be converted into E′′ by recursively applying
this procedure at E′

1.

Applying this reasoning, one can convert any λ-expression into an expression based only on free variables,
the operator S and the operator K.

Another important property of the SK calculus is that every λ-expression that contains no free vari-
ables (that is, a combinator) can be converted to an SK calculus expression that contains no variables.
In other words, to model combinators it is possible to remove the first clause (a variable name is an
expression of the SK calculus) from the definition of the SK calculus.

The process which converts an expression “E” into an expression Rx(E) which does not contain the
free variable “x” but behaves like λx.E (that is that is, Rx(E)E1 = E[x → E1]) is known as bracket

abstraction and can be used to convert any λ-expression to an expression of the SK calculation eliminating
the abstractions λx. one by one. A very simple (although not efficient) bracket abstraction algorithm is
based on the following transformations:

1. Rx(x) = SKK, where “x” is the variable to be eliminated

2. Rx(y) = Ky, where y is a predefined combinator (S or K) or a variable other than the variable x
to be eliminated

3. Rx(E1E2) = SRx(E1)Rx(E2)

To make the algorithm slightly more efficient, the second rule can be replaced by Rx(E) = KE, where
“E” is an expression that does not contain as a variable free the variable “x” that has to be removed.

To convert a λ-expression into an SK calculus expression, one can proceed by removing the λ ab-
stractions one by one by applying the three rules above. Note the close relationship between this bracket
abstraction algorithm and the conversion methodology shown above.

4 Typed Lambda Calculus

As noticed, in the “pure” λ-calculus there is no concept of data type. It has been shown how it is possible
to use expressions of the untyped λ-calculus to encode the various data types (and the operations on
them), but the variables of the λ-calculus represent generic functions (with unspecified domain and
codomain).

Although the lack of data types does not impact the expressivity of the formalism (as mentioned,
the λ-calculus is Turing complete), it can compromise the readability and simplicity of use, making it
easier to introduce programming errors (for this reason the λ-calculus is considered a sort of “Assembly
of functional languages”). For example, if you code the function f(a) = a + 2 using λ-calculus you
get λa.(λn.λm.λf.λx.(nf)((mf)x))a(λf.λx.f(fx)) (not exactly intuitive expression...), which using the
applied λ-calculation simplifies to λy.y+2. However, this encoding has lost a fundamental characteristic of
the initial function: the fact that the function operated on numbers! In fact, it is possible to apply λa.a+2
(which, we recall, is equivalent to λa.(λn.λm.λf.λx.(nf)((mf)x))a(λf.λx.f(fx))) to any λ-expression,
even if it doesn’t encode a number! If the function is applied to an expression E which encodes a natural
number, a λ-expression which encodes a natural number is generated as a result, otherwise a λ-expression
E′ without any clear interpretation can be generated.

To solve this kind of problems, it is possible to associate a type with each λ-expression (or with each
argument). For example, introducing the constraint that λa.(λn.λm.λf.λx.(nf)((mf)x))a(λf.λx.f(fx))
is a function N → N or, better, that in this expression “a” is the encoding of a natural number (a : N ).

In this section (which does not claim to be exhaustive, but only to introduce some concepts that can
then be further explored by the readers) it will be shown how to extend the original formalism to specify
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domain and codomain for each function. Of course this can be done in various ways which result in
different definitions of typed λ-calculus, the most famous of which are due again to Alonso Church and
Haskell Curry. We will then talk about λ-calculus with types “a-la Church” or “a-la Curry”.

Surprisingly enough, associating types to functions actually reduce the expressive power of the for-
malism, which is no longer Turing complete. This happens because it can be proved that the reduction of
any “well-typed” expression (this concept will be introduced intuitively in the next few pages) by a typed
λ-calculus always ends (it is therefore no longer possible to express infinite recursions). For a simple
intuition of this fact try to compute the type of the Y operator, which is necessary to encode recursive
functions.

First of all, to define a typed λ-calculus we need to introduce the concept of type; this can be done
by introducing a set P of basic types, or primitive types, and a rule for defining new datatypes starting
from existing ones (this is analogous to what was done to define the expressions of the λ-calculus, created
starting from a set of base names and 2 rules which allow to create new expressions starting from valid
expressions). Since we are defining types for a λ-calculus, a new type γ could be defined starting from
two types α and β: γ = α → β (γ is the type of functions having α as domain and β as codomain). In
other words, the set T of possible data types can be generated through the following inductive definition:

• A primitive type name refers to a type: α ∈ P ⇒ α ∈ T

• If α and β are types, then α → β is also a type: α, β ∈ T ⇒ α → β ∈ T

As it is easy to understand from this definition, the number of possible types (the cardinality of the set
T of types) is infinite.

Given a λ-expression E, its type is computable according to the following rules:

• The type of a free variable x must be known a-priori

• If E1 and E2 are expressions with types α → β and α, then the type of E1E2 is β: E1 : α → β,E2 :
α ⇒ E1E2 : β

• If E is an expression of type β, λx.E has type α → β: E : β ⇒ λx.E : α → β

the third rule can be better clarified by modifying the syntax of the abstraction to specify the type of
the argument. In these cases λx : α.E (explicit typing) is used instead of λx.E (implicit typing). Making
an analogy with higher level languages, we can consider the C language (in which a variable declaration
requires to specify the variable’s type), the C++ language (in which the compiler can be asked to infer
the tyoe of a variable, by usign the ‘ ‘auto” keyword), and standard ML or Haskell (where variables can
be declared without specifying their type, because the compiler is able to infer it himself).

Also note that to associate a type with an expression E it is necessary to make assumptions about
the types of the free variables contained in E (see the first rule above). These assumptions (obviously
only necessary for non-closed expressions) are contained in some sort of “type environment”, or “type
context”. In summary, the type of a closed expression can be somehow “computed” (better: inferred)
without needing additional information, while the type of an open expression depends on the environment
(or context) of the types.

Informally speaking, an expression E is correctly typed if it is possible to associate E with a type
α ∈ T that is consistent with the rules presented above. For example, the expression λx : int.x is
correctly typed (and has type int → int). The expression I = λx.x (or I = λx : α.x) is also correctly
typed and has type α → α. The combinator ω = λx.xx is instead not correctly typed: assuming that x
has type α (x : α), we have that ω : α → β, where β is the type of the expression “xx”. But for “xx” to
be a valid expression, x must be a function, with domain α (the type of the argument). Thus, x : α → β,
but also x : α, from which we derive α = α → β, which is not a valid expression in the type system we
have defined (that is, using the type generation rules given above it is not possible to “construct” a type
α ∈ T that has this property).

Once the concept of types and correctly typed expressions has been introduced, two different ap-
proaches can be followed:

• The first approach consists in defining the semantics of expressions regardless of their type (in
practice, we define β reduction rules that do not depend on the types of the expressions). The
concept of type is then only used a posteriori to “reject” incorrectly typed expressions as invalid

• The second approach is to specify semantics only to correctly typed expressions. In other words, if
an expression is not correctly typed (that is, its type cannot be generated with the rules presented
above), it doesn’t even make sense to try to reduce it.
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According to the first approach, which results in the so-called “λ-calculus with types a-la Curry”, the
introduction of types is used to “eliminate” from the calculus the expressions which ‘ ‘do not behave as
desired” (for example, expressions whose reduction does not finish). But the reduction of such expressions
is still defined. In essence, types simply add extra constraints on expressions, which characterize “valid
expressions”.

In the second approach, which results in the so-called “λ-calculus with types a-la Church”, the type
of an expression is considered fundamental for its semantics (it is not possible define the semantics of
an incorrectly typed expression). Hence, the reduction rules for λ-expressions explicitly refers to the
expressions’ types.

In the literature, implicit typing is sometimes used in the a-la Curry calculus and explicit typing in
the a-la Church calculus, but this is not strictly necessary.

Regardless of whether implicit or explicit typing is used, it is possible to reduce a typed λ-calculus
expression using the traditional β reduction rule of the untyped λ-calculus, after removing type annota-
tions (“: α” and similar) from bound variables. Following the “a-la Church” approach, this can only be
done provided that the correct typing of the expression has been verified.

As an alternative, once a type is associated to each expression, the β reduction rule must be updated
to take it into account: if in the typeless λ-calculus

(λx.E)E1 →β E[x → E1]

in typed lambda calculus, reduction is possible only if “x” and “E1” have the same type:

E : α ⇒ (λx : α.E)E1 →β E[x → E1]

.
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