
On Functions and their

Evaluation

Luca Abeni

luca.abeni@santannapisa.it



Function Application, Again

Functional Programming Techniques On Functions and their Evaluation

• Application of function “f” to actual parameter “x”

• Notice: 1 single argument... And this is not a
restriction! Why?

• In C-like languages, we are used to “f(x);”, but...

• Are the parentheses really needed, here?
• In case of “f(x + y)”, they are needed to make

a distinction with “f(x) + y”, but for “f(x)”...

• Some languages do not require these “useless”
parentheses: f(x) → f x

• In some other languages, the parentheses go
around the application: f(x) → (f x)

• Can you see where LISPs are coming from, now?



More Complex Expressions

Functional Programming Techniques On Functions and their Evaluation

• The C-style syntax for function application makes it
simple to understand function composition

• If h = f ◦ g, then h(x) is coded as f(g(x))!

• If parentheses are removed, then some associativity
rules are needed

• Does “f g h” mean “f(g(h))”, or
“(f(g))(h)”?

• If left associativity is used, then currying has a
natural syntax: “sum c a b” means “(sum c a)

b”, making the usage of curried functions pretty
simple!

• With parentheses around function application, we
have things like “((sum c a) b)”



Example

Functional Programming Techniques On Functions and their Evaluation

• Assume that K x y = x and S p q r = p r (q

r)...
• What is the value of S K K a?

S K K a →

(p r (q r)) with “p” replaced by “K”, “q” replaced by “K”
and “r” replaced by “a →

(K r (q r)) with “q” replaced by “K” and “r” replaced
by “a →

(K r (K r)) with “r” replaced by “a →

K a (K a) →

x with “x” replaced by “a” and “(K a)” discarded →

a



Formal Arguments and Actual Arguments

Functional Programming Techniques On Functions and their Evaluation

• If f(x) = x+ 1, applying “f” to “2” requires to:

• Replace “f” (function name) with “x + 1”
(function body)

• Replace “x” (formal parameter) with “2” (actual
parameter)

• Compute the result 2 + 1 = 3

• In C-like languages, we are used to look at function
invocation in a different way:

• Push “2” (actual parameter) on the stack
• Call the function body (which pulls the

parameter’s from the stack)
• Different argument-passing methods



Passing Parameters by Value

Functional Programming Techniques On Functions and their Evaluation

• Only possible method in C
• One local variable is allocated (on the stack) when

the function is called
• The local environment contains a binding between

the formal parameter’s name and this local variable
• The variable is automagically initialized with the

value of the actual parameter

int f(int n)
{

n = n + 1;

return n * 2;
}



Passing Parameters by Reference

Functional Programming Techniques On Functions and their Evaluation

• Possible in C++
• No local variable for the formal parameter
• The local environment contains a binding between

the formal parameter’s name and the actual
parameter

• The actual parameter must be an L-Value
• The formal parameter is an alias for the actual

parameter

int f(int &n)
{

n = n + 1;

return n * 2;
}



Passing Pointers by Value

Functional Programming Techniques On Functions and their Evaluation

• “Emulation” of reference passing in C
• A pointer to the “real” actual parameter is passed by

value
• First difference with parameter passing by reference:

syntax

• But there are other notable differences... For
example, in this case the formal parameter is still
a local variable!

• Think about “n = n + 1” in the example below

int f(int *n)
{

*n = *n + 1;

return *n * 2;
}



Passing Parameters by Name

Functional Programming Techniques On Functions and their Evaluation

• Seen for functional programs evaluation

• Function name replaced by function body
• Formal parameter replaced by actual parameter

• Not very useful for imperative languages...

• Parameters can be evaluated every time they are
used... Think about “x + x” with actual
parameter “i++”!

• ...But good model for how FP reduction works!



Issues with Parameters by Name

Functional Programming Techniques On Functions and their Evaluation

int a = 1;

int f(int v)
{

int a = 666;

return a + v;
}

• What is f(a) if the parameter is passed by name?
• { int a = 666; return a + a;}... Returns 1332!
• If the name of the local variable is changed to “b”, we

get { int b = 666; return b + a;} and the return
value is 667!

• The return value depends on the name of a local
variable???



Call by Name, Again

Functional Programming Techniques On Functions and their Evaluation

• consider this code:
int infinite_recursion(int z)
{

return infinite_recursion(z);
}

int select(int n, int x, int y)
{

return n == 0 ? x : y;
}

• What happens in C++ (parameters passed by value)
when calling
select(0, 1, infinite_recursion(1))?

• What would happen if parameters were passed by
name?

• Can you emulate pass-by-name, in this case?


	Function Application, Again
	More Complex Expressions
	Example
	Formal Arguments and Actual Arguments
	Passing Parameters by Value
	Passing Parameters by Reference
	Passing Pointers by Value
	Passing Parameters by Name
	Issues with Parameters by Name
	Call by Name, Again

