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Function Application, Again
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• Application of function “f” to actual parameter “x”

• Notice: 1 single argument... And this is not a
restriction! Why?

• In C-like languages, we are used to “f(x);”, but...

• Are the parentheses really needed, here?
• In case of “f(x + y)”, they are needed to make

a distinction with “f(x) + y”, but for “f(x)”...

• Some languages do not require these “useless”
parentheses: f(x) → f x

• In some other languages, the parentheses go
around the application: f(x) → (f x)

• Can you see where LISPs are coming from, now?



More Complex Expressions
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• The C-style syntax for function application makes it
simple to understand function composition

• If h = f ◦ g, then h(x) is coded as f(g(x))!

• If parentheses are removed, then some associativity
rules are needed

• Does “f g h” mean “f(g(h))”, or
“(f(g))(h)”?

• If left associativity is used, then currying has a
natural syntax: “sum c a b” means “(sum c a)

b”, making the usage of curried functions pretty
simple!

• With parentheses around function application, we
have things like “((sum c a) b)”



Example
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• Assume that K x y = x and S p q r = p r (q

r)...
• What is the value of S K K a?

S K K a →

(p r (q r)) with “p” replaced by “K”, “q” replaced by “K”
and “r” replaced by “a →

(K r (q r)) with “q” replaced by “K” and “r” replaced
by “a →

(K r (K r)) with “r” replaced by “a →

K a (K a) →

x with “x” replaced by “a” and “(K a)” discarded →

a



Formal Arguments and Actual Arguments
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• If f(x) = x+ 1, applying “f” to “2” requires to:

• Replace “f” (function name) with “x + 1”
(function body)

• Replace “x” (formal parameter) with “2” (actual
parameter)

• Compute the result 2 + 1 = 3

• In C-like languages, we are used to look at function
invocation in a different way:

• Push “2” (actual parameter) on the stack
• Call the function body (which pulls the

parameter’s from the stack)
• Different argument-passing methods



Passing Parameters by Value
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• Only possible method in C
• One local variable is allocated (on the stack) when

the function is called
• The local environment contains a binding between

the formal parameter’s name and this local variable
• The variable is automagically initialized with the

value of the actual parameter

int f(int n)
{

n = n + 1;

return n * 2;
}



Passing Parameters by Reference
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• Possible in C++
• No local variable for the formal parameter
• The local environment contains a binding between

the formal parameter’s name and the actual
parameter

• The actual parameter must be an L-Value
• The formal parameter is an alias for the actual

parameter

int f(int &n)
{

n = n + 1;

return n * 2;
}



Passing Pointers by Value
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• “Emulation” of reference passing in C
• A pointer to the “real” actual parameter is passed by

value
• First difference with parameter passing by reference:

syntax

• But there are other notable differences... For
example, in this case the formal parameter is still
a local variable!

• Think about “n = n + 1” in the example below

int f(int *n)
{

*n = *n + 1;

return *n * 2;
}



Passing Parameters by Name
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• Seen for functional programs evaluation

• Function name replaced by function body
• Formal parameter replaced by actual parameter

• Not very useful for imperative languages...

• Parameters can be evaluated every time they are
used... Think about “x + x” with actual
parameter “i++”!

• ...But good model for how FP reduction works!



Issues with Parameters by Name
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int a = 1;

int f(int v)
{

int a = 666;

return a + v;
}

• What is f(a) if the parameter is passed by name?
• { int a = 666; return a + a;}... Returns 1332!
• If the name of the local variable is changed to “b”, we

get { int b = 666; return b + a;} and the return
value is 667!

• The return value depends on the name of a local
variable???



Call by Name, Again
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• consider this code:
int infinite_recursion(int z)
{

return infinite_recursion(z);
}

int select(int n, int x, int y)
{

return n == 0 ? x : y;
}

• What happens in C++ (parameters passed by value)
when calling
select(0, 1, infinite_recursion(1))?

• What would happen if parameters were passed by
name?

• Can you emulate pass-by-name, in this case?
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