
Recursion

Luca Abeni

luca.abeni@santannapisa.it



Execution as Evaluation

Functional Programming Techniques Recursion

• Functional program: composition of pure functions

• Recursion is used instead of iteration

• “Executed” by evaluating the expressions obtained
from the functions

• Usual example: factorial!

unsigned i n t f a c t ( unsigned i n t n )
{

return n == 0 ? 1: n * f a c t ( n − 1 ) ;
}

• Note the “arithmetic if” (p ? a : b)

• fact(4) = ?



Example of Evaluation

Functional Programming Techniques Recursion

fact(4) = ... “n == 0 ? 1: n * fact (n − 1)”,
replacing “n” with “4”

• (n == 0 ? 1: n * fact (n − 1))(4)
• So, 2 different replacements: replace “fact” with its

definition, and then replace “n” with “4”

fact(4) = (4 == 0) ? 1 : 4 * fact(3) =

4 * fact(3) =

4 * ((3 == 0) ? 1 : 3 * fact(2)) =

4 * 3 * fact(2) =

4 * 3 * ((2 == 0) ? 1 : 2 * fact(1)) =

4 * 3 * 2 * fact(1) =

4 * 3 * 2 * ((1==0) ? 1 : 1*fact(0)) =

4 * 3 * 2 * 1 * 1 = 24



What About the Stack?

Functional Programming Techniques Recursion

• Function invocation → activation record (stack
frame) allocated on the stack...

• With recursion, this can be interesting!
• fact(4): new stack frame containing:

• The formal parameter n = 4

• Link to previous stack frames
• Some space for the return value

...

n = 4

...
fact(4)

...



Stack Frame - 2

Functional Programming Techniques Recursion

• 4 * fact(3)

...

n = 4

...
fact(4)

n = 3

...
fact(3)

...



Stack Frame - 3

Functional Programming Techniques Recursion

• 4 * 3 * fact(2)

...

n = 4

...
fact(4)

n = 3

...
fact(3)

n = 2

...
fact(2)

...



Stack Frame - 4

Functional Programming Techniques Recursion

• 4 * 3 * 2 * fact(1)

...

n = 4

...
fact(4)

n = 3

...
fact(3)

n = 2

...
fact(2)

n = 1

...
fact(1)

...



Stack Frame - 5

Functional Programming Techniques Recursion

• 4 * 3 * 2 * 1 * fact(0)

...

n = 4

...
fact(4)

n = 3

...
fact(3)

n = 2

...
fact(2)

n = 1

...
fact(1)

...fact(0)

...



Summing Up...

Functional Programming Techniques Recursion

• When fact(0) is evaluated, the previous stack
frames contain the numbers to be multiplied...

• These stack frames are removed one after the other
when the fact() instances return, and the
multiplications are performed

• When fact(n - 1) returns, fact(n) still need to
perform a multiplication by n

• It cannot immediately return!

• The stack frames are hence needed until the
corresponding fact() instance returns, and they
cannot be removed from the stack before that

• Recursion ⇒ high stack usage!
• Possible stack overflow



Recursion and Stack Usage

Functional Programming Techniques Recursion

• Is stack usage the price to be paid for using
recursion?

• Let’s consider this factorial implementation:

unsigned i n t f a c t 1 ( unsigned i n t n ,
unsigned i n t res )

{
return n == 0 ? res : f ac t1 ( n − 1 , n * res ) ;

}
unsigned i n t f a c t ( unsigned i n t n )
{

return f a c t 1 ( n , 1 ) ;
}

• What’s the second formal parameter???



Evaluation

Functional Programming Techniques Recursion

fact(4) =

fact1(4, 1) =

(4 == 0) ? 1 : fact1(3, 4 * 1) =

fact1(3, 4) =

(3 == 0) ? 4 : fact1(2, 3 * 4) =

fact1(2, 12) =

(2 == 0) ? 12 : fact1(1, 2 * 12) =

fact1(1, 24) = fact1(0, 1 * 24) = 24



Stack Frames, Again

Functional Programming Techniques Recursion

• No operations to be performed when fact1(n-1,

...) returns...
• The stack frame of fact(n-1, ...) already

contains the data to return!

...

n = 4

res = 1

...

fact1(4, 1)

n = 3

res = 12

...

fact1(3, 12)

...



Stack Frames - 2

Functional Programming Techniques Recursion

...

n = 4, res = 1

...
fact1(4, 1)

n = 3, res = 4

...
fact1(3, 4)

n = 2, res = 12

...
fact1(2, 12)

n = 1, res = 24

...
fact1(1, 24)

n = 0, res = 24

...
fact1(0, 24)

...



So...

Functional Programming Techniques Recursion

• When fact1(0, ...) is evaluated, data from
previous stack frames is not reused...

• Stack frames are removed when the fact1()

instances return, without having to execute
additional operations

• When fact1(n - 1, ...) returns, fact1(n,
...) returns its value directly

• fact1(n - 1, ...) can immediately return to
the fact1(n, ...) caller!

• Hence, stack frames can be removed from the stack
when recursion is invoked (before the function
returns)

• Recursion ⇒ no additional stack usage
• No stack overflow!


	Execution as Evaluation
	Example of Evaluation
	What About the Stack?
	Stack Frame - 2
	Stack Frame - 3
	Stack Frame - 4
	Stack Frame - 5
	Summing Up...
	Recursion and Stack Usage
	Evaluation
	Stack Frames, Again
	Stack Frames - 2
	So...

