
Advanced Data Types

Luca Abeni

luca.abeni@santannapisa.it

Data Types

Functional Programming Techniques Advanced Data Types

• Data types can be used to impose constraints on
acceptable expressions

• Expressions that do not type-check are invalid!

• To do this, we need (at least):

• A set of primitive (pre-defined) types
• Some way to create new types
• Some rules to perform type-checking

• Informally speaking, a type system

Issues with Types

Functional Programming Techniques Advanced Data Types

• Some type systems risk to compromise the
Turing-completeness of the language

• Think about typed lambda calculus...

• In particular, it important to have appropriate rules
for defining new types

• Again: “function types” are probably not enough
• Expressions resulting in infinite recursion do not

type check!

• We previously said we need “recursive types”, but...

• What is a recursive type?
• What is it useful for?
• How can we use it?

More on Data Types

Functional Programming Techniques Advanced Data Types

• Every programming language has a set of primitive
types

• And many languages allow to define new types

• Simple way to define new types: apply sum or
product operations to existing types

• Product T1 × T2: type with possible values given
by couples of values from T1 and T2

• Sum T1 + T2: type with possible values given by
values from T1 or values from T2

• Sum == disjoint union; Product == cartesian product
• If |T | is the number of values of type T , then

|T1 × T2| = |T1| · |T2| and |T1 + T2| = |T1|+ |T2|

Algebraic Data Types

Functional Programming Techniques Advanced Data Types

• A set (the set of the language’s data types), a sum
operation and a product operation... It’s an algebra!

• Algebra of the data types; types are called
Algebraic Data Types!

• Issue: the sum is a disjoint union...

• Easy to do “float + bool” (type with possible
values integers or booleans)...

• ...But what about “int + int” (or similar)?
• The types have to be tagged somehow...

Algebraic Data Types and Constructors

Functional Programming Techniques Advanced Data Types

• Solution adopted by many programming languages:
do not sum types directly, but first apply a tagging
function to them

• Constructor: function generating the values of
the type to be summed

• Summing types generated by different
constructors, the issue is solved!

• Variant: set of values generated by a constructor

• Different constructors generate disjoint variants
• Hence, instead of “int + int” we can use “Left(int)

+ Right(int)”

Examples

Functional Programming Techniques Advanced Data Types

• C unions are a special case of tagged sum
• “test = i(int) + f(float)” is

union example {
i n t i ;
f l o a t f ;

} ;

• Of course, algebraic data types are more generic
(0-arguments or multi-argument constructors, etc...)

• All constructors with 0 arguments: enum type
• Haskell, ML and others fully support ADT

datatype t e s t = i of i n t | f of r e a l ;

data Test = I I n t | F Float

Example: Option Type

Functional Programming Techniques Advanced Data Types

• Type containing a value or nothing

• Two constructors: “Nothing” (without arguments)
and “Just” (with one argument of the desired
type)

• Example: integer or nothing → Option int = Nothing
+ Just(int)

• Idea: instead of using a null pointer...
• ...Use an option type: Pointer to int = Nothing +

Just(int *)

• Advantage: only the “Just” variant can be
dereferenced...

• NULL pointer dereferences do not even compile!

Generic Data Types

Functional Programming Techniques Advanced Data Types

• The definition of a new type might depend on a “type
variable”

• Parametric type, depending on another type “T”,
denoted by a variable

• Type variables, generally indicated as greek
letters

• Example: generic option type

• Not “integer or nothing”, but “type α or nothing”
• α: type variable

• In Haskell, something like

data Option a = Nothing | Just a

• Used for many other things too (lists, Monads, ...)

Recursive Data Types

Functional Programming Techniques Advanced Data Types

• To define a data type, we must (also) define all its
possible values

• Set of possible values → can be defined by
induction...

• Can induction/recursion be used to define a new
data type?

• How? We need induction base and induction
step

• Induction base: one (or more) constructor(s)
having 0 parameters (or, no parameters of the
data type we are defining)

• Induction step: constructor having a parameter of
the type we are defining

• Looks... Confusing??? Let’s look at some examples!

Recursive Data Types: Example

Functional Programming Techniques Advanced Data Types

• Let’s define the “natural numbers” data type (set of
values: N)

• 0 ∈ N : constructor zero (with no parameters)
• n ∈ N ⇒ n+ 1 ∈ N : constructor succ, having as

an argument a natural number

datatype nat = zero | succ of nat ;

data Nat = Zero | Succ Nat

• How to use this funny definition?

• Combination of pattern matching and recursion
• Familiar to people knowing functional

programming

More Interesting Example: Lists

Functional Programming Techniques Advanced Data Types

• Lists can also be defined by induction/recursion
(simple example: list of intergers)

• Inductive base: an empty list is a list
• Inductive step: A non-empty list is an integer

followed by a list

• Recursive Data Type: a non-empty list is defined
based on the list data type (constructor receiving a
list as a parameter)

• Two constructors

• Empty list constructor
• Constructor for non-empty lists

Lists as RDTs — 1

Functional Programming Techniques Advanced Data Types

• Two constructors

• Empty list constructor (no parameters)
• Constructor for non-empty lists (two parameters:

an integer and a list)

• Other operations

• car: returns the first element of a non-empty list
(head)

• cdr: given a non-empty list, returns the “rest of
the list”

Lists as RDTs — 2

Functional Programming Techniques Advanced Data Types

• How are lists generally implemented?
• Functional languages (Haskell, ML Lisp & friends, ...)

• Recursive data type!!!
• “cons” constructor: parameter of type int *

list (or, a parameter of type int, but returns a
function list -> list)

• Imperative languages: pointers!

• Structure with 2 fields (types “int” and “list*”)
• Second field: pointer to next element
• Cannot be of type “list”, → use “pointer to

list”!

RDTs vs Pointers

Functional Programming Techniques Advanced Data Types

• See? Imperative languages use pointers and explicit
memory allocation...

• Adding an element to list implies doing some
malloc()/new for a node structure, setting some
“next” pointers, etc...

• ...In functional languages, RDTs avoid the need for
pointers, and memory allocation/deallocation is
hidden...

• Adding an element in front of a list “l” is as
simple as “let l1 = cons(e, l)” or similar!

• The implementation of the language abstract
machine will take care of allocating memory, etc...

	Data Types
	Issues with Types
	More on Data Types
	Algebraic Data Types
	Algebraic Data Types and Constructors
	Examples
	Example: Option Type
	Generic Data Types
	Recursive Data Types
	Recursive Data Types: Example
	More Interesting Example: Lists
	Lists as RDTs — 1
	Lists as RDTs — 2
	RDTs vs Pointers

