Advanced Data Types

Luca Abeni luca.abeni@santannapisa.it

Data Types

- Data types can be used to impose constraints on acceptable expressions
 - Expressions that do not type-check are invalid!
- To do this, we need (at least):
 - A set of *primitive* (pre-defined) types
 - Some way to create new types
 - Some rules to perform type-checking
- Informally speaking, a type system

Issues with Types

- Some type systems risk to compromise the Turing-completeness of the language
 - Think about typed lambda calculus...
- In particular, it important to have appropriate rules for defining new types
 - Again: "function types" are probably not enough
 - Expressions resulting in infinite recursion do not type check!
- We previously said we need "recursive types", but...
 - What is a *recursive type*?
 - What is it useful for?
 - How can we use it?

More on Data Types

- Every programming language has a set of *primitive types*
 - And many languages allow to define new types
- Simple way to define new types: apply sum or product operations to existing types
 - Product \$\mathcal{T}_1 \times \mathcal{T}_2\$: type with possible values given by couples of values from \$\mathcal{T}_1\$ and \$\mathcal{T}_2\$
 - Sum $\mathcal{T}_1 + \mathcal{T}_2$: type with possible values given by values from \mathcal{T}_1 or values from \mathcal{T}_2
- Sum == disjoint union; Product == cartesian product
 If |T| is the number of values of type T, then
 - $|\mathcal{T}_1 \times \mathcal{T}_2| = |\mathcal{T}_1| \cdot |\mathcal{T}_2|$ and $|\mathcal{T}_1 + \mathcal{T}_2| = |\mathcal{T}_1| + |\mathcal{T}_2|$

Algebraic Data Types

- A set (the set of the language's data types), a sum operation and a product operation... It's an algebra!
 - Algebra of the data types; types are called Algebraic Data Types!
- Issue: the sum is a disjoint union...
 - Easy to do "float + bool" (type with possible values integers or booleans)...
 - But what about "int + int" (or similar)?
 - The types have to be tagged somehow...

Algebraic Data Types and Constructors

- Solution adopted by many programming languages: do not sum types directly, but first apply a *tagging function* to them
 - Constructor: function generating the values of the type to be summed
 - Summing types generated by different constructors, the issue is solved!
- Variant: set of values generated by a constructor
 - Different constructors generate disjoint variants
 - Hence, instead of "int + int" we can use "Left(int) + Right(int)"

Examples

- C unions are a special case of tagged sum
 "test = i(int) + f(float)" is
 union example {
 int i;
 float f;
 };
- Of course, algebraic data types are more generic (0-arguments or multi-argument constructors, etc...)
- All constructors with 0 arguments: enum type
- Haskell, ML and others fully support ADT

datatype test = i **of** int | f **of** real;

data Test = I Int | F Float

Example: Option Type

- Type containing a value or nothing
 - Two constructors: "Nothing" (without arguments) and "Just" (with one argument of the desired type)
- Example: integer or nothing \rightarrow Option_int = Nothing + Just(int)
- Idea: instead of using a null pointer...
- ...Use an option type: Pointer_to_int = Nothing + Just(int *)
 - Advantage: only the "Just" variant can be dereferenced...
 - NULL pointer dereferences do not even compile!

Generic Data Types

- The definition of a new type might depend on a "type variable"
 - Parametric type, depending on another type "T", denoted by a variable
 - Type variables, generally indicated as greek letters
- Example: generic option type
 - Not "integer or nothing", but "type α or nothing"
 - α : type variable
- In Haskell, something like

data Option a = Nothing | Just a

• Used for many other things too (lists, Monads, ...)

Recursive Data Types

- To define a data type, we must (also) define all its possible values
- Set of possible values \rightarrow can be defined by induction...
- Can induction/recursion be used to define a new data type?
 - How? We need induction base and induction step
 - Induction base: one (or more) constructor(s) having 0 parameters (or, no parameters of the data type we are defining)
 - Induction step: constructor having a parameter of the type we are defining

• Looks... Confusing??? Let's look at some examples! Functional Programming Techniques

Recursive Data Types: Example

- Let's define the "natural numbers" data type (set of values: $\mathcal{N})$
 - $0 \in \mathcal{N}$: constructor zero (with no parameters)
 - $n \in \mathcal{N} \Rightarrow n+1 \in \mathcal{N}$: constructor succ, having as an argument a natural number

datatype nat = zero | succ **of** nat;

data Nat = Zero | Succ Nat

- How to use this funny definition?
 - Combination of *pattern matching* and *recursion*
 - Familiar to people knowing functional programming

More Interesting Example: Lists

- Lists can also be defined by induction/recursion (simple example: list of intergers)
 - Inductive base: an empty list is a list
 - Inductive step: A non-empty list is an integer followed by a list
- Recursive Data Type: a non-empty list is defined based on the list data type (constructor receiving a list as a parameter)
- Two constructors
 - Empty list constructor
 - Constructor for non-empty lists

Lists as RDTs — 1

- Two constructors
 - Empty list constructor (no parameters)
 - Constructor for non-empty lists (two parameters: an integer and a list)
- Other operations
 - car: returns the first element of a non-empty list (head)
 - cdr: given a non-empty list, returns the "rest of the list"

Lists as RDTs — 2

- How are lists generally implemented?
- Functional languages (Haskell, ML Lisp & friends, ...)
 - Recursive data type!!!
 - "cons" constructor: parameter of type int *
 list (or, a parameter of type int, but returns a function list -> list)
- Imperative languages: pointers!
 - Structure with 2 fields (types "int" and "list*")
 - Second field: pointer to next element
 - Cannot be of type "list", → use "pointer to list"!

RDTs vs Pointers

- See? Imperative languages use pointers and explicit memory allocation...
 - Adding an element to list implies doing some malloc()/new for a node structure, setting some "next" pointers, etc...
- ...In functional languages, RDTs avoid the need for pointers, and memory allocation/deallocation is hidden...
 - Adding an element in front of a list "1" is as simple as "let l1 = cons (e, 1)" or similar!
 - The implementation of the language abstract machine will take care of allocating memory, etc...