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Data Types
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• Data types can be used to impose constraints on
acceptable expressions

• Expressions that do not type-check are invalid!

• To do this, we need (at least):

• A set of primitive (pre-defined) types
• Some way to create new types
• Some rules to perform type-checking

• Informally speaking, a type system



Issues with Types
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• Some type systems risk to compromise the
Turing-completeness of the language

• Think about typed lambda calculus...

• In particular, it important to have appropriate rules
for defining new types

• Again: “function types” are probably not enough
• Expressions resulting in infinite recursion do not

type check!

• We previously said we need “recursive types”, but...

• What is a recursive type?
• What is it useful for?
• How can we use it?



More on Data Types
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• Every programming language has a set of primitive
types

• And many languages allow to define new types

• Simple way to define new types: apply sum or
product operations to existing types

• Product T1 × T2: type with possible values given
by couples of values from T1 and T2

• Sum T1 + T2: type with possible values given by
values from T1 or values from T2

• Sum == disjoint union; Product == cartesian product
• If |T | is the number of values of type T , then

|T1 × T2| = |T1| · |T2| and |T1 + T2| = |T1|+ |T2|



Algebraic Data Types
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• A set (the set of the language’s data types), a sum
operation and a product operation... It’s an algebra!

• Algebra of the data types; types are called
Algebraic Data Types!

• Issue: the sum is a disjoint union...

• Easy to do “float + bool” (type with possible
values integers or booleans)...

• ...But what about “int + int” (or similar)?
• The types have to be tagged somehow...



Algebraic Data Types and Constructors
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• Solution adopted by many programming languages:
do not sum types directly, but first apply a tagging
function to them

• Constructor: function generating the values of
the type to be summed

• Summing types generated by different
constructors, the issue is solved!

• Variant: set of values generated by a constructor

• Different constructors generate disjoint variants
• Hence, instead of “int + int” we can use “Left(int)

+ Right(int)”



Examples
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• C unions are a special case of tagged sum
• “test = i(int) + f(float)” is

union example {
i n t i ;
f l o a t f ;

} ;

• Of course, algebraic data types are more generic
(0-arguments or multi-argument constructors, etc...)

• All constructors with 0 arguments: enum type
• Haskell, ML and others fully support ADT

datatype t e s t = i of i n t | f of r e a l ;

data Test = I I n t | F Float



Example: Option Type
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• Type containing a value or nothing

• Two constructors: “Nothing” (without arguments)
and “Just” (with one argument of the desired
type)

• Example: integer or nothing → Option int = Nothing
+ Just(int)

• Idea: instead of using a null pointer...
• ...Use an option type: Pointer to int = Nothing +

Just(int *)

• Advantage: only the “Just” variant can be
dereferenced...

• NULL pointer dereferences do not even compile!



Generic Data Types
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• The definition of a new type might depend on a “type
variable”

• Parametric type, depending on another type “T”,
denoted by a variable

• Type variables, generally indicated as greek
letters

• Example: generic option type

• Not “integer or nothing”, but “type α or nothing”
• α: type variable

• In Haskell, something like

data Option a = Nothing | Just a

• Used for many other things too (lists, Monads, ...)



Recursive Data Types
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• To define a data type, we must (also) define all its
possible values

• Set of possible values → can be defined by
induction...

• Can induction/recursion be used to define a new
data type?

• How? We need induction base and induction
step

• Induction base: one (or more) constructor(s)
having 0 parameters (or, no parameters of the
data type we are defining)

• Induction step: constructor having a parameter of
the type we are defining

• Looks... Confusing??? Let’s look at some examples!



Recursive Data Types: Example
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• Let’s define the “natural numbers” data type (set of
values: N )

• 0 ∈ N : constructor zero (with no parameters)
• n ∈ N ⇒ n+ 1 ∈ N : constructor succ, having as

an argument a natural number

datatype nat = zero | succ of nat ;

data Nat = Zero | Succ Nat

• How to use this funny definition?

• Combination of pattern matching and recursion
• Familiar to people knowing functional

programming



More Interesting Example: Lists
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• Lists can also be defined by induction/recursion
(simple example: list of intergers)

• Inductive base: an empty list is a list
• Inductive step: A non-empty list is an integer

followed by a list

• Recursive Data Type: a non-empty list is defined
based on the list data type (constructor receiving a
list as a parameter)

• Two constructors

• Empty list constructor
• Constructor for non-empty lists



Lists as RDTs — 1
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• Two constructors

• Empty list constructor (no parameters)
• Constructor for non-empty lists (two parameters:

an integer and a list)

• Other operations

• car: returns the first element of a non-empty list
(head)

• cdr: given a non-empty list, returns the “rest of
the list”



Lists as RDTs — 2
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• How are lists generally implemented?
• Functional languages (Haskell, ML Lisp & friends, ...)

• Recursive data type!!!
• “cons” constructor: parameter of type int *

list (or, a parameter of type int, but returns a
function list -> list)

• Imperative languages: pointers!

• Structure with 2 fields (types “int” and “list*”)
• Second field: pointer to next element
• Cannot be of type “list”, → use “pointer to

list”!



RDTs vs Pointers
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• See? Imperative languages use pointers and explicit
memory allocation...

• Adding an element to list implies doing some
malloc()/new for a node structure, setting some
“next” pointers, etc...

• ...In functional languages, RDTs avoid the need for
pointers, and memory allocation/deallocation is
hidden...

• Adding an element in front of a list “l” is as
simple as “let l1 = cons(e, l)” or similar!

• The implementation of the language abstract
machine will take care of allocating memory, etc...
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