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Programming Paradigms

Functional Programming Techniques Functions and More

• Programs can be developed using many different
paradigms

• Imperative: computation as state modification
• Functional: computation as reduction (???)
• ...

• Imperative paradigm

• Mutable variables: environment associating
names to variables, store associating variables to
values

• Assignments are the core of programs

• Modify the store (f: variable → value)
• Each variable “contains” an R-value

• Directly maps to Von Neumann machines



Functional Programming Paradigm

Functional Programming Techniques Functions and More

• Functional Programming → no state / mutable
variables

• No mutable variables ⇒ no assignments!

• Environment without store

• Programs composed by expressions and
functions (no commands)

• Computation as reduction / substitution of
expressions

• Instead of state mutation...

• Reduction??? WTH is this???

• Replacing the invocation of a function with the
returned value...



Functional Programming Technique 1: Recursion

Functional Programming Techniques Functions and More

• No mutable state → no iteration (loop)!

• Iteration is based on repeating something while a
predicate is true

• Predicate: boolean function of the state...
Immutable state ⇒ the predicate is always true or
always false ⇒ infinite loop, or no iteration!

• Use Recursion instead of iteration!

• Mathematical model: λ-calculus!



Mathematical Functions

Functional Programming Techniques Functions and More

• Function: relation between domain and codomain,
associating at most an element of the codomain to
each element of the domain

• f : X → Y
• f ⊂ X × Y : (x, y1) ∈ f ∧ (x, y2) ∈ f ⇒ y1 = y2
• (x, y) ∈ f → y = f(x)

• f(x) is... Ambiguous?

• f(x) = x2: definition of f()
• f(3): application of f() to 3
• The same syntax (f(x)) is used for definition and

application of a function?



Programming with Functions

Functional Programming Techniques Functions and More

• In math, the meaning of “f(x)” depends on the
context...

• Example: “f(x) = x2” vs “f(3)”

• ...A programming language needs a more univoque
syntax!

• We need a different syntax for application and
definition

• Some examples:

• C/C++: “{...}” after the function’s prototype is
used for definitions

• In ML, fn is used to define a function
• ...



Function Definitions vs Expressions

Functional Programming Techniques Functions and More

• Special syntax to define functions

• In C, “double f(double x) {return x * x;}”
defines f(x) = x2

• But... This is not an expression!!!

• Strange idea: use expressions to define functions...
Something like “f1 = {return x * x;}”???

• Not possible in C... Functions are not expressible
or storable values...

• ...Maybe, we can store/express function pointers
but not functions!

• In C++, “auto f1=[](double x){return x*x;};”
• Notice: these are real functions, not function

pointers!



Anonymous Functions

Functional Programming Techniques Functions and More

• “auto f1 = [](double x) {return x * x;};”
defines “f1” (a variable) and binds it to a function

• Function as a storable value (can be assigned to
a variable)

• Function as an expressible value (can be the
result of an expression)

• “[](..){...}” defines a function without a name!!!
• This expression (named “lambda” in C++) evaluates

to an anonymous function

• Can be assigned to a variable, passed as an
argument to a function, ...

• The type of a lambda expression in C++ is
“std::function<...>”



Execution as Evaluation

Functional Programming Techniques Functions and More

• Functional program: composition of pure functions

• Recursion is used instead of iteration

• “Executed” by evaluating the expressions obtained
from the functions

• Usual example: factorial!
unsigned int fact(unsigned int n)
{
return n == 0 ? 1: n * fact(n - 1);

}

• Note the “arithmetic if” (p ? a : b)

• fact(4) = ?



Example of Evaluation

Functional Programming Techniques Functions and More

fact(4) = ... “n == 0 ? 1: n * fact(n - 1)”,
replacing “n” with “4”

• (n == 0 ? 1: n * fact(n - 1))(4)

• So, 2 different replacements: replace “fact” with its
definition, and then replace “n” with “4”

fact(4) = (4 == 0) ? 1 : 4 * fact(3) =

4 * fact(3) =

4 * ((3 == 0) ? 1 : 3 * fact(2)) =

4 * 3 * fact(2) =

4 * 3 * ((2 == 0) ? 1 : 2 * fact(1)) =

4 * 3 * 2 * fact(1) =

4 * 3 * 2 * ((1==0) ? 1 : 1*fact(0)) =

4 * 3 * 2 * 1 * 1 = 24



Evaluation, or... Reduction

Functional Programming Techniques Functions and More

• In the FP jargon the term “reduction” is often used
instead of “evaluation”

• A program is reduced by text replacement of
subexpressions

• Substituting function invocations with the function
body, and then with the returned values

• Substitute the formal parameter with the actual
parameter...

• For example, if
double f(double x){return x * x;}, we want
“f(3)” to be replaced by “3 * 3” and then “9”

• Let’s look at some more details about how reduction
works...



Reduction?

Functional Programming Techniques Functions and More

• Function application:

• Replacement of the function name with the
function body

• Replacement of formal parameters with actual
parameters

• Often called parameters passing by name
• Example: in “f(3)”, “f” is first replaced by “x * x”

and then “x” is replaced by “3” obtaining “3 * 3”,
which evaluates to “9”

• f(3) → (x * x)(3) → 3 * 3 → 9

• It is all strings manipulation!

• No variables, no execution, no stack...



Example of Reduction

Functional Programming Techniques Functions and More

unsigned int fac(unsigned int n)
{
return n == 0 ? 1: n * fac(n - 1);

}

• fac(4) is replaced by
“n == 0 ? 1 : n * fac(n - 1)” applied to “4”...

• Replacement due to the definition of “fac()”

• Then, “n” is replaced by 4

• Replacement due to parameters passing

• “4 == 0 ? 1 : 4 * fac(4 - 1)” evaluates to
“4 * fac(3)”

• Replacement due to mathematical evaluation!

• Now, restart from the beginning with “fac(3)”...



Diverging Computations

Functional Programming Techniques Functions and More

• It is possible to create endless sequences of
replacements

• int f(int x){return f(x);}

• This is equivalent to an endless loop
(“while(1);”): diverging computation

• In other words, an infinite recursion is a diverging
computation

• Will the stack overflow? Not if we use tail calls
(and corresponding optimizations)

• Looks strange, but is needed for Turing
completeness!!!



Functional Programming Concepts

Functional Programming Techniques Functions and More

• Repeat with me: no commands (no side effects),
only use expressions (pure functions)

• Expressions are composed by values
(non-reducible) and primitive operators

• How are expression built? (what’s the syntax for
writing expressions?)

• Two basic concepts: abstraction and application

• In few words, “abstraction” is function definition...
• ...While “application” is function application

• Text replacements are performed based on
abstractions and applications

• Text replacements due to mathematical
evaluation can be seen as a form of “application”



Abstractions

Functional Programming Techniques Functions and More

• Abstraction: given an expression “e” and an identifier
“x”, builds an expression returning a function that
has “e” as body and “x” as formal parameter

• The expression “e” can then use the variable “x”

• In FP jargon, we are abstracting e from the specific
value of x

• Example of abastraction: [](auto x)e

• Anonymous function mapping x into e!!!



Applications

Functional Programming Techniques Functions and More

• Application: given a function f and an expression e,
builds the expression f(e)

• Applies f to e, evaluating the value of f() given
the value of e

• This is the inverse of abstraction!



Reduction Revisited

Functional Programming Techniques Functions and More

• The reduction of an expression happens using 2
fundamental mechanisms:

1. Search in the environment (replacing identifiers
with the corresponding values)

2. Function application (replacing formal
parameters with actual parameters)

• Replacing “fact(4)” with the function body is
based on a search in the environment (search the
environment for the value corresponding to symbol
“fact”)

• Replacing “n == 0 ? 1: n * fact(n - 1)” with
“4 == 0 ? 1: 4 * fact(4 - 1)” is based on function
application



Summing Up: Functional Languages Features

Functional Programming Techniques Functions and More

• Functions are expressible values

• Functions (code) and data are handled in the
same way

• Functions can receive functions as arguments
• Functions can generate functions as results

• Looks simple, but...
• What’s the environment of the returned function?

We need closures!

• People often talk about high-order functions...



Putting all Together

Functional Programming Techniques Functions and More

• A functional program is a set of definitions and
expressions

• Can modify the environment (creating bindings)
• Can require the evaluation of complex functions

• Executed by text replacement (reduction)
• Continuosly simplify expressions using 2 operations:

• Search (bindings in the environment) and replace

• Applications of functions to arguments (replacing
formal parameters with actual parameters)



Some Questions...

Functional Programming Techniques Functions and More

• This “search and replace” (and apply) idea looks
simple

• But the devil is in the details!

• When should the reduction process stop?

• What is an “irreducible expression” (or, value)?

• If more than 1 replacement can be performed in the
same expression, which one is performed first?

• What is the “precedence rule” for
replacements/reductions?
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