
The Functional

Programming Paradigm

Luca Abeni

luca.abeni@santannapisa.it



Programming Paradigms

Functional Programming Techniques Functions and More

• Programs can be developed using many different
paradigms

• Imperative: computation as state modification
• Functional: computation as reduction (???)
• ...

• Imperative paradigm

• Mutable variables: environment associating
names to variables, store associating variables to
values

• Assignments are the core of programs

• Modify the store (f: variable → value)
• Each variable “contains” an R-value

• Directly maps to Von Neumann machines



Functional Programming Paradigm

Functional Programming Techniques Functions and More

• Functional Programming → no state / mutable
variables

• No mutable variables ⇒ no assignments!

• Environment without store

• Programs composed by expressions and
functions (no commands)

• Computation as reduction / substitution of
expressions

• Instead of state mutation...

• Reduction??? WTH is this???

• Replacing the invocation of a function with the
returned value...



Functional Programming Technique 1: Recursion

Functional Programming Techniques Functions and More

• No mutable state → no iteration (loop)!

• Iteration is based on repeating something while a
predicate is true

• Predicate: boolean function of the state...
Immutable state ⇒ the predicate is always true or
always false ⇒ infinite loop, or no iteration!

• Use Recursion instead of iteration!

• Mathematical model: λ-calculus!



Mathematical Functions

Functional Programming Techniques Functions and More

• Function: relation between domain and codomain,
associating at most an element of the codomain to
each element of the domain

• f : X → Y
• f ⊂ X × Y : (x, y1) ∈ f ∧ (x, y2) ∈ f ⇒ y1 = y2
• (x, y) ∈ f → y = f(x)

• f(x) is... Ambiguous?

• f(x) = x2: definition of f()
• f(3): application of f() to 3
• The same syntax (f(x)) is used for definition and

application of a function?



Programming with Functions

Functional Programming Techniques Functions and More

• In math, the meaning of “f(x)” depends on the
context...

• Example: “f(x) = x2” vs “f(3)”

• ...A programming language needs a more univoque
syntax!

• We need a different syntax for application and
definition

• Some examples:

• C/C++: “{...}” after the function’s prototype is
used for definitions

• In ML, fn is used to define a function
• ...



Function Definitions vs Expressions

Functional Programming Techniques Functions and More

• Special syntax to define functions

• In C, “double f(double x) {return x * x;}”
defines f(x) = x2

• But... This is not an expression!!!

• Strange idea: use expressions to define functions...
Something like “f1 = {return x * x;}”???

• Not possible in C... Functions are not expressible
or storable values...

• ...Maybe, we can store/express function pointers
but not functions!

• In C++, “auto f1=[](double x){return x*x;};”
• Notice: these are real functions, not function

pointers!



Anonymous Functions

Functional Programming Techniques Functions and More

• “auto f1 = [](double x) {return x * x;};”
defines “f1” (a variable) and binds it to a function

• Function as a storable value (can be assigned to
a variable)

• Function as an expressible value (can be the
result of an expression)

• “[](..){...}” defines a function without a name!!!
• This expression (named “lambda” in C++) evaluates

to an anonymous function

• Can be assigned to a variable, passed as an
argument to a function, ...

• The type of a lambda expression in C++ is
“std::function<...>”



Execution as Evaluation

Functional Programming Techniques Functions and More

• Functional program: composition of pure functions

• Recursion is used instead of iteration

• “Executed” by evaluating the expressions obtained
from the functions

• Usual example: factorial!
unsigned int fact(unsigned int n)
{
return n == 0 ? 1: n * fact(n - 1);

}

• Note the “arithmetic if” (p ? a : b)

• fact(4) = ?



Example of Evaluation

Functional Programming Techniques Functions and More

fact(4) = ... “n == 0 ? 1: n * fact(n - 1)”,
replacing “n” with “4”

• (n == 0 ? 1: n * fact(n - 1))(4)

• So, 2 different replacements: replace “fact” with its
definition, and then replace “n” with “4”

fact(4) = (4 == 0) ? 1 : 4 * fact(3) =

4 * fact(3) =

4 * ((3 == 0) ? 1 : 3 * fact(2)) =

4 * 3 * fact(2) =

4 * 3 * ((2 == 0) ? 1 : 2 * fact(1)) =

4 * 3 * 2 * fact(1) =

4 * 3 * 2 * ((1==0) ? 1 : 1*fact(0)) =

4 * 3 * 2 * 1 * 1 = 24



Evaluation, or... Reduction

Functional Programming Techniques Functions and More

• In the FP jargon the term “reduction” is often used
instead of “evaluation”

• A program is reduced by text replacement of
subexpressions

• Substituting function invocations with the function
body, and then with the returned values

• Substitute the formal parameter with the actual
parameter...

• For example, if
double f(double x){return x * x;}, we want
“f(3)” to be replaced by “3 * 3” and then “9”

• Let’s look at some more details about how reduction
works...



Reduction?

Functional Programming Techniques Functions and More

• Function application:

• Replacement of the function name with the
function body

• Replacement of formal parameters with actual
parameters

• Often called parameters passing by name
• Example: in “f(3)”, “f” is first replaced by “x * x”

and then “x” is replaced by “3” obtaining “3 * 3”,
which evaluates to “9”

• f(3) → (x * x)(3) → 3 * 3 → 9

• It is all strings manipulation!

• No variables, no execution, no stack...



Example of Reduction

Functional Programming Techniques Functions and More

unsigned int fac(unsigned int n)
{
return n == 0 ? 1: n * fac(n - 1);

}

• fac(4) is replaced by
“n == 0 ? 1 : n * fac(n - 1)” applied to “4”...

• Replacement due to the definition of “fac()”

• Then, “n” is replaced by 4

• Replacement due to parameters passing

• “4 == 0 ? 1 : 4 * fac(4 - 1)” evaluates to
“4 * fac(3)”

• Replacement due to mathematical evaluation!

• Now, restart from the beginning with “fac(3)”...



Diverging Computations

Functional Programming Techniques Functions and More

• It is possible to create endless sequences of
replacements

• int f(int x){return f(x);}

• This is equivalent to an endless loop
(“while(1);”): diverging computation

• In other words, an infinite recursion is a diverging
computation

• Will the stack overflow? Not if we use tail calls
(and corresponding optimizations)

• Looks strange, but is needed for Turing
completeness!!!



Functional Programming Concepts

Functional Programming Techniques Functions and More

• Repeat with me: no commands (no side effects),
only use expressions (pure functions)

• Expressions are composed by values
(non-reducible) and primitive operators

• How are expression built? (what’s the syntax for
writing expressions?)

• Two basic concepts: abstraction and application

• In few words, “abstraction” is function definition...
• ...While “application” is function application

• Text replacements are performed based on
abstractions and applications

• Text replacements due to mathematical
evaluation can be seen as a form of “application”



Abstractions

Functional Programming Techniques Functions and More

• Abstraction: given an expression “e” and an identifier
“x”, builds an expression returning a function that
has “e” as body and “x” as formal parameter

• The expression “e” can then use the variable “x”

• In FP jargon, we are abstracting e from the specific
value of x

• Example of abastraction: [](auto x)e

• Anonymous function mapping x into e!!!



Applications

Functional Programming Techniques Functions and More

• Application: given a function f and an expression e,
builds the expression f(e)

• Applies f to e, evaluating the value of f() given
the value of e

• This is the inverse of abstraction!



Reduction Revisited

Functional Programming Techniques Functions and More

• The reduction of an expression happens using 2
fundamental mechanisms:

1. Search in the environment (replacing identifiers
with the corresponding values)

2. Function application (replacing formal
parameters with actual parameters)

• Replacing “fact(4)” with the function body is
based on a search in the environment (search the
environment for the value corresponding to symbol
“fact”)

• Replacing “n == 0 ? 1: n * fact(n - 1)” with
“4 == 0 ? 1: 4 * fact(4 - 1)” is based on function
application



Summing Up: Functional Languages Features

Functional Programming Techniques Functions and More

• Functions are expressible values

• Functions (code) and data are handled in the
same way

• Functions can receive functions as arguments
• Functions can generate functions as results

• Looks simple, but...
• What’s the environment of the returned function?

We need closures!

• People often talk about high-order functions...



Putting all Together

Functional Programming Techniques Functions and More

• A functional program is a set of definitions and
expressions

• Can modify the environment (creating bindings)
• Can require the evaluation of complex functions

• Executed by text replacement (reduction)
• Continuosly simplify expressions using 2 operations:

• Search (bindings in the environment) and replace

• Applications of functions to arguments (replacing
formal parameters with actual parameters)



Some Questions...

Functional Programming Techniques Functions and More

• This “search and replace” (and apply) idea looks
simple

• But the devil is in the details!

• When should the reduction process stop?

• What is an “irreducible expression” (or, value)?

• If more than 1 replacement can be performed in the
same expression, which one is performed first?

• What is the “precedence rule” for
replacements/reductions?


	Programming Paradigms
	Functional Programming Paradigm
	Functional Programming Technique 1: Recursion
	Mathematical Functions
	Programming with Functions
	Function Definitions vs Expressions
	Anonymous Functions
	Execution as Evaluation
	Example of Evaluation
	Evaluation, or... Reduction
	Reduction?
	Example of Reduction
	Diverging Computations
	Functional Programming Concepts
	Abstractions
	Applications
	Reduction Revisited
	Summing Up: Functional Languages Features
	Putting all Together
	Some Questions...

