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Minimalistic Functional Programming Languages

Functional Programming Techniques Lambda Calculus

• What is the simplest possible functional
programming language?

• Difficult to say what is the simplest, but a lot of
high-level features are not essential...

• Global environment / let expressions
• Multivariable functions
• Data types
• ...

• What is really needed?

• Names / identifiers (irreducible terms)
• Function definition (abstraction)
• Function application



Defining Functions: Lambda!

Functional Programming Techniques Lambda Calculus

• Function definition: expression evaluating to a
function

• Various languages have it: Standard ML has
fn x => e, C++ has [](auto x){return e;};, ...

• x: formal parameter
• e: expression dependent on x

• Mathematical notation: λ parameter . expression

• λx.e
• x is called bound variable
• e is the expression

• This is the core of Lambda Calculus!!!

• Yes, but... What can it be used for?
• Formal mathematical definitions for FP!



Applying Functions
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• Avoid “useless” parentheses
• All functions have the same domain and codomain:

set of λ-expressions

• Functions apply to functions and return
functions...

• Function application is left-associative

• abc means (ab)c
• Possible interpretation: “the a function is applied

to b and c”...

• Remember the currying thing?



Lambda Calculus: Formal Definitions
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• Lambda Calculus expression (λ-expression): name,
function or function application

• Or a combination of the three...

• Function: λname.expression; Application:
expression expression

• More formally, e = x | λx.e | e e

• x is an identifier (variable, function, ...)
• e is a generic λ-expression

• In practice, some parentheses can make things
more readable:

• e = x | (λx.e) | (e e)

• Not really needed, but (((f1f2)f3)f4) is more
understandable than f1f2f3f4...



Lambda Calculus and Functional Programming
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• Looking at the definition of λ-expressions, we can
recognize abstractions (λx.e) and applications (e e)

• Abstractions: bind the x variable in e

• Changing λx into λy and changing all the x of
e into y, the meaning of e does not change!!!

• Example in “standard” math: f(x) = x2 is
equivalent to f(y) = y2

• Applications: performed by substitution

• This recalls the reduction of functional programs!



Lambda Calculus and Functional Programming — 2
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• Lambda Calculus: based on abstraction and
application

• Same concepts used for
executing/evaluating/reducing functional programs

• The Lambda Calculus is based on more formal
definitions and can be the mathematical model for
functional programming!



Variables: Free or Bound?
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• Informally speaking, a variable x is bound by λx.; a
variable is free if it is not bound by any λ

• More formally... Fv(e): set of free variables in e;
Bv(e): set of bound variables in e

• If e = x, with x variable/identifier, Fv(x) = {x} and
Bv(x) = ∅

• If an expression is composed of a single
variable, such a variable is free!

• Fv(e1e2) = Fv(e1) ∪ Fv(e2) and
Bv(e1e2) = Bv(e1) ∪ Bv(e2)

• Function application does not “modify the
state” (free or bound) of variables



Binding a Variable
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• Fv(λx.e) = Fv(e) \ {x} and Bv(λx.e) = Bv(e) ∪ {x}

• The λ operator (abstraction) binds a variable,
removing it from the set of free variables and
adding it to the set of bound variables

• Looks simple... No?



Substitution
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• Based on the concept of free and bound variables, it
is possible to formally define substitution:

• e[e′/x] (sometimes indicated as e[x→ e′]):
replace “x” with “e′” in expression “e”

• This replacement is often indicated with “→”

• Works on λ-expressions, which are defined by
cases:

• If x is an identifier, x[e′/x] = e′

• If x 6= y, y[e′/x] = y

• Replacing x with e′ in “x”, the result is e′

• Replacing x with e′ in “y”, the expression does
not change



Substitution - 2
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• Let’s see more complex cases... Application:

• (e1e2)[e
′/x] = (e1[e

′/x]e2[e
′/x])

• In case of abstraction:

• If x 6= y and y /∈ Fv(e
′), (λy.e)[e′/x] = (λy.e[e′/x])

• y /∈ Fv(e
′): avoids “capturing” y!!!

• If x = y, (λy.e)[z/x] = (λy.e)

• Replacing the variable bound by λ does not
change the expression...



Capturing Free Variables: Example

Functional Programming Techniques Lambda Calculus

• Consider (λx.λy.xy)(yz): in λy.xy, try to replace x
with yz

• (λy.xy)[yz/x]

• If we simply applied (λy.e)[e′/x]→ λy.(e[e′/x]), we
would get

• (λy.xy)[yz/x]→ λy.(xy[yz/x]) = λy.yzy
• The y variable in yz has been “captured”...
• See the problem, now?

• Solution: change λy.xy into λv.xv

• (λv.xv)[yz/x]→ λv.(xv[yz/x]) = λv.yzv
• This looks better...



Capturing a Free Variable
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• If x 6= y and y /∈ Fv(e
′), (λy.e)[e′/x] = (λy.e[e′/x])

• y /∈ Fv(e
′): avoids “capturing” y!!!

• What does this mean?
• What happens if y ∈ Fv(e

′)?

• To avoid issues, rename the variable bound by λ!

• The behaviour of a function must not depend on
the formal parameter’s name...

• λx.x = λy.y and so on... (in general:
λx.e = λy.(e[y/x])

• So, rename to use a variable which is not free in e′!



Equivalence between Expressions
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• When can we say that two expressions e1 and e2 are
equivalent?

• Intuitive answer: when the only differences are in
the names of bound variables!

• If y is not used in e, λx.e ≡ λy.e[y/x]

• λx becomes λy
• All the occurrences of x in expression e are

changed into y

• This is named Alpha Equivalence!!! ≡α

• Two expressions are α-equivalent if one of the two
can be obtained by replacing parts of the other one
with α-equivalent parts



So, α, ... β!
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• As we know, functional computation works by
replacement/simplification/reduction...

• More formally, this is called β-reduction!!!

• (λx.e)e′ →β e[e′/x]

• e1 is β-reduced to e2 if e2 can be obtained from e1 by
β-reduction of some sub-expression

• Note: (λx.e)e′ is called redex!
• And e[e′/x] is its reduced form...
• What to do when there are multiple redexes? It

does not matter! (confluence theorem)



β Reduction
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• β reduction: introduces a relation between
λ-expressions

• It is not a symmetric relation: e1 →β e2 6⇒ e2 →β e1

• So, it is not an equivalence relation...
• ...But we can define a β-equivalence relation ≡β

(reflexive, symmetric, transitive closure of→β)

• Informally: e1 ≡β e2 means that there is a chain of
β-reductions that somehow “links” e1 and e2

• The “direction” of such β-reductions does not
matter!



β Equivalence
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• β-equivalece ≡β: defined based on β-reduction→β

• Reflexive, symmetric, transitive closure of→β...
• WTH does this mean???

• Extend e1 →β e2 to be reflexive (e1 ≡β e2 ⇒ e2 ≡β e1)
and transitive (e1 ≡β e2 ≡β e3 ⇒ e1 ≡β e3)

• e1 →β e2 ⇒ e1 ≡β e2
• ∀e, e ≡β e
• e1 ≡β e2 ⇒ e2 ≡β e1
• e1 ≡β e2 ≡β e3 ⇒ e1 ≡β e3



Normal Forms
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• Normal form: expression without any redex→
cannot be β-reduced

• λx.λy.x is a normal form, λx.(λy.y)x is not
((λy.y)x→β x, so λx.(λy.y)x ≡β λx.x)

• β-reductions can bring to a normal form...
• ...Or can continue forever!

• (λx.xx)(λx.xx)→β (xx)[(λx.xx)/x] =
(λx.xx)(λx.xx)...

• This is like endless recursion (or endless loops)...



Confluence Theorem
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• Consider β-reductions of expressions with multiple
redexes...

“If e reduces to e1 after some (β-)reduction
steps and e reduces to e2 after some
(β-)reduction steps, then it exists an expression
e3 so that both e1 and e2 reduce to e3 after some
(β-)reduction steps”

• If e reduces to a normal form, then such a normal
form does not depend on the reduction order



λ Calculus: What can it Do?

Functional Programming Techniques Lambda Calculus

• λ calculus as just defined can look “not powerful
enough”

• Expressions are composed only by variables,
abstractions and applications...

• Something like λx.x+ 2 is not a valid
λ-expression

• 2 and + are not variables

• However λ calculus is Turing complete!

• Can code all the “useful” algorithms
• So, it must allow to encode constants,

mathematical operations, ...

• How???



Example: Encoding Natural Numbers
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• Encoding based on Peano’s definition:

• 0 is a natural number
• If n is a natural number, then its next (succ(n)) is

also a natural number

• Alonso Church did something similar...

• 0 is encoded as λf.λx.x (f applied 0 times to x)
• succ(n): apply f to n

• in practice : 0 = function applied 0 times to a
variable, 1 = function applied 1 time, ...

• n: function applied n times to a variable
• So, what’s the formal definition of “succ()”?



Natural Numbers: Computing the Next — 1
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• succ(n) = λn.λf.λx.f((nf)x)

• It should simply add an f to n...

• Informally, n is encoded as λf.λx. followed by n
times f and by x

• “Body” of this function:

n
︷ ︸︸ ︷

f(. . . f( x) . . .)
• Must be “extracted” from n (removing λf.λx.),

then an “f ” can be added, and the expression
can be abstracted again respect to f and x

• How can we do this, more formally?

• Using abstractions and applications



Natural Numbers: Computing the Next — 2
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• We saw how to increase a natural number (remove
λf.λx, add an “f ” on the left, add λf.λx again... ):

• Let’s see how to do it in practice:

• “Exctracting” the function body: apply n to f and
then to x→ ((nf)x)

• Add “f ”: easy... → f((nf)x)
• Abstract again: λf.λx.f((nf)x)

• All this depends on n: λn.λf.λx.f((nf)x)



Encoding Natural Numbers - 1, 2, ...
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• 1 = succ(0): (λn.λf.λx.f((nf)x))(λf.λx.x)

• (λn.λg.λy.g((ng)y))(λf.λx.x)
• λg.λy.g(((λf.λx.x)g)y)
• λg.λy.g((λx.x)y) = λg.λy.gy
• λg.λy.gy = λf.λx.fx

• 2 = succ(1): (λn.λf.λx.f((nf)x))(λf.λx.fx)

• (λn.λg.λy.g((ng)y))(λf.λx.fx)
• λg.λy.g(((λf.λx.fx)g)y)
• λg.λy.g((λx.gx)y)
• λg.λy.g(gy) = λf.λx.f(fx)

• Similarly, 3 = succ(2) = λf.λx.f(f(fx)), etc...



Summing Natural Numbers
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• As said, n ≡ f applied n times to x
• So, 2 + 3 = “Apply 2 times f to 3”

• Apply 2 times f to “apply 3 times f to x”...

• n+m: apply n times f to m

• Extract the bodies of n and m
• In n body, replace x with m
• Abstract again respect to f and x
• Abstract respect to m and n

• How to do this:

• m body : (mf)x
• n body with x replaced by m body: (nf)((mf)x)
• So, λn.λm.λf.λx.(nf)((mf)x)



Example of Sum
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• 2 + 3: λf.λx.f(fx) + λf.λx.f(f(fx))

• +: λn.λm.λf.λx.(nf)((mf)x)

• (λn.λm.λf.λx.(nf)((mf)x))(λf.λx.f(fx))(λf.λx.f(f(fx)))

• (λn.λm.λg.λy.(ng)((mg)y))(λh.λz.h(hz))(λf.λx.f(f(fx)))

• λg.λy.((λh.λz.h(hz))g)(((λf.λx.f(f(fx)))g)y)
• λg.λy.(λz.g(gz))((λx.g(g(gx)))y)
• λg.λy.(λz.g(gz))(g(g(gy)))
• λg.λy.(g(g(g(g(gy)))))

• This is equal to λf.λx.f(f(f(f(fx))))

• f applied 5 times to x: 5!
• So, 2 + 3 = 5...



Yes We Can
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• Lambda calculus can encode everything needed to
be Turing-complete (not only natural numbers and
arithmetic operations)

• Boolean, conditionals (if ... then ...

else), ...

• However, some encodings are everything but simple!

• 2 + 3 ≡

(λn.λm.λf.λx.(nf)((mf)x))(λf.λx.f(fx))(λf.λx.f(f(fx)))

• λx.x+ 2 is not a valid λ-expression...

• But λx.((λn.λm.λf.λx.(nf)((mf)x))x(λf.λx.f(fx)) is!
• And it has the same meaning...



A Possible Extension
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• Going beyond “pure” lambda calculus, it is possible
to use natural numbers, operators, conditionals, and
so on...

• All these things can be implemented using “pure”
λ-expressions (only variables, abstractions and
applications)

• Things like λx.(x+ 2) or λx.if x = 1 then 0

else ... become valid!

• Symbols like 2, +, if ... are like macros, that
can be replaced with the appropriate encoding...

• “Extended” λ calculus (can be reduced to pure λ
calculus by... Replacement!)



Iteration and Recursion
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• How to encode iteration in λ expressions?

• Functional paradigm: use recursion!
• So the question is: how to encode recursion???

• This would need to “name” λx....

• ...But this would require a non-local environment!
λ calculus does not have it

• How to implement recursion using abstraction and
application only?

• Let’s try a stupid example:
int f(int n) {return n == 0 ? 0 : 1 + f(n - 1);}

• Yes, this is really stupid... But is just an example
• It implements the identity function

int f(int n) {return n;}



Recursion in λ Calculus: an Example
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• f = λn.if n == 0 then 0 else 1 + f (n - 1)

• “f =” is not a definition, this is an equation...

• f = G(f)... G(): higher-order function

• Takes a function as an argument
• Returns a function as a result

• Solving the equation, we can find f ... But, what
does “=” mean?

• How can we solve this equation?
• First, define G by abstracting respect to f :
• G = λf.λn.if n == 0 then 0 else 1 + f(n-1)
• So, we need to find h : h ≡β Gh

• Applying G to h we obtain something equivalent
to h, again (using β-equivalence!)



Recursion - Example Continued
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• f = λn.if n == 0 then 0 else 1 + f(n-1)→
λf.λn.if n == 0 then 0 else 1 + f(n-1)

• See? The Recursion Disappeared!!!
• The function to be invoked recursively is passed

as a parameter!

• Example:

std : : func t ion<i n t ( i n t )> f = [& f ] ( i n t n ){ return n == 0 ? 1 : n * f ( n − 1 ) ; } ;

⇒
auto g = [ ] ( s td : : f unc t ion<i n t ( i n t )> f , i n t n ){ return n==0 ? 1 : n* f ( n − 1 ) ;} ;

• We need f1 such that f1 = g f1...
• Notice: [&f] is not needed, here



λ, α, β, ... Y???
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• Back to the problem: given a function G, find
f : f ≡β Gf

• Here, “=” after some β-reduction on left or right
side... β-equivalence!

• This requires to find the fixed point (fixpoint) of G...
• How? Y combinator! Y = λf.(λx.f(xx))(λx.f(xx))

• Uh??? And WTH is it??? Consider e and try to
compute Y e...



Y!!!
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• Y e = (λf.(λx.f(xx))(λx.f(xx)))e
• (λx.e(xx))(λx.e(xx)) =α (λy.e(yy))(λx.e(xx))→β

• →β e(λx.e(xx))(λx.e(xx))
• But (λx.e(xx))(λx.e(xx)) can be the result of a

β-reduction...

• λf.(λx.f(xx))(λx.f(xx)) applied to e

• e(λx.e(xx))(λx.e(xx))←β

e(λf.(λx.f(xx))(λx.f(xx))e) = e(Y e)

• Note: some of the steps did not happen by direct
β-reduction! Hence, Y e ≡β e(Y e)

• Y e ≡β e(Y e)⇒ Y G ≡β G(Y G): interpreting “≡β” as
“=”, Y G is a fixed point for G!!!



Y... Combinator???
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• Y Combinator: λf.(λx.f(xx))(λx.f(xx))
• Combinator: λ-expression without free variables

• λf. ...
• It is a higher-order function: an argument (G) is a

function and the result is a function
• No free variables: all the symbols are bound

through some λ

• Y is an expression λf. ... without free variables→ it
is a combinator!

• It is a special combinator: given a function f , it
computes its fixed point (fixed point combinator)

• Y is not the only fixed point combinator... Many
other exist!

• Y works with β-equivalence



Fixed Point Combinators
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• Importance: allows to implement recursion in λ
calculus

• In a programming language, allows to implement
recursion without naming a function

• WTH???

• Y Combinator: works with evaluation by name

• With evaluation by value (eager), infinite
recursion...

• Other fixed point combinators can work with
evaluation by value

• Z Combinator: λf.((λx.(f(λy.(xx)y)))(λx.(f(λy.(xx)y))))

• H Combinator: λf.((λx.xx)(λx.(f(λy.(xx)y))))



Simplifying Even More
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• λ calculus: only few features

• Variables
• Function application
• Abstraction

• Are they all needed? Can we do without some of
them?

• They are all needed if there are not “predefined
functions”

• But if we provide some smart combinators...
• ...Then we can work without abstractions!!!

• This looks funny... Let’s look at some more details!



Combinator Calculi
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• Combinator: expression without free variables
• Combinator calculus: based only on variables, some

pre-defined combinator, and function application!

• Multiple different combinator calculi are possible
• Depending on the pre-defined combinators

• Pre-defined combinators: calculus basis
• Appropriate basis: the calculus can be

Turing-complete!!!
• How does an “appropriate basis” looks like?

• SK (or SKI) calculus!



SK Calculus

Functional Programming Techniques Lambda Calculus

• Two basic combinators: S and K

• S: Sxyz = xz(yz)
• K: Kxy = x
• Sometimes, the identity combinator I is also

considered... But I = SKK

• The resulting SK calculus is equivalent to the λ
calculus

• All possible λ-expressions can be encoded as SK
expressions

• But it does not use abstractions!
• Used in some esoteric functional programming

languages (unlambda, ...)



Lambda and Types
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• λ calculus: very low-level programming language
• Expressions are basically untyped (everything is a

function)
• Like Assembly (everything is a sequence of bits)

• E : set of λ-expressions
• A function f is a λ-expression⇒ f ∈ E
• All functions have the same domain and

codomain E ⇒ E → E ⊂ E

• This does not compromise the language
expressivity... But can cause bugs!.

• Example: λx.x+ 2 is not a function N → N
• Can be applied to every function, not only to

encodings of natural numbers!



Specifying the Types of Functions
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• We would like to enforce that (λa.a+ 2) ∈ N → N ...
• But λa.a+ 2 really means

λa.(λn.λm.λf.λx.(nf)((mf)x))a(λf.λx.f(fx))...
• Specifying the type of this function is not easy at all!
• Alternative: let’s specify the type of the bound

variables
• Yes, but... What is a type?

• First of all, we need to formally define types



Types

Functional Programming Techniques Lambda Calculus

• P: set of base types (or primitive types); T : set of all
possible types

• A primitive type is a type

• α ∈ P ⇒ α ∈ T

• Functions from a type to another have a valid type

• α, β ∈ T ⇒ α→ β ∈ T

• These types can be associated to λ-expressions

• As usual, consider the three possible types of
λ-expression: variable, application and
abstraction

• Variables: the type of a free variable must be
known



Associating Types to Expressions
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• If E1 has type α→ β, E = E1E2 is valid only if E2 has
type α

• As a result, E has type β

• If E has type β, then λx.E has type α→ β

• Moreover, x has type α

• For abstractions λx.E, explicit typing can also be
used: λx : α.E means that x has type α

• Some λ-expressions cannot be correctly typed

• What’s the type of λx.xx? If x has type α, then
λx.xx has type α→ β, where β is the type of xx

• But, what’s the type of xx? If x has type α, then
xx has type β and x has type α→ β???



The Effect of Types
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• So, λx.xx does not type-check...
• It can be proved that the β-reduction of every

correctly-typed λ-expression terminates in a finite
number of steps

• No divergent computations / infinite recursion?
• The typed λ calculus is not Turing-complete!!!

• So, adding a feature (types) reduces the expressive
power of the language... Funny!

• The Y combinator also contains an “xx”, which does
not type-check...

• Typed λ calculus→ no recursion???
• A more complex type system is needed...

(recursion in the type system!)



Fixed Point Combinators in a Programming
Language
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• Implementing the Y combinator is possible, but... Not
always easy!

• A first issue is with eager evaluation...

• In this case, a different fixed point combinator
must be implemented

• Issues with strict type checking (Y does not type
check!)

• Recursive data types must be used to eliminate
recursion from functions

• The details are not simple...
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