The Lambda Calculus

Luca Abeni
luca.abeni@santannapisa.it

Minimalistic Functional Programming Languages

What is the simplest possible functional programming language?
Difficult to say what is the simplest, but a lot of high-level features are not essential...

- Global environment / let expressions
- Multivariable functions
- Data types
- What is really needed?
- Names / identifiers (irreducible terms)
- Function definition (abstraction)
- Function application

Defining Functions: Lambda!

- Function definition: expression evaluating to a function
- Various languages have it: Standard ML has fn $x=>$ e, C++ has [] (auto x) \{return e; \}; ...
- x : formal parameter
- e: expression dependent on x
- Mathematical notation: λ parameter . expression
- λx.e
- x is called bound variable
- e is the expression
- This is the core of Lambda Calculus!!!
- Yes, but... What can it be used for?
- Formal mathematical definitions for FP!

Applying Functions

Avoid "useless" parentheses
All functions have the same domain and codomain: set of λ-expressions

- Functions apply to functions and return functions...

Function application is left-associative

- abc means (ab)c
- Possible interpretation: "the a function is applied to b and $c^{\prime \prime} .$.
- Remember the currying thing?

Lambda Calculus: Formal Definitions

- Lambda Calculus expression (λ-expression): name, function or function application
- Or a combination of the three...
- Function: λ name.expression; Application: expression expression More formally, $e=x|\lambda x . e| e e$
- x is an identifier (variable, function, ...)
- e is a generic λ-expression
- In practice, some parentheses can make things more readable:
- e = x | ($\lambda \mathrm{x} . \mathrm{e}$) | (e e)
- Not really needed, but $\left(\left(\left(f_{1} f_{2}\right) f_{3}\right) f_{4}\right)$ is more understandable than $f_{1} f_{2} f_{3} f_{4} \ldots$

Lambda Calculus and Functional Programming

Looking at the definition of λ-expressions, we can recognize abstractions ($\lambda x . e$) and applications (e e)

- Abstractions: bind the x variable in e
- Changing λx into λy and changing all the x of e into y, the meaning of e does not change!!!
- Example in "standard" math: $f(x)=x^{2}$ is equivalent to $f(y)=y^{2}$
- Applications: performed by substitution

This recalls the reduction of functional programs!

Lambda Calculus and Functional Programming - 2

Lambda Calculus: based on abstraction and application
Same concepts used for executing/evaluating/reducing functional programs The Lambda Calculus is based on more formal definitions and can be the mathematical model for functional programming!

Variables: Free or Bound?

Informally speaking, a variable x is bound by λx.; a variable is free if it is not bound by any λ More formally... $F_{v}(e)$: set of free variables in e; $B_{v}(e)$: set of bound variables in e

- If $e=x$, with x variable/identifier, $F_{v}(x)=\{x\}$ and

$$
B_{v}(x)=\emptyset
$$

- If an expression is composed of a single variable, such a variable is free!
- $\quad F_{v}\left(e_{1} e_{2}\right)=F_{v}\left(e_{1}\right) \cup F_{v}\left(e_{2}\right)$ and $B_{v}\left(e_{1} e_{2}\right)=B_{v}\left(e_{1}\right) \cup B_{v}\left(e_{2}\right)$
- Function application does not "modify the state" (free or bound) of variables

Binding a Variable

$F_{v}(\lambda x . e)=F_{v}(e) \backslash\{x\}$ and $B_{v}(\lambda x . e)=B_{v}(e) \cup\{x\}$

- The λ operator (abstraction) binds a variable, removing it from the set of free variables and adding it to the set of bound variables
Looks simple... No?

Substitution

Based on the concept of free and bound variables, it is possible to formally define substitution:

- $e\left[e^{\prime} / x\right]$ (sometimes indicated as $e\left[x \rightarrow e^{\prime}\right]$): replace " x " with " e "" in expression " e "
- This replacement is often indicated with " \rightarrow "

Works on λ-expressions, which are defined by cases:

- If x is an identifier, $x\left[e^{\prime} / x\right]=e^{\prime}$
- If $x \neq y, y\left[e^{\prime} / x\right]=y$
- Replacing x with e^{\prime} in " x ", the result is e^{\prime}
- Replacing x with e^{\prime} in " y ", the expression does not change

Substitution - 2

Let's see more complex cases... Application:

- $\left(e_{1} e_{2}\right)\left[e^{\prime} / x\right]=\left(e_{1}\left[e^{\prime} / x\right] e_{2}\left[e^{\prime} / x\right]\right)$

In case of abstraction:

- If $x \neq y$ and $y \notin F_{v}\left(e^{\prime}\right),(\lambda y . e)\left[e^{\prime} / x\right]=\left(\lambda y . e\left[e^{\prime} / x\right]\right)$
- $y \notin F_{v}\left(e^{\prime}\right)$: avoids "capturing" y !!!
- If $x=y$, (λ y.e $)[z / x]=(\lambda y . e)$
- Replacing the variable bound by λ does not change the expression...

Capturing Free Variables: Example

- Consider $(\lambda x \cdot \lambda y . x y)(y z)$: in $\lambda y . x y$, try to replace x with $y z$
- $(\lambda y . x y)[y z / x]$

If we simply applied $(\lambda y . e)\left[e^{\prime} / x\right] \rightarrow \lambda y .\left(e\left[e^{\prime} / x\right]\right)$, we would get

- $(\lambda . x)[y z / x] \rightarrow \lambda .(x[y z / x])=\lambda . y z$
- The y variable in $y z$ has been "captured"...
- See the problem, now?

Solution: change $\lambda y . x y$ into $\lambda v . x v$

- $(\lambda v \cdot x v)[y z / x] \rightarrow \lambda v \cdot(x v[y z / x])=\lambda v \cdot y z v$
- This looks better...

Capturing a Free Variable

If $x \neq y$ and $y \notin F_{v}\left(e^{\prime}\right),(\lambda y . e)\left[e^{\prime} / x\right]=\left(\lambda y . e\left[e^{\prime} / x\right]\right)$

- $y \notin F_{v}\left(e^{\prime}\right)$: avoids "capturing" $y!!!$
- What does this mean?
- What happens if $y \in F_{v}\left(e^{\prime}\right)$?

To avoid issues, rename the variable bound by λ !

- The behaviour of a function must not depend on the formal parameter's name...
- $\quad \lambda x . x=\lambda y . y$ and so on... (in general:
$\lambda x . e=\lambda y .(e[y / x])$
So, rename to use a variable which is not free in e^{\prime} !

Equivalence between Expressions

When can we say that two expressions e_{1} and e_{2} are equivalent?

- Intuitive answer: when the only differences are in the names of bound variables!
- If y is not used in $e, \lambda x . e \equiv \lambda y . e[y / x]$
- λx becomes λy
- All the occurrences of x in expression e are changed into y
This is named Alpha Equivalence!!! \equiv_{α}
Two expressions are α-equivalent if one of the two can be obtained by replacing parts of the other one with α-equivalent parts

So, $\alpha, \ldots, \beta!$

- As we know, functional computation works by replacement/simplification/reduction...
More formally, this is called β-reduction!!!
- $(\lambda x . e) e^{\prime} \rightarrow_{\beta} e\left[e^{\prime} / x\right]$
- e_{1} is β-reduced to e_{2} if e_{2} can be obtained from e_{1} by β-reduction of some sub-expression
- Note: $(\lambda x . e) e^{\prime}$ is called redex!
- And $e\left[e^{\prime} / x\right]$ is its reduced form...
- What to do when there are multiple redexes? It does not matter! (confluence theorem)

β Reduction

β reduction: introduces a relation between λ-expressions
It is not a symmetric relation: $e_{1} \rightarrow_{\beta} e_{2} \nRightarrow e_{2} \rightarrow_{\beta} e_{1}$

- So, it is not an equivalence relation...
- ...But we can define a β-equivalence relation \equiv_{β} (reflexive, symmetric, transitive closure of \rightarrow_{β})
Informally: $e_{1} \equiv_{\beta} e_{2}$ means that there is a chain of β-reductions that somehow "links" e_{1} and e_{2}
- The "direction" of such β-reductions does not matter!

β Equivalence

β-equivalece \equiv_{β} : defined based on β-reduction \rightarrow_{β}

- Reflexive, symmetric, transitive closure of $\rightarrow_{\beta} \ldots$
- WTH does this mean???

Extend $e_{1} \rightarrow_{\beta} e_{2}$ to be reflexive $\left(e_{1} \equiv_{\beta} e_{2} \Rightarrow e_{2} \equiv_{\beta} e_{1}\right.$) and transitive $\left(e_{1} \equiv_{\beta} e_{2} \equiv_{\beta} e_{3} \Rightarrow e_{1} \equiv_{\beta} e_{3}\right)$

- $e_{1} \rightarrow_{\beta} e_{2} \Rightarrow e_{1} \equiv{ }_{\beta} e_{2}$
- $\forall e, e \equiv \beta e$
- $e_{1} \equiv \beta e_{2} \Rightarrow e_{2} \equiv \beta e_{1}$
- $e_{1} \equiv{ }_{\beta} e_{2} \equiv{ }_{\beta} e_{3} \Rightarrow e_{1} \equiv \beta e_{3}$

Normal Forms

Normal form: expression without any redex \rightarrow cannot be β-reduced

- $\quad \lambda x . \lambda y . x$ is a normal form, λx. $(\lambda y . y) x$ is not

$$
\left((\lambda y \cdot y) x \rightarrow_{\beta} x, \text { so } \lambda x \cdot(\lambda y \cdot y) x \equiv_{\beta} \lambda x \cdot x\right)
$$

β-reductions can bring to a normal form...
...Or can continue forever!

- $(\lambda x . x x)(\lambda x . x x) \rightarrow_{\beta}(x x)[(\lambda x \cdot x x) / x]=$ $(\lambda x . x x)(\lambda x . x x) \ldots$
This is like endless recursion (or endless loops)...

Confluence Theorem

- Consider β-reductions of expressions with multiple redexes...
"If e reduces to e_{1} after some (β-)reduction steps and e reduces to e_{2} after some (β-)reduction steps, then it exists an expression e_{3} so that both e_{1} and e_{2} reduce to e_{3} after some (β-)reduction steps"
- If e reduces to a normal form, then such a normal form does not depend on the reduction order

λ Calculus: What can it Do?

λ calculus as just defined can look "not powerful enough"

- Expressions are composed only by variables, abstractions and applications...
- Something like $\lambda x \cdot x+2$ is not a valid λ-expression
- 2 and + are not variables
- However λ calculus is Turing complete!
- Can code all the "useful" algorithms
- So, it must allow to encode constants, mathematical operations, ...
- How???

Example: Encoding Natural Numbers

- Encoding based on Peano's definition:
- 0 is a natural number
- If n is a natural number, then its next $(\operatorname{succ}(n))$ is also a natural number
- Alonso Church did something similar...
- 0 is encoded as $\lambda f . \lambda x . x$ (f applied 0 times to x)
- $\operatorname{succ}(n)$: apply f to n
- in practice : $0=$ function applied 0 times to a variable, 1 = function applied 1 time, ... n : function applied n times to a variable So, what's the formal definition of "succ()"?

Natural Numbers: Computing the Next —1

- $\operatorname{succ}(n)=\lambda n \cdot \lambda f \cdot \lambda x \cdot f((n f) x)$
- It should simply add an f to n... Informally, n is encoded as λf. λx. followed by n times f and by x
- "Body" of this function: $\overbrace{f(\ldots f(x) \ldots)}^{n}(x)$
- Must be "extracted" from n (removing $\lambda f . \lambda x$.), then an " f " can be added, and the expression can be abstracted again respect to f and x
- How can we do this, more formally?
- Using abstractions and applications

Natural Numbers: Computing the Next - 2

We saw how to increase a natural number (remove $\lambda f . \lambda x$, add an " f " on the left, add $\lambda f . \lambda x$ again...): Let's see how to do it in practice:

- "Exctracting" the function body: apply n to f and then to $x \rightarrow((n f) x)$
- Add " f ": easy... $\rightarrow f((n f) x)$
- Abstract again: $\lambda f . \lambda x \cdot f((n f) x)$

All this depends on $n: \lambda n \cdot \lambda f \cdot \lambda x \cdot f((n f) x)$

Encoding Natural Numbers - 1, 2, ...

$$
\begin{array}{ll}
1= & \operatorname{succ}(0):(\lambda n \cdot \lambda f \cdot \lambda x \cdot f((n f) x))(\lambda f \cdot \lambda x \cdot x) \\
- & (\lambda n \cdot \lambda g \cdot \lambda y \cdot g((n g) y))(\lambda f \cdot \lambda x \cdot x) \\
\bullet & \lambda g \cdot \lambda y \cdot g(((\lambda f \cdot \lambda x \cdot x) g) y) \\
- & \lambda g \cdot \lambda y \cdot g((\lambda x \cdot x) y)=\lambda g \cdot \lambda y \cdot g y \\
- & \lambda g \cdot \lambda y \cdot g y=\lambda f \cdot \lambda x \cdot f x \\
2= & \operatorname{succ}(1):(\lambda n \cdot \lambda f \cdot \lambda x \cdot f((n f) x))(\lambda f \cdot \lambda x \cdot f x) \\
- & (\lambda n \cdot \lambda g \cdot \lambda y \cdot g((n g) y))(\lambda f \cdot \lambda x \cdot f x) \\
- & \lambda g \cdot \lambda y \cdot g(((\lambda f \cdot \lambda x \cdot f x) g) y) \\
- & \lambda g \cdot \lambda y \cdot g((\lambda x \cdot g x) y) \\
- & \lambda g \cdot \lambda y \cdot g(g y)=\lambda f \cdot \lambda x \cdot f(f x)
\end{array}
$$

Similarly, $3=\operatorname{succ}(2)=\lambda f . \lambda x . f(f(f x))$, etc...

Summing Natural Numbers

As said, $n \equiv f$ applied n times to x So, $2+3=$ "Apply 2 times f to 3 "

- Apply 2 times f to "apply 3 times f to x "...
$n+m$: apply n times f to m
- Extract the bodies of n and m
- In n body, replace x with m
- Abstract again respect to f and x
- Abstract respect to m and n

How to do this:

- m body : $(m f) x$
- n body with x replaced by m body: $(n f)((m f) x)$
- So, $\lambda n . \lambda m . \lambda f . \lambda x .(n f)((m f) x)$

Example of Sum

$2+3: \lambda f \cdot \lambda x \cdot f(f x)+\lambda f \cdot \lambda x \cdot f(f(f x))$

- +: $\lambda n \cdot \lambda m \cdot \lambda f \cdot \lambda x \cdot(n f)((m f) x)$
$(\lambda n . \lambda m . \lambda f . \lambda x \cdot(n f)((m f) x))(\lambda f . \lambda x . f(f x))(\lambda f . \lambda x \cdot f(f(f x)))$
- $\quad(\lambda n \cdot \lambda m \cdot \lambda g \cdot \lambda y \cdot(n g)((m g) y))(\lambda h \cdot \lambda z \cdot h(h z))(\lambda f \cdot \lambda x \cdot f(f(f x)))$
- $\quad \lambda g \cdot \lambda y \cdot((\lambda h \cdot \lambda z \cdot h(h z)) g)(((\lambda f \cdot \lambda x \cdot f(f(f x))) g) y)$
- $\lambda g \cdot \lambda y \cdot(\lambda z \cdot g(g z))((\lambda x \cdot g(g(g x))) y)$
- $\lambda g \cdot \lambda y \cdot(\lambda z \cdot g(g z))(g(g(g y)))$
- $\quad \lambda g \cdot \lambda y \cdot(g(g(g(g(g y)))))$

This is equal to $\lambda f \cdot \lambda x \cdot f(f(f(f(f x))))$

- f applied 5 times to x : 5 !
- So, $2+3=5$...

Yes We Can

Lambda calculus can encode everything needed to be Turing-complete (not only natural numbers and arithmetic operations)

- Boolean, conditionals (if . . . then ... else), ...
However, some encodings are everything but simple!
- $2+3 \equiv$
$(\lambda n \cdot \lambda m \cdot \lambda f \cdot \lambda x \cdot(n f)((m f) x))(\lambda f \cdot \lambda x \cdot f(f x))(\lambda f \cdot \lambda x \cdot f(f(f x)))$
$\lambda x . x+2$ is not a valid λ-expression...
- But λx. (($\lambda n . \lambda m . \lambda f . \lambda x$. $(n f)((m f) x)) x(\lambda f . \lambda x \cdot f(f x))$ is!
- And it has the same meaning...

A Possible Extension

- Going beyond "pure" lambda calculus, it is possible to use natural numbers, operators, conditionals, and so on...
- All these things can be implemented using "pure" λ-expressions (only variables, abstractions and applications)
- Things like $\lambda x .(x+2)$ or λx.if $\mathrm{x}=1$ then 0 else . . . become valid!
- Symbols like 2, +, if . . . are like macros, that can be replaced with the appropriate encoding...
"Extended" λ calculus (can be reduced to pure λ calculus by... Replacement!)

Iteration and Recursion

- How to encode iteration in λ expressions?
- Functional paradigm: use recursion!
- So the question is: how to encode recursion???

This would need to "name" $\lambda x \ldots$

- ...But this would require a non-local environment!
λ calculus does not have it
- How to implement recursion using abstraction and application only?
Let's try a stupid example:
int f (int n) \{return $\mathrm{n}=0$? 0 : $1+\mathrm{f}(\mathrm{n}-1)$; \}
- Yes, this is really stupid... But is just an example
- It implements the identity function
int $f($ int $n)$ \{return $n ;\}$

Recursion in λ Calculus: an Example

$f=\lambda n$.if $n==0$ then 0 else $1+f(\mathrm{n}-1)$
" $f=$ " is not a definition, this is an equation...

- $\quad f=G(f) \ldots G()$: higher-order function
- Takes a function as an argument
- Returns a function as a result
- Solving the equation, we can find f... But, what does "=" mean?
- How can we solve this equation?

First, define G by abstracting respect to f :
$G=\lambda f$. λn.if $n==0$ then 0 else $1+f(\mathrm{n}-1)$ So, we need to find $h: h \equiv_{\beta} G h$

- Applying G to h we obtain something equivalent to h, again (using β-equivalence!)

Recursion - Example Continued

- $f=\lambda n$.if $n==0$ then 0 else $1+f(n-1) \rightarrow$
λf. λn.if $n=0$ then 0 else $1+f(\mathrm{n}-1)$
- See? The Recursion Disappeared!!!
- The function to be invoked recursively is passed as a parameter!

- Example:

std: : function<int (int)> $f=[\& f]($ int $n)\{$ return $n=0 \quad$? $1: n$ * $f(n-1) ;\} ;$
\Rightarrow
auto $g=[]($ std $:$: function $<i n t(i n t)>f$, int $n)\{$ return $n==0$? $1: n * f(n-1) ;\} ;$
We need $f 1$ such that $f 1=g f 1 . .$.
Notice: [\& f] is not needed, here

$\lambda, \alpha, \beta, \ldots$ Y???

Back to the problem: given a function G, find $f: f \equiv{ }_{\beta} G f$

- Here, "=" after some β-reduction on left or right side... β-equivalence!
This requires to find the fixed point (fixpoint) of $G \ldots$ How? Y combinator! $Y=\lambda f .(\lambda x . f(x x))(\lambda x \cdot f(x x))$
- Uh??? And WTH is it??? Consider e and try to compute Ye...

Y!!!

$$
\begin{aligned}
& Y e=(\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))) e \\
& (\lambda x . e(x x))(\lambda x \cdot e(x x))==_{\alpha}(\lambda y \cdot e(y y))(\lambda x . e(x x)) \rightarrow_{\beta} \\
& \rightarrow_{\beta} e(\lambda x . e(x x))(\lambda x . e(x x))
\end{aligned}
$$

But $(\lambda x . e(x x))(\lambda x . e(x x))$ can be the result of a β-reduction...

- $\quad \lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$ applied to e $e(\lambda x . e(x x))(\lambda x . e(x x)) \leftarrow \beta$
$e(\lambda f .(\lambda x . f(x x))(\lambda x . f(x x)) e)=e(Y e)$
- Note: some of the steps did not happen by direct β-reduction! Hence, $Y e \equiv_{\beta} e(Y e)$
$Y e \equiv_{\beta} e(Y e) \Rightarrow Y G \equiv_{\beta} G(Y G)$: interpreting " \equiv_{β} " as "=", $Y G$ is a fixed point for $G!!!$

Y... Combinator???

- Y Combinator: $\lambda f .(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))$
- Combinator: λ-expression without free variables
- λf...
- It is a higher-order function: an argument (G) is a function and the result is a function
- No free variables: all the symbols are bound through some λ
- Y is an expression λf.... without free variables \rightarrow it is a combinator!
- It is a special combinator: given a function f, it computes its fixed point (fixed point combinator)
- Y is not the only fixed point combinator... Many other exist!

Fixed Point Combinators

Importance: allows to implement recursion in λ calculus

- In a programming language, allows to implement recursion without naming a function
- WTH???

Y Combinator: works with evaluation by name

- With evaluation by value (eager), infinite recursion...

Other fixed point combinators can work with evaluation by value

- Z Combinator: $\lambda f .((\lambda x \cdot(f(\lambda y .(x x) y)))(\lambda x \cdot(f(\lambda y \cdot(x x) y))))$
- H Combinator: $\lambda f \cdot((\lambda x \cdot x x)(\lambda x \cdot(f(\lambda y \cdot(x x) y))))$

Simplifying Even More

- $\quad \lambda$ calculus: only few features
- Variables
- Function application
- Abstraction
- Are they all needed? Can we do without some of them?
- They are all needed if there are not "predefined functions"
- But if we provide some smart combinators...
- ...Then we can work without abstractions!!!

This looks funny... Let's look at some more details!

Combinator Calculi

- Combinator: expression without free variables
- Combinator calculus: based only on variables, some pre-defined combinator, and function application!
- Multiple different combinator calculi are possible
- Depending on the pre-defined combinators

Pre-defined combinators: calculus basis
Appropriate basis: the calculus can be
Turing-complete!!!
How does an "appropriate basis" looks like?

- SK (or SKI) calculus!

SK Calculus

- Two basic combinators: S and K
- $S: S x y z=x z(y z)$
- $K: K x y=x$
- Sometimes, the identity combinator I is also considered... But $I=S K K$
The resulting SK calculus is equivalent to the λ calculus
- All possible λ-expressions can be encoded as SK expressions
But it does not use abstractions! Used in some esoteric functional programming languages (unlambda, ...)

Lambda and Types

- λ calculus: very low-level programming language - Expressions are basically untyped (everything is a function)
- Like Assembly (everything is a sequence of bits)
- \mathcal{E} : set of λ-expressions
- A function f is a λ-expression $\Rightarrow f \in \mathcal{E}$
- All functions have the same domain and codomain $\mathcal{E} \Rightarrow \mathcal{E} \rightarrow \mathcal{E} \subset \mathcal{E}$

This does not compromise the language expressivity... But can cause bugs!.

- Example: $\lambda x \cdot x+2$ is not a function $\mathcal{N} \rightarrow \mathcal{N}$
- Can be applied to every function, not only to encodings of natural numbers!

Specifying the Types of Functions

We would like to enforce that $(\lambda a . a+2) \in \mathcal{N} \rightarrow \mathcal{N} \ldots$ But $\lambda a . a+2$ really means $\lambda a .(\lambda n . \lambda m . \lambda f . \lambda x .(n f)((m f) x)) a(\lambda f . \lambda x . f(f x)) \ldots$ Specifying the type of this function is not easy at all! Alternative: let's specify the type of the bound variables
Yes, but... What is a type?

- First of all, we need to formally define types

Types

- \mathcal{P} : set of base types (or primitive types); \mathcal{T} : set of all possible types
A primitive type is a type
- $\alpha \in \mathcal{P} \Rightarrow \alpha \in \mathcal{T}$
- Functions from a type to another have a valid type
- $\alpha, \beta \in \mathcal{T} \Rightarrow \alpha \rightarrow \beta \in \mathcal{T}$

These types can be associated to λ-expressions

- As usual, consider the three possible types of λ-expression: variable, application and abstraction
- Variables: the type of a free variable must be known

Associating Types to Expressions

If E_{1} has type $\alpha \rightarrow \beta, E=E_{1} E_{2}$ is valid only if E_{2} has type α

- As a result, E has type β
- If E has type β, then λx. E has type $\alpha \rightarrow \beta$
- Moreover, x has type α

For abstractions λx.E, explicit typing can also be used: λx : α. E means that x has type α Some λ-expressions cannot be correctly typed

- What's the type of $\lambda x . x x$? If x has type α, then $\lambda x . x x$ has type $\alpha \rightarrow \beta$, where β is the type of $x x$
- But, what's the type of $x x$? If x has type α, then $x x$ has type β and x has type $\alpha \rightarrow \beta$???

The Effect of Types

- So, $\lambda x . x x$ does not type-check...
- It can be proved that the β-reduction of every correctly-typed λ-expression terminates in a finite number of steps
- No divergent computations / infinite recursion?
- The typed λ calculus is not Turing-complete!!!
- So, adding a feature (types) reduces the expressive power of the language... Funny!
- The Y combinator also contains an " $x x$ ", which does not type-check...
- Typed λ calculus \rightarrow no recursion???
- A more complex type system is needed... (recursion in the type system!)

Fixed Point Combinators in a Programming
 Language

Implementing the Y combinator is possible, but... Not always easy!
A first issue is with eager evaluation...

- In this case, a different fixed point combinator must be implemented
Issues with strict type checking (Y does not type check!)
- Recursive data types must be used to eliminate recursion from functions
- The details are not simple...

