
The Lambda Calculus

Luca Abeni

luca.abeni@santannapisa.it

Minimalistic Functional Programming Languages

Functional Programming Techniques Lambda Calculus

• What is the simplest possible functional
programming language?

• Difficult to say what is the simplest, but a lot of
high-level features are not essential...

• Global environment / let expressions
• Multivariable functions
• Data types
• ...

• What is really needed?

• Names / identifiers (irreducible terms)
• Function definition (abstraction)
• Function application

Defining Functions: Lambda!

Functional Programming Techniques Lambda Calculus

• Function definition: expression evaluating to a
function

• Various languages have it: Standard ML has
fn x => e, C++ has [](auto x){return e;};, ...

• x: formal parameter
• e: expression dependent on x

• Mathematical notation: λ parameter . expression

• λx.e
• x is called bound variable
• e is the expression

• This is the core of Lambda Calculus!!!

• Yes, but... What can it be used for?
• Formal mathematical definitions for FP!

Applying Functions

Functional Programming Techniques Lambda Calculus

• Avoid “useless” parentheses
• All functions have the same domain and codomain:

set of λ-expressions

• Functions apply to functions and return
functions...

• Function application is left-associative

• abc means (ab)c
• Possible interpretation: “the a function is applied

to b and c”...

• Remember the currying thing?

Lambda Calculus: Formal Definitions

Functional Programming Techniques Lambda Calculus

• Lambda Calculus expression (λ-expression): name,
function or function application

• Or a combination of the three...

• Function: λname.expression; Application:
expression expression

• More formally, e = x | λx.e | e e

• x is an identifier (variable, function, ...)
• e is a generic λ-expression

• In practice, some parentheses can make things
more readable:

• e = x | (λx.e) | (e e)

• Not really needed, but (((f1f2)f3)f4) is more
understandable than f1f2f3f4...

Lambda Calculus and Functional Programming

Functional Programming Techniques Lambda Calculus

• Looking at the definition of λ-expressions, we can
recognize abstractions (λx.e) and applications (e e)

• Abstractions: bind the x variable in e

• Changing λx into λy and changing all the x of
e into y, the meaning of e does not change!!!

• Example in “standard” math: f(x) = x2 is
equivalent to f(y) = y2

• Applications: performed by substitution

• This recalls the reduction of functional programs!

Lambda Calculus and Functional Programming — 2

Functional Programming Techniques Lambda Calculus

• Lambda Calculus: based on abstraction and
application

• Same concepts used for
executing/evaluating/reducing functional programs

• The Lambda Calculus is based on more formal
definitions and can be the mathematical model for
functional programming!

Variables: Free or Bound?

Functional Programming Techniques Lambda Calculus

• Informally speaking, a variable x is bound by λx.; a
variable is free if it is not bound by any λ

• More formally... Fv(e): set of free variables in e;
Bv(e): set of bound variables in e

• If e = x, with x variable/identifier, Fv(x) = {x} and
Bv(x) = ∅

• If an expression is composed of a single
variable, such a variable is free!

• Fv(e1e2) = Fv(e1) ∪ Fv(e2) and
Bv(e1e2) = Bv(e1) ∪ Bv(e2)

• Function application does not “modify the
state” (free or bound) of variables

Binding a Variable

Functional Programming Techniques Lambda Calculus

• Fv(λx.e) = Fv(e) \ {x} and Bv(λx.e) = Bv(e) ∪ {x}

• The λ operator (abstraction) binds a variable,
removing it from the set of free variables and
adding it to the set of bound variables

• Looks simple... No?

Substitution

Functional Programming Techniques Lambda Calculus

• Based on the concept of free and bound variables, it
is possible to formally define substitution:

• e[e′/x] (sometimes indicated as e[x→ e′]):
replace “x” with “e′” in expression “e”

• This replacement is often indicated with “→”

• Works on λ-expressions, which are defined by
cases:

• If x is an identifier, x[e′/x] = e′

• If x 6= y, y[e′/x] = y

• Replacing x with e′ in “x”, the result is e′

• Replacing x with e′ in “y”, the expression does
not change

Substitution - 2

Functional Programming Techniques Lambda Calculus

• Let’s see more complex cases... Application:

• (e1e2)[e
′/x] = (e1[e

′/x]e2[e
′/x])

• In case of abstraction:

• If x 6= y and y /∈ Fv(e
′), (λy.e)[e′/x] = (λy.e[e′/x])

• y /∈ Fv(e
′): avoids “capturing” y!!!

• If x = y, (λy.e)[z/x] = (λy.e)

• Replacing the variable bound by λ does not
change the expression...

Capturing Free Variables: Example

Functional Programming Techniques Lambda Calculus

• Consider (λx.λy.xy)(yz): in λy.xy, try to replace x
with yz

• (λy.xy)[yz/x]

• If we simply applied (λy.e)[e′/x]→ λy.(e[e′/x]), we
would get

• (λy.xy)[yz/x]→ λy.(xy[yz/x]) = λy.yzy
• The y variable in yz has been “captured”...
• See the problem, now?

• Solution: change λy.xy into λv.xv

• (λv.xv)[yz/x]→ λv.(xv[yz/x]) = λv.yzv
• This looks better...

Capturing a Free Variable

Functional Programming Techniques Lambda Calculus

• If x 6= y and y /∈ Fv(e
′), (λy.e)[e′/x] = (λy.e[e′/x])

• y /∈ Fv(e
′): avoids “capturing” y!!!

• What does this mean?
• What happens if y ∈ Fv(e

′)?

• To avoid issues, rename the variable bound by λ!

• The behaviour of a function must not depend on
the formal parameter’s name...

• λx.x = λy.y and so on... (in general:
λx.e = λy.(e[y/x])

• So, rename to use a variable which is not free in e′!

Equivalence between Expressions

Functional Programming Techniques Lambda Calculus

• When can we say that two expressions e1 and e2 are
equivalent?

• Intuitive answer: when the only differences are in
the names of bound variables!

• If y is not used in e, λx.e ≡ λy.e[y/x]

• λx becomes λy
• All the occurrences of x in expression e are

changed into y

• This is named Alpha Equivalence!!! ≡α

• Two expressions are α-equivalent if one of the two
can be obtained by replacing parts of the other one
with α-equivalent parts

So, α, ... β!

Functional Programming Techniques Lambda Calculus

• As we know, functional computation works by
replacement/simplification/reduction...

• More formally, this is called β-reduction!!!

• (λx.e)e′ →β e[e′/x]

• e1 is β-reduced to e2 if e2 can be obtained from e1 by
β-reduction of some sub-expression

• Note: (λx.e)e′ is called redex!
• And e[e′/x] is its reduced form...
• What to do when there are multiple redexes? It

does not matter! (confluence theorem)

β Reduction

Functional Programming Techniques Lambda Calculus

• β reduction: introduces a relation between
λ-expressions

• It is not a symmetric relation: e1 →β e2 6⇒ e2 →β e1

• So, it is not an equivalence relation...
• ...But we can define a β-equivalence relation ≡β

(reflexive, symmetric, transitive closure of→β)

• Informally: e1 ≡β e2 means that there is a chain of
β-reductions that somehow “links” e1 and e2

• The “direction” of such β-reductions does not
matter!

β Equivalence

Functional Programming Techniques Lambda Calculus

• β-equivalece ≡β: defined based on β-reduction→β

• Reflexive, symmetric, transitive closure of→β...
• WTH does this mean???

• Extend e1 →β e2 to be reflexive (e1 ≡β e2 ⇒ e2 ≡β e1)
and transitive (e1 ≡β e2 ≡β e3 ⇒ e1 ≡β e3)

• e1 →β e2 ⇒ e1 ≡β e2
• ∀e, e ≡β e
• e1 ≡β e2 ⇒ e2 ≡β e1
• e1 ≡β e2 ≡β e3 ⇒ e1 ≡β e3

Normal Forms

Functional Programming Techniques Lambda Calculus

• Normal form: expression without any redex→
cannot be β-reduced

• λx.λy.x is a normal form, λx.(λy.y)x is not
((λy.y)x→β x, so λx.(λy.y)x ≡β λx.x)

• β-reductions can bring to a normal form...
• ...Or can continue forever!

• (λx.xx)(λx.xx)→β (xx)[(λx.xx)/x] =
(λx.xx)(λx.xx)...

• This is like endless recursion (or endless loops)...

Confluence Theorem

Functional Programming Techniques Lambda Calculus

• Consider β-reductions of expressions with multiple
redexes...

“If e reduces to e1 after some (β-)reduction
steps and e reduces to e2 after some
(β-)reduction steps, then it exists an expression
e3 so that both e1 and e2 reduce to e3 after some
(β-)reduction steps”

• If e reduces to a normal form, then such a normal
form does not depend on the reduction order

λ Calculus: What can it Do?

Functional Programming Techniques Lambda Calculus

• λ calculus as just defined can look “not powerful
enough”

• Expressions are composed only by variables,
abstractions and applications...

• Something like λx.x+ 2 is not a valid
λ-expression

• 2 and + are not variables

• However λ calculus is Turing complete!

• Can code all the “useful” algorithms
• So, it must allow to encode constants,

mathematical operations, ...

• How???

Example: Encoding Natural Numbers

Functional Programming Techniques Lambda Calculus

• Encoding based on Peano’s definition:

• 0 is a natural number
• If n is a natural number, then its next (succ(n)) is

also a natural number

• Alonso Church did something similar...

• 0 is encoded as λf.λx.x (f applied 0 times to x)
• succ(n): apply f to n

• in practice : 0 = function applied 0 times to a
variable, 1 = function applied 1 time, ...

• n: function applied n times to a variable
• So, what’s the formal definition of “succ()”?

Natural Numbers: Computing the Next — 1

Functional Programming Techniques Lambda Calculus

• succ(n) = λn.λf.λx.f((nf)x)

• It should simply add an f to n...

• Informally, n is encoded as λf.λx. followed by n
times f and by x

• “Body” of this function:

n
︷ ︸︸ ︷

f(. . . f(x) . . .)
• Must be “extracted” from n (removing λf.λx.),

then an “f ” can be added, and the expression
can be abstracted again respect to f and x

• How can we do this, more formally?

• Using abstractions and applications

Natural Numbers: Computing the Next — 2

Functional Programming Techniques Lambda Calculus

• We saw how to increase a natural number (remove
λf.λx, add an “f ” on the left, add λf.λx again...):

• Let’s see how to do it in practice:

• “Exctracting” the function body: apply n to f and
then to x→ ((nf)x)

• Add “f ”: easy... → f((nf)x)
• Abstract again: λf.λx.f((nf)x)

• All this depends on n: λn.λf.λx.f((nf)x)

Encoding Natural Numbers - 1, 2, ...

Functional Programming Techniques Lambda Calculus

• 1 = succ(0): (λn.λf.λx.f((nf)x))(λf.λx.x)

• (λn.λg.λy.g((ng)y))(λf.λx.x)
• λg.λy.g(((λf.λx.x)g)y)
• λg.λy.g((λx.x)y) = λg.λy.gy
• λg.λy.gy = λf.λx.fx

• 2 = succ(1): (λn.λf.λx.f((nf)x))(λf.λx.fx)

• (λn.λg.λy.g((ng)y))(λf.λx.fx)
• λg.λy.g(((λf.λx.fx)g)y)
• λg.λy.g((λx.gx)y)
• λg.λy.g(gy) = λf.λx.f(fx)

• Similarly, 3 = succ(2) = λf.λx.f(f(fx)), etc...

Summing Natural Numbers

Functional Programming Techniques Lambda Calculus

• As said, n ≡ f applied n times to x
• So, 2 + 3 = “Apply 2 times f to 3”

• Apply 2 times f to “apply 3 times f to x”...

• n+m: apply n times f to m

• Extract the bodies of n and m
• In n body, replace x with m
• Abstract again respect to f and x
• Abstract respect to m and n

• How to do this:

• m body : (mf)x
• n body with x replaced by m body: (nf)((mf)x)
• So, λn.λm.λf.λx.(nf)((mf)x)

Example of Sum

Functional Programming Techniques Lambda Calculus

• 2 + 3: λf.λx.f(fx) + λf.λx.f(f(fx))

• +: λn.λm.λf.λx.(nf)((mf)x)

• (λn.λm.λf.λx.(nf)((mf)x))(λf.λx.f(fx))(λf.λx.f(f(fx)))

• (λn.λm.λg.λy.(ng)((mg)y))(λh.λz.h(hz))(λf.λx.f(f(fx)))

• λg.λy.((λh.λz.h(hz))g)(((λf.λx.f(f(fx)))g)y)
• λg.λy.(λz.g(gz))((λx.g(g(gx)))y)
• λg.λy.(λz.g(gz))(g(g(gy)))
• λg.λy.(g(g(g(g(gy)))))

• This is equal to λf.λx.f(f(f(f(fx))))

• f applied 5 times to x: 5!
• So, 2 + 3 = 5...

Yes We Can

Functional Programming Techniques Lambda Calculus

• Lambda calculus can encode everything needed to
be Turing-complete (not only natural numbers and
arithmetic operations)

• Boolean, conditionals (if ... then ...

else), ...

• However, some encodings are everything but simple!

• 2 + 3 ≡

(λn.λm.λf.λx.(nf)((mf)x))(λf.λx.f(fx))(λf.λx.f(f(fx)))

• λx.x+ 2 is not a valid λ-expression...

• But λx.((λn.λm.λf.λx.(nf)((mf)x))x(λf.λx.f(fx)) is!
• And it has the same meaning...

A Possible Extension

Functional Programming Techniques Lambda Calculus

• Going beyond “pure” lambda calculus, it is possible
to use natural numbers, operators, conditionals, and
so on...

• All these things can be implemented using “pure”
λ-expressions (only variables, abstractions and
applications)

• Things like λx.(x+ 2) or λx.if x = 1 then 0

else ... become valid!

• Symbols like 2, +, if ... are like macros, that
can be replaced with the appropriate encoding...

• “Extended” λ calculus (can be reduced to pure λ
calculus by... Replacement!)

Iteration and Recursion

Functional Programming Techniques Lambda Calculus

• How to encode iteration in λ expressions?

• Functional paradigm: use recursion!
• So the question is: how to encode recursion???

• This would need to “name” λx....

• ...But this would require a non-local environment!
λ calculus does not have it

• How to implement recursion using abstraction and
application only?

• Let’s try a stupid example:
int f(int n) {return n == 0 ? 0 : 1 + f(n - 1);}

• Yes, this is really stupid... But is just an example
• It implements the identity function

int f(int n) {return n;}

Recursion in λ Calculus: an Example

Functional Programming Techniques Lambda Calculus

• f = λn.if n == 0 then 0 else 1 + f (n - 1)

• “f =” is not a definition, this is an equation...

• f = G(f)... G(): higher-order function

• Takes a function as an argument
• Returns a function as a result

• Solving the equation, we can find f ... But, what
does “=” mean?

• How can we solve this equation?
• First, define G by abstracting respect to f :
• G = λf.λn.if n == 0 then 0 else 1 + f(n-1)
• So, we need to find h : h ≡β Gh

• Applying G to h we obtain something equivalent
to h, again (using β-equivalence!)

Recursion - Example Continued

Functional Programming Techniques Lambda Calculus

• f = λn.if n == 0 then 0 else 1 + f(n-1)→
λf.λn.if n == 0 then 0 else 1 + f(n-1)

• See? The Recursion Disappeared!!!
• The function to be invoked recursively is passed

as a parameter!

• Example:

std : : func t ion<i n t (i n t)> f = [& f] (i n t n){ return n == 0 ? 1 : n * f (n − 1) ; } ;

⇒
auto g = [] (s td : : f unc t ion<i n t (i n t)> f , i n t n){ return n==0 ? 1 : n* f (n − 1) ;} ;

• We need f1 such that f1 = g f1...
• Notice: [&f] is not needed, here

λ, α, β, ... Y???

Functional Programming Techniques Lambda Calculus

• Back to the problem: given a function G, find
f : f ≡β Gf

• Here, “=” after some β-reduction on left or right
side... β-equivalence!

• This requires to find the fixed point (fixpoint) of G...
• How? Y combinator! Y = λf.(λx.f(xx))(λx.f(xx))

• Uh??? And WTH is it??? Consider e and try to
compute Y e...

Y!!!

Functional Programming Techniques Lambda Calculus

• Y e = (λf.(λx.f(xx))(λx.f(xx)))e
• (λx.e(xx))(λx.e(xx)) =α (λy.e(yy))(λx.e(xx))→β

• →β e(λx.e(xx))(λx.e(xx))
• But (λx.e(xx))(λx.e(xx)) can be the result of a

β-reduction...

• λf.(λx.f(xx))(λx.f(xx)) applied to e

• e(λx.e(xx))(λx.e(xx))←β

e(λf.(λx.f(xx))(λx.f(xx))e) = e(Y e)

• Note: some of the steps did not happen by direct
β-reduction! Hence, Y e ≡β e(Y e)

• Y e ≡β e(Y e)⇒ Y G ≡β G(Y G): interpreting “≡β” as
“=”, Y G is a fixed point for G!!!

Y... Combinator???

Functional Programming Techniques Lambda Calculus

• Y Combinator: λf.(λx.f(xx))(λx.f(xx))
• Combinator: λ-expression without free variables

• λf. ...
• It is a higher-order function: an argument (G) is a

function and the result is a function
• No free variables: all the symbols are bound

through some λ

• Y is an expression λf. ... without free variables→ it
is a combinator!

• It is a special combinator: given a function f , it
computes its fixed point (fixed point combinator)

• Y is not the only fixed point combinator... Many
other exist!

• Y works with β-equivalence

Fixed Point Combinators

Functional Programming Techniques Lambda Calculus

• Importance: allows to implement recursion in λ
calculus

• In a programming language, allows to implement
recursion without naming a function

• WTH???

• Y Combinator: works with evaluation by name

• With evaluation by value (eager), infinite
recursion...

• Other fixed point combinators can work with
evaluation by value

• Z Combinator: λf.((λx.(f(λy.(xx)y)))(λx.(f(λy.(xx)y))))

• H Combinator: λf.((λx.xx)(λx.(f(λy.(xx)y))))

Simplifying Even More

Functional Programming Techniques Lambda Calculus

• λ calculus: only few features

• Variables
• Function application
• Abstraction

• Are they all needed? Can we do without some of
them?

• They are all needed if there are not “predefined
functions”

• But if we provide some smart combinators...
• ...Then we can work without abstractions!!!

• This looks funny... Let’s look at some more details!

Combinator Calculi

Functional Programming Techniques Lambda Calculus

• Combinator: expression without free variables
• Combinator calculus: based only on variables, some

pre-defined combinator, and function application!

• Multiple different combinator calculi are possible
• Depending on the pre-defined combinators

• Pre-defined combinators: calculus basis
• Appropriate basis: the calculus can be

Turing-complete!!!
• How does an “appropriate basis” looks like?

• SK (or SKI) calculus!

SK Calculus

Functional Programming Techniques Lambda Calculus

• Two basic combinators: S and K

• S: Sxyz = xz(yz)
• K: Kxy = x
• Sometimes, the identity combinator I is also

considered... But I = SKK

• The resulting SK calculus is equivalent to the λ
calculus

• All possible λ-expressions can be encoded as SK
expressions

• But it does not use abstractions!
• Used in some esoteric functional programming

languages (unlambda, ...)

Lambda and Types

Functional Programming Techniques Lambda Calculus

• λ calculus: very low-level programming language
• Expressions are basically untyped (everything is a

function)
• Like Assembly (everything is a sequence of bits)

• E : set of λ-expressions
• A function f is a λ-expression⇒ f ∈ E
• All functions have the same domain and

codomain E ⇒ E → E ⊂ E

• This does not compromise the language
expressivity... But can cause bugs!.

• Example: λx.x+ 2 is not a function N → N
• Can be applied to every function, not only to

encodings of natural numbers!

Specifying the Types of Functions

Functional Programming Techniques Lambda Calculus

• We would like to enforce that (λa.a+ 2) ∈ N → N ...
• But λa.a+ 2 really means

λa.(λn.λm.λf.λx.(nf)((mf)x))a(λf.λx.f(fx))...
• Specifying the type of this function is not easy at all!
• Alternative: let’s specify the type of the bound

variables
• Yes, but... What is a type?

• First of all, we need to formally define types

Types

Functional Programming Techniques Lambda Calculus

• P: set of base types (or primitive types); T : set of all
possible types

• A primitive type is a type

• α ∈ P ⇒ α ∈ T

• Functions from a type to another have a valid type

• α, β ∈ T ⇒ α→ β ∈ T

• These types can be associated to λ-expressions

• As usual, consider the three possible types of
λ-expression: variable, application and
abstraction

• Variables: the type of a free variable must be
known

Associating Types to Expressions

Functional Programming Techniques Lambda Calculus

• If E1 has type α→ β, E = E1E2 is valid only if E2 has
type α

• As a result, E has type β

• If E has type β, then λx.E has type α→ β

• Moreover, x has type α

• For abstractions λx.E, explicit typing can also be
used: λx : α.E means that x has type α

• Some λ-expressions cannot be correctly typed

• What’s the type of λx.xx? If x has type α, then
λx.xx has type α→ β, where β is the type of xx

• But, what’s the type of xx? If x has type α, then
xx has type β and x has type α→ β???

The Effect of Types

Functional Programming Techniques Lambda Calculus

• So, λx.xx does not type-check...
• It can be proved that the β-reduction of every

correctly-typed λ-expression terminates in a finite
number of steps

• No divergent computations / infinite recursion?
• The typed λ calculus is not Turing-complete!!!

• So, adding a feature (types) reduces the expressive
power of the language... Funny!

• The Y combinator also contains an “xx”, which does
not type-check...

• Typed λ calculus→ no recursion???
• A more complex type system is needed...

(recursion in the type system!)

Fixed Point Combinators in a Programming
Language

Functional Programming Techniques Lambda Calculus

• Implementing the Y combinator is possible, but... Not
always easy!

• A first issue is with eager evaluation...

• In this case, a different fixed point combinator
must be implemented

• Issues with strict type checking (Y does not type
check!)

• Recursive data types must be used to eliminate
recursion from functions

• The details are not simple...

	Minimalistic Functional Programming Languages
	Defining Functions: Lambda!
	Applying Functions
	Lambda Calculus: Formal Definitions
	Lambda Calculus and Functional Programming
	Lambda Calculus and Functional Programming — 2
	Variables: Free or Bound?
	Binding a Variable
	Substitution
	Substitution - 2
	Capturing Free Variables: Example
	Capturing a Free Variable
	Equivalence between Expressions
	So, , ... !
	 Reduction
	 Equivalence
	Normal Forms
	Confluence Theorem
	 Calculus: What can it Do?
	Example: Encoding Natural Numbers
	Natural Numbers: Computing the Next — 1
	Natural Numbers: Computing the Next — 2
	Encoding Natural Numbers - 1, 2, ...
	Summing Natural Numbers
	Example of Sum
	Yes We Can
	A Possible Extension
	Iteration and Recursion
	Recursion in Calculus: an Example
	Recursion - Example Continued
	, , , ... Y???
	Y!!!
	Y... Combinator???
	Fixed Point Combinators
	Simplifying Even More
	Combinator Calculi
	SK Calculus
	Lambda and Types
	Specifying the Types of Functions
	Types
	Associating Types to Expressions
	The Effect of Types
	Fixed Point Combinators in a Programming Language

