The Lambda Calculus

Luca Abeni luca.abeni@santannapisa.it

Minimalistic Functional Programming Languages

- What is the simplest possible functional programming language?
- Difficult to say what is the *simplest*, but a lot of high-level features are not essential...
 - Global environment / let expressions
 - Multivariable functions
 - Data types
 - ...
- What is really needed?
 - Names / identifiers (irreducible terms)
 - Function definition (abstraction)
 - Function application

Defining Functions: Lambda!

- Function definition: expression evaluating to a function
 - Various languages have it: Standard ML has
 fn x => e, C++ has [] (auto x) {return e; }; ...
 - x: formal parameter
 - e: expression dependent on x
- Mathematical notation: λ parameter . expression
 - $\lambda x.e$
 - x is called bound variable
 - e is the expression
- This is the core of Lambda Calculus!!!
 - Yes, but... What can it be used for?
 - Formal mathematical definitions for FP!

Functional Programming Techniques

Lambda Calculus

Applying Functions

- Avoid "useless" parentheses
- All functions have the same domain and codomain: set of λ -expressions
 - Functions apply to functions and return functions...
- Function application is left-associative
 - abc means (ab)c
 - Possible interpretation: "the *a* function is applied to *b* and *c*"...
 - Remember the currying thing?

Lambda Calculus: Formal Definitions

- Lambda Calculus expression (λ -expression): name, function or function application
 - Or a combination of the three...
- Function: λ name.expression; Application: expression expression
- More formally, $e = x | \lambda x \cdot e | e e$
 - x is an identifier (variable, function, ...)
 - e is a generic λ -expression
- In practice, some parentheses can make things more readable:
 - e = x | $(\lambda x.e)$ | (e e)
 - Not really needed, but $(((f_1f_2)f_3)f_4)$ is more understandable than $f_1f_2f_3f_4...$

Functional Programming Techniques

Lambda Calculus

Lambda Calculus and Functional Programming

- Looking at the definition of λ -expressions, we can recognize abstractions ($\lambda x.e$) and applications (e e)
 - Abstractions: bind the x variable in e
 - Changing λx into λy and changing all the x of e into y, the meaning of e does not change!!!
 - Example in "standard" math: $f(x) = x^2$ is equivalent to $f(y) = y^2$
 - Applications: performed by substitution
- This recalls the reduction of functional programs!

Lambda Calculus and Functional Programming — 2

- Lambda Calculus: based on abstraction and application
- Same concepts used for executing/evaluating/reducing functional programs
- The Lambda Calculus is based on more formal definitions and can be the mathematical model for functional programming!

Variables: Free or Bound?

- Informally speaking, a variable x is *bound* by λx .; a variable is free if it is not bound by any λ
- More formally... $F_v(e)$: set of free variables in e; $B_v(e)$: set of bound variables in e
 - If e = x, with x variable/identifier, $F_v(x) = \{x\}$ and $B_v(x) = \emptyset$
 - If an expression is composed of a single variable, such a variable is free!
 - $F_v(e_1e_2) = F_v(e_1) \cup F_v(e_2)$ and $B_v(e_1e_2) = B_v(e_1) \cup B_v(e_2)$
 - Function application does not "modify the state" (free or bound) of variables

Binding a Variable

• $F_v(\lambda x.e) = F_v(e) \setminus \{x\} \text{ and } B_v(\lambda x.e) = B_v(e) \cup \{x\}$

- The λ operator (abstraction) binds a variable, removing it from the set of free variables and adding it to the set of bound variables
- Looks simple... No?

Substitution

- Based on the concept of free and bound variables, it is possible to formally define substitution:
 - e[e'/x] (sometimes indicated as $e[x \rightarrow e']$): replace "x" with "e'" in expression "e"
 - This replacement is often indicated with " \rightarrow "
- Works on λ -expressions, which are defined by cases:
 - If x is an identifier, x[e'/x] = e'
 - If $x \neq y$, y[e'/x] = y
 - Replacing x with e' in "x", the result is e'
 - Replacing x with e' in "y", the expression does not change

Substitution - 2

- Let's see more complex cases... Application:
 - $(e_1e_2)[e'/x] = (e_1[e'/x]e_2[e'/x])$
- In case of abstraction:
 - If $x \neq y$ and $y \notin F_v(e')$, $(\lambda y.e)[e'/x] = (\lambda y.e[e'/x])$
 - $y \notin F_v(e')$: avoids "capturing" y!!!
 - If x = y, $(\lambda y.e)[z/x] = (\lambda y.e)$
 - Replacing the variable bound by λ does not change the expression...

Capturing Free Variables: Example

- Consider $(\lambda x.\lambda y.xy)(yz)$: in $\lambda y.xy$, try to replace x with yz
 - $(\lambda y.xy)[yz/x]$
- If we simply applied $(\lambda y.e)[e'/x] \rightarrow \lambda y.(e[e'/x])$, we would get
 - $(\lambda y.xy)[yz/x] \rightarrow \lambda y.(xy[yz/x]) = \lambda y.yzy$
 - The y variable in yz has been "captured"...
 - See the problem, now?
- Solution: change $\lambda y.xy$ into $\lambda v.xv$
 - $(\lambda v.xv)[yz/x] \rightarrow \lambda v.(xv[yz/x]) = \lambda v.yzv$
 - This looks better...

Capturing a Free Variable

- If $x \neq y$ and $y \notin F_v(e')$, $(\lambda y.e)[e'/x] = (\lambda y.e[e'/x])$
 - $y \notin F_v(e')$: avoids "capturing" y!!!
 - What does this mean?
 - What happens if $y \in F_v(e')$?
- To avoid issues, rename the variable bound by λ !
 - The behaviour of a function must not depend on the formal parameter's name...
 - $\lambda x.x = \lambda y.y$ and so on... (in general: $\lambda x.e = \lambda y.(e[y/x])$
- So, rename to use a variable which is not free in e'!

Equivalence between Expressions

- When can we say that two expressions e_1 and e_2 are equivalent?
 - Intuitive answer: when the only differences are in the names of bound variables!
- If y is not used in e, $\lambda x.e \equiv \lambda y.e[y/x]$
 - λx becomes λy
 - All the occurrences of x in expression e are changed into y
- This is named Alpha Equivalence!!! \equiv_{α}
- Two expressions are α-equivalent if one of the two can be obtained by replacing parts of the other one with α-equivalent parts

So, α , ... β !

- As we know, functional computation works by replacement/simplification/reduction...
- More formally, this is called β -reduction!!!

• $(\lambda x.e)e' \rightarrow_{\beta} e[e'/x]$

- e_1 is β -reduced to e_2 if e_2 can be obtained from e_1 by β -reduction of some sub-expression
 - Note: $(\lambda x.e)e'$ is called redex!
 - And e[e'/x] is its reduced form...
 - What to do when there are multiple redexes? It does not matter! (confluence theorem)

β Reduction

- β reduction: introduces a relation between λ -expressions
- It is not a symmetric relation: $e_1 \rightarrow_{\beta} e_2 \not\Rightarrow e_2 \rightarrow_{\beta} e_1$
 - So, it is **not** an equivalence relation...
 - ...But we can define a β -equivalence relation \equiv_{β} (reflexive, symmetric, transitive closure of \rightarrow_{β})
- Informally: $e_1 \equiv_{\beta} e_2$ means that there is a chain of β -reductions that somehow "links" e_1 and e_2
 - The "direction" of such β-reductions does not matter!

β Equivalence

- β -equivalece \equiv_{β} : defined based on β -reduction \rightarrow_{β}
 - Reflexive, symmetric, transitive closure of \rightarrow_{β} ...
 - WTH does this mean???
- Extend $e_1 \rightarrow_{\beta} e_2$ to be reflexive ($e_1 \equiv_{\beta} e_2 \Rightarrow e_2 \equiv_{\beta} e_1$) and transitive ($e_1 \equiv_{\beta} e_2 \equiv_{\beta} e_3 \Rightarrow e_1 \equiv_{\beta} e_3$)

•
$$e_1 \rightarrow_\beta e_2 \Rightarrow e_1 \equiv_\beta e_2$$

•
$$\forall e, e \equiv_{\beta} e$$

•
$$e_1 \equiv_{\beta} e_2 \Rightarrow e_2 \equiv_{\beta} e_1$$

• $e_1 \equiv_\beta e_2 \equiv_\beta e_3 \Rightarrow e_1 \equiv_\beta e_3$

Normal Forms

- Normal form: expression without any redex \rightarrow cannot be β -reduced
 - $\lambda x.\lambda y.x$ is a normal form, $\lambda x.(\lambda y.y)x$ is not $((\lambda y.y)x \rightarrow_{\beta} x, \text{ so } \lambda x.(\lambda y.y)x \equiv_{\beta} \lambda x.x)$
- β-reductions can bring to a normal form...
 ...Or can continue forever!
 - $(\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} (xx)[(\lambda x.xx)/x] = (\lambda x.xx)(\lambda x.xx)...$
- This is like endless recursion (or endless loops)...

Confluence Theorem

Consider β-reductions of expressions with multiple redexes...

"If *e* reduces to e_1 after some (β -)reduction steps and *e* reduces to e_2 after some (β -)reduction steps, then it exists an expression e_3 so that both e_1 and e_2 reduce to e_3 after some (β -)reduction steps"

• If *e* reduces to a normal form, then such a normal form does not depend on the reduction order

Functional Programming Techniques

λ Calculus: What can it Do?

- λ calculus as just defined can look "not powerful enough"
 - Expressions are composed only by variables, abstractions and applications...
 - Something like $\lambda x.x + 2$ is not a valid λ -expression
 - 2 and + are not variables
- However λ calculus is Turing complete!
 - Can code all the "useful" algorithms
 - So, it must allow to encode constants, mathematical operations, ...
 - How???

Functional Programming Techniques

Example: Encoding Natural Numbers

- Encoding based on Peano's definition:
 - 0 is a natural number
 - If n is a natural number, then its next (succ(n)) is also a natural number
- Alonso Church did something similar...
 - 0 is encoded as $\lambda f. \lambda x. x$ (f applied 0 times to x)
 - succ(n): apply f to n
- in practice : 0 = function applied 0 times to a variable, 1 = function applied 1 time, ...
- n: function applied n times to a variable
- So, what's the formal definition of "succ()"?

Natural Numbers: Computing the Next — 1

•
$$SUCC(n) = \lambda n.\lambda f.\lambda x.f((nf)x)$$

- It should simply add an f to n...
- Informally, n is encoded as $\lambda f.\lambda x$. followed by n times f and by x
 - "Body" of this function: $f(\ldots f(x) \ldots)$
 - Must be "extracted" from n (removing $\lambda f. \lambda x.$), then an "f" can be added, and the expression can be abstracted again respect to f and x
- How can we do this, more formally?
 - Using abstractions and applications

Natural Numbers: Computing the Next — 2

- We saw how to increase a natural number (remove λf.λx, add an "f" on the left, add λf.λx again...):
 Let's see how to do it in practice:
 - "Exctracting" the function body: apply n to f and then to $x \to ((nf)x)$
 - Add "f": easy... $\rightarrow f((nf)x)$
 - Abstract again: $\lambda f.\lambda x.f((nf)x)$
- All this depends on n: $\lambda n.\lambda f.\lambda x.f((nf)x)$

Encoding Natural Numbers - 1, 2, ...

- $1 = \operatorname{succ}(0)$: $(\lambda n.\lambda f.\lambda x.f((nf)x))(\lambda f.\lambda x.x)$
 - $(\lambda n.\lambda g.\lambda y.g((ng)y))(\lambda f.\lambda x.x)$
 - $\lambda g.\lambda y.g(((\lambda f.\lambda x.x)g)y)$
 - $\lambda g.\lambda y.g((\lambda x.x)y) = \lambda g.\lambda y.gy$
 - $\lambda g.\lambda y.gy = \lambda f.\lambda x.fx$
- $2 = \operatorname{SUCC}(1): (\lambda n.\lambda f.\lambda x.f((nf)x))(\lambda f.\lambda x.fx)$
 - $(\lambda n.\lambda g.\lambda y.g((ng)y))(\lambda f.\lambda x.fx)$
 - $\lambda g. \lambda y. g(((\lambda f. \lambda x. fx)g)y)$
 - $\lambda g.\lambda y.g((\lambda x.gx)y)$
 - $\lambda g.\lambda y.g(gy) = \lambda f.\lambda x.f(fx)$
- Similarly, $3 = \operatorname{succ}(2) = \lambda f \cdot \lambda x \cdot f(f(fx))$, etc...

Summing Natural Numbers

- As said, $n \equiv f$ applied n times to x
- So, 2 + 3 = "Apply 2 times f to 3"
 - Apply 2 times f to "apply 3 times f to x"...
- n+m: apply n times f to m
 - Extract the bodies of n and m
 - In n body, replace x with m
 - Abstract again respect to f and x
 - Abstract respect to *m* and *n*
- How to do this:
 - $m \operatorname{body} \colon (mf)x$
 - n body with x replaced by m body: (nf)((mf)x)
 - So, $\lambda n.\lambda m.\lambda f.\lambda x.(nf)((mf)x)$

Functional Programming Techniques

Example of Sum

- $2+3: \lambda f.\lambda x.f(fx) + \lambda f.\lambda x.f(f(fx))$
 - +: $\lambda n.\lambda m.\lambda f.\lambda x.(nf)((mf)x)$
- $(\lambda n.\lambda m.\lambda f.\lambda x.(nf)((mf)x))(\lambda f.\lambda x.f(fx))(\lambda f.\lambda x.f(f(fx))))$
 - $(\lambda n.\lambda m.\lambda g.\lambda y.(ng)((mg)y))(\lambda h.\lambda z.h(hz))(\lambda f.\lambda x.f(f(fx))))$
 - $\lambda g.\lambda y.((\lambda h.\lambda z.h(hz))g)(((\lambda f.\lambda x.f(f(fx)))g)y)$
 - $\lambda g.\lambda y.(\lambda z.g(gz))((\lambda x.g(g(gx)))y)$
 - $\lambda g.\lambda y.(\lambda z.g(gz))(g(g(gy)))$
 - $\lambda g.\lambda y.(g(g(g(g(gy))))))$
- This is equal to $\lambda f.\lambda x.f(f(f(f(fx))))$
 - f applied 5 times to x: 5!
 - So, 2 + 3 = 5...

Yes We Can

- Lambda calculus can encode everything needed to be Turing-complete (not only natural numbers and arithmetic operations)
 - Boolean, conditionals (if ... then ... else), ...
- However, some encodings are everything but simple!
 - $2+3 \equiv$ $(\lambda n.\lambda m.\lambda f.\lambda x.(nf)((mf)x))(\lambda f.\lambda x.f(fx))(\lambda f.\lambda x.f(f(fx))))$
- $\lambda x.x + 2$ is not a valid λ -expression...
 - But $\lambda x.((\lambda n.\lambda m.\lambda f.\lambda x.(nf)((mf)x))x(\lambda f.\lambda x.f(fx))$ is!
 - And it has the same meaning...

A Possible Extension

- Going beyond "pure" lambda calculus, it is possible to use natural numbers, operators, conditionals, and so on...
 - All these things can be implemented using "pure" λ -expressions (only variables, abstractions and applications)
- Things like $\lambda x.(x+2)$ or $\lambda x.if x = 1$ then 0 else ... become valid!
 - Symbols like 2, +, if ... are like macros, that can be replaced with the appropriate encoding...
- "Extended" λ calculus (can be reduced to pure λ calculus by... Replacement!)

- How to encode iteration in λ expressions?
 - Functional paradigm: use recursion!
 - So the question is: how to encode recursion???
- This would need to "name" λx
 - ...But this would require a non-local environment! λ calculus does not have it
- How to implement recursion using abstraction and application only?
- Let's try a stupid example:

int f(int n) {return n == 0 ? 0 : 1 + f(n - 1);}

- Yes, this is really stupid... But is just an example
- It implements the identity function

int f(int n) {return n; }

Functional Programming Techniques

Lambda Calculus

Recursion in λ **Calculus: an Example**

- f = λn.if n == 0 then 0 else 1 + f (n 1)
 "f =" is not a definition, this is an equation...
 - f = G(f)... G(): higher-order function
 - Takes a function as an argument
 - Returns a function as a result
 - Solving the equation, we can find f... But, what does "=" mean?
- How can we solve this equation?
- First, define G by abstracting respect to f:
- $G = \lambda f \cdot \lambda n \cdot \text{if } n == 0 \text{ then } 0 \text{ else } 1 + f (n-1)$
- So, we need to find $h : h \equiv_{\beta} Gh$
 - Applying G to h we obtain something equivalent to h, again (using β-equivalence!)

Functional Programming Techniques

Lambda Calculus

Recursion - Example Continued

- $f = \lambda n. \text{if } n == 0 \text{ then } 0 \text{ else } 1 + f(n-1) \rightarrow \lambda f. \lambda n. \text{if } n == 0 \text{ then } 0 \text{ else } 1 + f(n-1)$
 - See? The Recursion Disappeared!!!
 - The function to be invoked recursively is passed as a parameter!
- Example:

std::function < int (int) > f = [&f](int n) { return n == 0 ? 1 : n * f(n - 1); };

 \Rightarrow

auto $g = [](std::function < int(int) > f, int n){return n==0 ? 1 : n*f(n-1);};$

- We need f1 such that f1 = g f1...
- Notice: [&f] is not needed, here

Functional Programming Techniques

λ, α, β, ... Υ???

- Back to the problem: given a function G, find $f: f \equiv_{\beta} Gf$
 - Here, "=" after some β-reduction on left or right side... β-equivalence!
- This requires to find the *fixed point* (fixpoint) of G...
- How? Y combinator! $Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$
 - Uh??? And WTH is it??? Consider *e* and try to compute *Ye*...

Y!!!

- $Ye = (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))e$
- $\overline{(\lambda x.e(xx))(\lambda x.e(xx))} =_{\alpha} (\overline{\lambda y.e(yy)})(\lambda x.e(xx)) \rightarrow_{\beta}$ • $\rightarrow_{\beta} e(\lambda x.e(xx))(\lambda x.e(xx))$
- But $(\lambda x.e(xx))(\lambda x.e(xx))$ can be the result of a β -reduction...
 - $\lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$ applied to e
- $e(\lambda x.e(xx))(\lambda x.e(xx)) \leftarrow_{\beta}$ $e(\lambda f.(\lambda x.f(xx))(\lambda x.f(xx))e) = e(Ye)$
 - Note: some of the steps did not happen by direct β -reduction! Hence, $Ye \equiv_{\beta} e(Ye)$
- $Ye \equiv_{\beta} e(Ye) \Rightarrow YG \equiv_{\beta} G(YG)$: interpreting " \equiv_{β} " as "=", YG is a fixed point for G!!!

Y... Combinator???

- Y Combinator: $\lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$
- Combinator: λ -expression without free variables
 - $\lambda f...$
 - It is a higher-order function: an argument (G) is a function and the result is a function
 - No free variables: all the symbols are bound through some λ
- Y is an expression λf without free variables \rightarrow it is a combinator!
- It is a special combinator: given a function *f*, it computes its fixed point (fixed point combinator)
 - Y is not the only fixed point combinator... Many other exist!

Functional Program Moftleshiquith β -equivalence

Lambda Calculus

Fixed Point Combinators

- Importance: allows to implement recursion in λ calculus
 - In a programming language, allows to implement recursion without naming a function
 - WTH???
- Y Combinator: works with evaluation by name
 - With evaluation by value (eager), infinite recursion...
- Other fixed point combinators can work with evaluation by value
 - Z Combinator: $\lambda f.((\lambda x.(f(\lambda y.(xx)y)))(\lambda x.(f(\lambda y.(xx)y))))$

H Combinator: $\lambda f.((\lambda x.xx)(\lambda x.(f(\lambda y.(xx)y))))$ ambda Calculus

Functional Programming Techniques

Simplifying Even More

- λ calculus: only few features
 - Variables
 - Function application
 - Abstraction
- Are they all needed? Can we do without some of them?
 - They are all needed if there are not "predefined functions"
 - But if we provide some smart combinators...
 - ...Then we can work without abstractions!!!
- This looks funny... Let's look at some more details!

Combinator Calculi

- Combinator: expression without free variables
- Combinator calculus: based only on variables, some pre-defined combinator, and function application!
 - Multiple different combinator calculi are possible
 - Depending on the pre-defined combinators
- Pre-defined combinators: calculus *basis*
- Appropriate basis: the calculus can be Turing-complete!!!
- How does an "appropriate basis" looks like?
 - SK (or SKI) calculus!

SK Calculus

- Two basic combinators: S and K
 - S: Sxyz = xz(yz)
 - K: Kxy = x
 - Sometimes, the *identity* combinator I is also considered... But I = SKK
- The resulting SK calculus is equivalent to the λ calculus
 - All possible λ -expressions can be encoded as SK expressions
- But it does not use abstractions!
- Used in some esoteric functional programming languages (unlambda, ...)

Lambda and Types

- λ calculus: very low-level programming language
- Expressions are basically untyped (everything is a function)
- Like Assembly (everything is a sequence of bits)
 - \mathcal{E} : set of λ -expressions
 - A function f is a λ -expression $\Rightarrow f \in \mathcal{E}$
 - All functions have the same domain and codomain $\mathcal{E} \Rightarrow \mathcal{E} \rightarrow \mathcal{E} \subset \mathcal{E}$
- This does not compromise the language expressivity... But can cause bugs!.
 - Example: $\lambda x.x + 2$ is not a function $\mathcal{N} \to \mathcal{N}$
 - Can be applied to every function, not only to encodings of natural numbers!

Functional Programming Techniques

Specifying the Types of Functions

- We would like to enforce that $(\lambda a.a + 2) \in \mathcal{N} \to \mathcal{N}...$
- But $\lambda a.a + 2$ really means $\lambda a.(\lambda n.\lambda m.\lambda f.\lambda x.(nf)((mf)x))a(\lambda f.\lambda x.f(fx))...$
- Specifying the type of this function is not easy at all!
- Alternative: let's specify the type of the bound variables
- Yes, but... What is a type?
 - First of all, we need to formally define types

Types

- *P*: set of *base types* (or *primitive types*); *T*: set of all possible types
- A primitive type is a type

•
$$\alpha \in \mathcal{P} \Rightarrow \alpha \in \mathcal{T}$$

• Functions from a type to another have a valid type

•
$$\alpha, \beta \in \mathcal{T} \Rightarrow \alpha \to \beta \in \mathcal{T}$$

- These types can be associated to λ -expressions
 - As usual, consider the three possible types of λ -expression: variable, application and abstraction
 - Variables: the type of a free variable must be known

Associating Types to Expressions

- If E_1 has type $\alpha \to \beta$, $E = E_1 E_2$ is valid only if E_2 has type α
 - As a result, E has type β
- If *E* has type β , then $\lambda x.E$ has type $\alpha \rightarrow \beta$
 - Moreover, x has type α
- For abstractions $\lambda x.E$, explicit typing can also be used: $\lambda x: \alpha.E$ means that x has type α
- Some λ -expressions cannot be correctly typed
 - What's the type of $\lambda x.xx$? If x has type α , then $\lambda x.xx$ has type $\alpha \rightarrow \beta$, where β is the type of xx
 - But, what's the type of xx? If x has type α , then xx has type β and x has type $\alpha \rightarrow \beta$???

The Effect of Types

- So, $\lambda x.xx$ does not type-check...
- It can be proved that the β-reduction of every correctly-typed λ-expression terminates in a finite number of steps
 - No divergent computations / infinite recursion?
 - The typed λ calculus is not Turing-complete!!!
- So, adding a feature (types) reduces the expressive power of the language... Funny!
- The Y combinator also contains an "xx", which does not type-check...
 - Typed λ calculus \rightarrow no recursion???
 - A more complex type system is needed... (recursion in the type system!)

Functional Programming Techniques

Fixed Point Combinators in a Programming Language

- Implementing the Y combinator is possible, but... Not always easy!
- A first issue is with eager evaluation...
 - In this case, a different fixed point combinator must be implemented
- Issues with strict type checking (Y does not type check!)
 - Recursive data types must be used to eliminate recursion from functions
- The details are not simple...