
Monadic Input/Output

Luca Abeni

luca.abeni@santannapisa.it

Lazy Evaluation and I/O

Functional Programming Techniques Monadic I/O

• Lazy evaluation: expressions are evaluated “only
when needed”...

• Consequence: the evaluation order is often
undefined

• Think about “g(f 1(x), f 2(x))”...
• A lazy language does not specify if “f 1(x)” is

evaluated before “f 2(x)” or after it

• What happens with impure functions that do I/O?

• Example: “g(hello(), world())”, where
“hello()” prints “hello” and “world()” prints
“world!”

• What is printed on the screen???

The Core of the I/O Issues

Functional Programming Techniques Monadic I/O

• Every time we do I/O, we need to impose an
ordering between functions...

• ...Otherwise, the program output is not deterministic!

• However, imposing an order in functions execution is
against the lazy execution idea

• How to address this issue?

• I/O cannot be performed in functions!
• So, who performs the I/O???

• In a lazy language, all functions have to be pure!!!
• But to be useful a program needs to perform some

I/O!!!

Functions and Actions

Functional Programming Techniques Monadic I/O

• Impure code (I/O and similar) has to be confined in
specific components

• Remember? We used the main() function in
functional C/C++ programs...

• Up to now, we are using the ghci REPL in
Haskell

• Functions implement the core of the program, and
are pure

• Actions (or effects) encode the “dirty work” (impure)
and are executed by some “non functional engine”

• There is a strict distinction between these two things

Input/Output as a Value

Functional Programming Techniques Monadic I/O

• Algebraic data type “IO a”

• It is a parametric data types
• Depends on the type variable “a”

• Represents an I/O “action” (or “effect”) to be
executed by the non-functional runtime

• A value of type “IO a” (often called “action”; also
known as “computation” or “effect”) has two aspects:

• Represents an “action” that, when executed, can
perform I/O

• Contains a “regular value” of type “a” (the value
actually returned by the I/O operation!)

I/O Actions: Example

Functional Programming Techniques Monadic I/O

• “Something” that reads a character from the
keyboard and returns it...

• ...Cannot be a function (it has side effects!)
• So, what is it? An I/O action: a value of type “IO

Char”

• IO Char because it returns a character (type
“Char”)

getChar : : IO Char

I/O Actions: Another Example

Functional Programming Techniques Monadic I/O

• How to print a character to the screen? Not with a
function (side effects are needed!)

• The character is printed by a specific I/O action

• The type of the I/O action looks strange, because
it is not associated to any returned value...

• Remember the unit type? This is its purpose! So,
the type of the I/O action is “IO ()”

• The I/O action is generated based on the character
to be printed...

• So, we have a function that given the character
produces an I/O action: “Char -> IO ()”

putChar : : Char −> IO ()

Again on I/O Actions

Functional Programming Techniques Monadic I/O

• I/O actions look like a smart trick to hide side effects

• getChar is not a function, but a value encoding
a side effect

• The putChar function does not have any side
effect (does not perform any I/O), but returns a
value that encodes side effects!

• So, all functions are still pure, and the side effects
are all in some kind of runtime that executes the I/O
actions

• Again, compare with a functional program in
C++: side effects can be isolated in the main()

function, leaving the rest of the program purely
functional

Combining I/O Actions

Functional Programming Techniques Monadic I/O

• So, what’s special in using an “IO a” datatype to
encode I/O actions?

• Let’s look at how I/O actions can be combined!

• To have a deterministic output, I/O actions must be
executed using an eager evaluation order

• Or a well-defined order anyway

• This is OK, because actions are not functions...

• ...So, there is no need to lazily evaluate/execute
them!

• Lazyness is only for functions, not for actions!

• So, we need some kind of operator to combine I/O
actions

Combining I/O Actions: the Issue

Functional Programming Techniques Monadic I/O

• Assume we need to read a character and then print
it on the screen

• Something like the imperative

char c = getchar () ;
putchar (c) ;

• How can we do this in a functional way?

• We need something like
“putChar(getChar())”...

• If “getChar” has type “IO Char” and
“putChar” has type “Char -> IO ()”...

• ...We end up with “putChar getChar”, which
does not typecheck!!!

The Issue — Again

Functional Programming Techniques Monadic I/O

• “putChar getChar” is not possible because
“putChar” wants a “Char”, but “getChar” is a “IO
Char”!!!

• Here, the type system is really saving us...
• ...“getChar” does not return a character! Its

“execution” actually returns a character...
• So, passing “getChar” as an argument to

“putChar” is really wrong!

• We need a way to force the execution of the
“getChar” I/O action and pass the result to
“putChar”

• In other words, we need an operator/function that
“extracts” the value of type “Char” from “getChar”

• Spoiler: this function is named “bind

Here Come the Monads

Functional Programming Techniques Monadic I/O

• Instead of inventing random functions/operators, let’s
look at some theory...

• Monad: very scary name (exercize: just try to search
for “monad” on your favourite search engine)

• We can find monads in philosophy (for example,
see Leibniz, ...), mathematics (hyper-real
analysis, category theory, ...), computer science,
science fiction, ...

• So, what is a monad??? Can be a lot of things

• Even a burrito...

• Here, let’s not look at all the complex theoretical
details...

• ...Let’s just consider what’s important in this context!

Why Monads?

Functional Programming Techniques Monadic I/O

• Why talking about monads, here???

• Because they can provide what we need for
combining I/O actions

• Actually, they can provide much more (option
types, computations with a state, exceptions, ...)

• The “relevant monads” for us are the monads from
computer science (related to category theory...)

• Informally, a monad is a type derived from type α

associated to two functions: bind and return
• The bind and return functions must provide some

important properties
• Category theory discusses these properties and

their consequences

Practical Monads

Functional Programming Techniques Monadic I/O

• Monad: algebraic data type “M a”

• Parametric type dependent on type variable “a”
(type α in type theory)

• Two functions “bind” and “return” must exist.

• return has domain “a” and codomain “M a”
• bind is more complex

• it is a curryified function: has domain “M a”
and codomain the set of functions from “a ->

M b” to “M b”

• Using the Haskell syntax:

• return :: a −> M a
• bind :: M a −> (a −> M b) −> M b

Practical Monads: Informal Interpretation

Functional Programming Techniques Monadic I/O

• “return” transforms a value of type “a” into a monadic
value of type “M a”

• “bind” allows to apply a function “a -> M b” to a
monadic value “M a”

• It must somehow extract the “a” value from the
monad, and apply the function to it!

• “M a -> (a -> M b) -> M b” can be seen
as a function with two arguments of type “M a”
and “a -> M b” and a result of type “M b”

• A type “M a” with these 2 functions is a monad if 3
properties hold

• Basically equivalent to commutative and additive
properties

The I/O Monad

Functional Programming Techniques Monadic I/O

• I/O monad: “IO a”

• The “bind” function performs the action encoded
by “IO a, then extracts “a” from this value and
passes it to the function received as a second
argument

• It returns a second I/O action!

• The “return” function just encapsulates a value
in an I/O action (that does not actually perform
any input or output)

• In Haskell, “bind” is the “>>=” operator

I/O Monad Example

Functional Programming Techniques Monadic I/O

• Let’s see the I/O monad in action... In Haskell,

getChar >>= putChar

• Executes the “getChar” action (of type “IO Char”)
• Then, extracts the “Char” value from it...
• ...And passes such a value to “putChar” (a function

“Char -> IO ()” that, given the character, returns
an “IO ()” value)

• When the action returned by “putChar” is executed,
the character is printed to the screen!!!

• So, this allows to easily combine I/O actions
• The whole complex monads theory from category

theory just makes sure that the actions’ combination
is sound!

Haskell: I/O Serialization

Functional Programming Techniques Monadic I/O

• In Haskell, “getChar >>= putChar” evaluates to
an I/O action that reads a character and prints is

• Now, let’s try to read a character and print it twice

getChar >>= (\c -> (putChar c >>= (\x -> putChar c))

• The second bind looks funny

• The return value of “putChar c” is quite useless
(it is of type “IO ()”)...

• ...“\x −> putChar c” discards the “()” value!

• The input of the second λ is only needed to serialize
the output!!!

• This is a strong sign that something is impure...

• This trick is often used to serialize I/O... Haskell even
has a shortcut for this expression!

Haskell: I/O Serialization

Functional Programming Techniques Monadic I/O

• “a >>= (\x −> b)” can be written “a >> b”
• An action that reads a character, prints a CR, and

then prints the character twice is:
getChar >>= (\ c −> (putChar ’\n ’ >>= (\ y −> putChar c >>= (\ x −> putChar c))))

• Haskell also allows to write it as

getChar >>= \c −>
putChar ’\n ’ >>= \y −>
putChar c >>= \x −>
putChar c

or

getChar >>= \c −>
putChar ’\n ’ >>

putChar c >>

putChar c

• It starts to look like an imperative program???

Haskell: More Complex I/O

Functional Programming Techniques Monadic I/O

• We saw that the “bind” function can be used to
sequentially compose I/O actions...

• What is “return” used from?

• We know it can forge monadic values from
non-monadic ones

• Example: read some characters and return a single
“IO a” value containing all of them:

getChar >>= \a −>

getChar >>= \b −>
. . . \x −>
return (a , b , . . . , x)

• The I/O action encoded by “return a” does not
perform any I/O...

Even More Complex I/O

Functional Programming Techniques Monadic I/O

• Read a line of characters (until CR is pressed)
• This is a more complex example, using recursion:

myget = getChar >>= \c −>
i f c == ’\n ’

then
return []

else
myget >>= \ r e s t o f l i n e −>
return (c : r e s t o f l i n e)

• Note: “getLine” can be used for this...
• ...We opencoded it only as an example!

Syntactic Sugar for Monads

Functional Programming Techniques Monadic I/O

• We know that Haskell wants to look like an
imperative language

• Remember how currying is hidden behind an
imperative-like notation?

• Some syntactic sugar can “hide” monads
getChar >>= \c −>
putChar ’\n ’ >>= \y −>

putChar c >>= \x −>
putChar c

can be written as

do {
c <− getChar ;
putChar ’\n ’ ;
putChar c ;

putChar c
}

More about the do Notation

Functional Programming Techniques Monadic I/O

• The “do notation” is just a different syntax for the
monads’ “bind” and “return”

• Again: nothing new... Just syntactic sugar!

• Can be transformed into “regular bind and return” as
follows:

• “do x <− e; s” → “e >>= \ x−> do s”
• “do e; s” → “e >> do s”
• “do e” → “e”

• Notice that “<-” hides a lambda abstraction and a
bind

• This can be seen as similar to the creation of a
binding

• “x <- e” binds the name “x” to value “e”

do Notation and Bindings

Functional Programming Techniques Monadic I/O

• In do notation, “x <- e” can be seen as a binding
• But this is not an assignment!!!

• This “binding”” only modifies the environment;
there is no store function!

• That is, this is valid:

do {
s <− putStr ” What i s your name? ” ;
s <− getLine ;

return s
}

• It will return a value of type “IO String”

• If “<-” was an assignement, this was not valid
because the type of “putStr” is different from
the type of “getLine”

Haskell Programs

Functional Programming Techniques Monadic I/O

• We know how to bind names to values, how to define
functions, how to do I/O...

• We generally test things in a REPL (example:
ghci)

• What are we missing to write a self-contained
program?

• The usual main() function!

• In C-like imperative languages, the entry point of a
program is a function (“int main(int argc,

char *argv[])”, or similar...)
• What about Haskell? Can “main” be a function?

• Uhm... Functions are pure... They do not perform
any I/O...

Haskell and main

Functional Programming Techniques Monadic I/O

• The “main” entry point in Haskell is actually an
action!

• It cannot be a function, because it needs to do
some I/O

• In Haskell, actions are encoded as values of the “IO
a” data type...

• ...So, main is a value of “IO ...”... Which type,
exactly?

• Since main does not return any value, its type is “IO
()” (like “putChar” and friends)

• main is usually a function...

Complete Example

Functional Programming Techniques Monadic I/O

gcd3 a 0 = a
gcd3 a b = gcd3 b (a ‘mod‘ b)

c2 i c = (fromEnum c) − (fromEnum ’ 0 ’)

s2 i 1 [] res = res
s2 i 1 (c : l) res = s2 i 1 l ((c2 i c) + res * 10)
s2 i s = s2 i 1 s 0

main = getLine >>= \s1 −>
getLine >>= \s2 −>
pr in t (gcd3 (s2 i s1) (s2 i s2))

Note: implementing “s2i” is useless (Haskell provides
“read”)

Complete Example

Functional Programming Techniques Monadic I/O

gcd3 a 0 = a
gcd3 a b = gcd3 b (a ‘mod‘ b)

{− Not ice : I implemented ” s2 i ” , but we could use
” read ” (which i s more gener ic) ins tead −}

c2 i c = (fromEnum c) − (fromEnum ’ 0 ’)
s2 i 1 [] res = res
s2 i 1 (c : l) res = s2 i 1 l ((c2 i c) + res * 10)
s2 i s = s2 i 1 s 0

main = do {
s1 <− getLine ;
s2 <− getLine ;
pr in t (gcd3 (s2 i s1) (s2 i s2))

}

	Lazy Evaluation and I/O
	The Core of the I/O Issues
	Functions and Actions
	Input/Output as a Value
	I/O Actions: Example
	I/O Actions: Another Example
	Again on I/O Actions
	Combining I/O Actions
	Combining I/O Actions: the Issue
	The Issue — Again
	Here Come the Monads
	Why Monads?
	Practical Monads
	Practical Monads: Informal Interpretation
	The I/O Monad
	I/O Monad Example
	Haskell: I/O Serialization
	Haskell: I/O Serialization
	Haskell: More Complex I/O
	Even More Complex I/O
	Syntactic Sugar for Monads
	More about the do Notation
	do Notation and Bindings
	Haskell Programs
	Haskell and main
	Complete Example
	Complete Example

