Recursion

Luca Abeni
luca.abeni@santannapisa.it



Execution as Evaluation

Functional program: composition of pure functions
e Recursion is used instead of iteration

“Executed” by evaluating the expressions obtained
from the functions
Usual example: factorial

unsigned int fact(unsigned int n)

1

return n == 0 ? 1: n » fact(n - 1);

}
e Note the “arithmetic if” (p 7 a : b)

fact (4) =7

Functional Programming Techniques Recursion



(4) = ... n==071: n~+ fact(n - 1)”,
replacing “n” with “4”
(4)
» S0, 2 different replacements: replace “fact” with its
definition, and then replace “n” with “4”

fact(4) = (4 == 0) 2?2 1 : 4 % fact(3) =
4 x fact (3) =

4 x ((3 == 0) 2?2 1 3 x fact(2)) =

4 « 3 * fact(2) =

4 x 3 x ((2 == 0) 2 1 2 * Tfact(l)) =
4 x 3 * 2 * fact(l) =

4 x 3 % 2 x ((1==0) 2 1 lxfact (0)) =
4 %« 3 % 2 %« 1 % 1 = 24

Functional Programming Techniques Recursion



What About the Stack?

Function invocation — activation record (stack
frame) allocated on the stack...

With recursion, this can be interesting!

fact (4): new stack frame containing:

The formal parameter n = 4
e Link to previous stack frames
e Some space for the return value

fact(4)<

Functional Programming Techniques Recursion



Stack Frame - 2

4 x fact (3)

fact(4)<

fact(3)<

Functional Programming Techniques Recursion



Stack Frame - 3

4 x 3 x fact (2)

\I

fact(4)<

v

fact(3)<

fact(2)<

e

v
- - -
I I I
N L =

Functional Programming Techniques Recursion



Stack Frame - 4

4 x 3 = 2 x fact(l)

fact(4)<

fact(3)<

fact(2)<

fact(1)<

Functional Programming Techni

\I

v

v
- - -
I I I
N L =

~
-

Il
—

s

Recursion



Stack Frame -

4 x 3 x 2 = 1 x fact (0)

fact(4)<

fact(3)<

fact(2)<

fact(1)<

fact(rO){
Functional Programming Techin

S

\I

v

v

- - -
I I I
N L =

~
-

Il
—

Recursion



Summing Up...

When fact (0) Is evaluated, the previous stack
frames contain the numbers to be multiplied...
These stack frames are removed one after the other
when the fact () instances return, and the
multiplications are performed

When fact (n - 1) returns, fact (n) still needs
to perform a multiplication by n

e It cannot immediately return!

The stack frames are hence needed until the
corresponding fact () instance returns, and

e Recursion = high stack usage!
Possible

Functional Programming Techniques Recursion



Recursion and Stack Usage

|s stack usage the price to be paid for using
recursion?
Let’s consider this factorial implementation:

unsighed int factl (unsigned int n,
unsighed int res)

{
return n == 0 ? res : facti(n - 1, n « res);
}
unsighed int fact(unsigned int n)
{
return facti(n, 1);
}

What's the second formal parameter???

Functional Programming Techniques Recursion



fact (4) =
factl (4, 1)
(4 == 0) 2
factl (3, 4)
(3 == 0) °?
factl (2, 12)
(2 == 0) 2 12 : factl(l, 2 = 12) =
factl (1, 24) = factl (0, 1 = 24) = 24

|

factl (3, 4 = 1) =

AN

factl (2, 3 x 4) =

Functional Programming Techniques Recursion



Stack Frames, Again

No operations to be performed when factl (n-1,
. ) returns...

The stack frame of fact (n-1, ...) already

contains the data to return!

\I

-
[l
N

fact1(4, 1)<

ﬁ
D
(0p)
Il
—h

v

-
Il
W

fact1(3, 12} IR

s

Functional Programming Techni Recursion



Stack Frames

fact1(4, 1)<

fact1(3, 4)

fact1(2, 12)<

fact1(1, 24)<

-2

n=4,res=1

>
n=3,res=4

v

=2,res =12

v

=1, res = 24

v

fact1(0, 24)1

Functional Programming Techn

=0 res = 24

Recursion



So...

When fact1 (0, ...) Isevaluated, data from

previous stack frames is not reused...

Stack frames are removed when the fact1l ()

Instances return, without having to execute

additional operations

When factl(n - 1, ...) returns, factl (n,
.) returns its value directly

e factl(n - 1, ...) canimmediately returnto
the factl (n, ...) caller!

Hence, stack frames can be removed from the stack
when recursion is invoked (before the function
returns)

e Recursion = no additional stack usage

Functionaﬁ’rogmwag recrnnmgues . Recursion



	Execution as Evaluation
	Example of Evaluation
	What About the Stack?
	Stack Frame - 2
	Stack Frame - 3
	Stack Frame - 4
	Stack Frame - 5
	Summing Up...
	Recursion and Stack Usage
	Evaluation
	Stack Frames, Again
	Stack Frames - 2
	So...

