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Function and... Spices???
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• How are functions (in particular, pure functions)
related to spices???

• In no way... Here, “Curry” is not a spice
• Let’s see...

• What are we going to talk about?

• Functions. Functions having multiple formal
parameters

• λ calculus only considers functions with a single
argument ⇒ some functional programming
languages allow to define single-argument
functions

• How to implement a function like f(a, b) = a2+ b2?



An Example
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• Multivariable functions: let’s try to understand them
• Function “sum2” implementing f(x, y) = x2 + y2

• From a matemathical point of view, f : N 2 → N

• It can be implemented as a function with a couple of
integers as its single argument:

int sum2(std::pair<int, int> v)
{

return v.first * v.first + v.second * v.second;
}

• Can we do this without using structured data types
as formal parameters?

• No “std::pair<>” or similar, only scalar types!



From the Mathematical Point of View
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• Functions like f : N 2 → N requires structured data
types (a tuple, in this case) for the parameter

• Alternative: we need two arguments, but we can
have only one... Let’s return a function that receives
the second argument!

• Instead of having (x, y) as an argument and
returning x2 + y2, let’s have x as an argument and
return a function that receives y as an argument
and returns x2 + y2!

• The function is now N → (N → N )
• Simple, no?



Currying
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• Currying: generic technique used to transform a
multivariable function in a “chain of functions” with a
single argument

• Comes from Haskell Curry (mathematician), not
from Masala Curry (spice)...

• Currying transforms f(x, y) : A× B → C into
fc(x) = C(f) : A → (B → C) (often written
A → B → C)...

• ...So that (fc(x))(y) = f(x, y)
• Note: “fc(x)” is a function of y... We can have

g = fc(x), with g(y) = f(x, y)!

• This also works with more than 2 arguments



Mathematically Speaking...
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• Since Haskell Curry was a mathematician...

• ...Let’s try to formalize the currying mechanism
from a mathematical point of view!

• Set F of functions f : D → C: F = CD (set of subsets
of D × C)

• For two-variables functions, D = A× B:
f(x, y) : A× B → C... F = CA×B

• Instead of f : A× B → C we can use
f : A → (B → C)

• Set Fc of functions from A to functions from B to C:
Fc = (CB)A

• Currying can be seen as a mapping from F a Fc

(which ensures that the final result is preserved)



Mapping Functions to Curried Functions
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• Currying as a mapping / mathematical function

• From the set F of functions f(x, y) : A× B → C

• To the set Fc of functions fc(x) : A → (B → C)

curry : CA×B → (CB)A

• Fundamental importance: we can consider only
functions with a single scalar argument!

• Ok, the return type is not scalar... :)



Practical Currying
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• Some programming languages (example: ML) allow
to define only functions with a single argument...

• ...The currying mechanism shows that this is not
a limitation!

• And functions with multiple arguments can be
encoded using currying

• We will see that this also happens with “λ”
• Simple example in Standard ML

• (fn x => fn y => x * x + y * y) a b =
((fn x => fn y => x * x + y * y) a) b

• First, the “fn x” thing is applied to “a”, then the
resulting function is applied to “b”!

• Can we do this in C++, too?



Currying in C++
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int sum2(std::pair<int, int> v)
{

return v.first * v.first + v.second * v.second;
}

becomes
std::function<int(int)> sum2_c(int a)
{

return [a](int b) {
return a * a + b * b;

};
}

which can be invoked as “f_c(a)(b)”



Currying: not in C!
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int (* sum2_c(int a))(int)
{

int s(int b) {
return a + b;

};

return s;
}

• OK, nested functions are a non-standard GNU
extension...

• But, can you see other issues?

• Hint: sum2 c here returns a function pointer, not
a closure...



Exercizes
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• Using C++ lambdas, write the curried form of:

• The factorial function, with tail recursion
• The GCD computation function
• The function solving the problem of the Towers of

Hanoi

• Look at the “derivative” and “compute derivative”
examples again, and think again about differences
and similiarities between the two functions
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