Functional Programming: Spicing it Up

Luca Abeni
luca.abeni@santannapisa.it

Function and... Spices???

How are functions (in particular, pure functions) related to spices???

- In no way... Here, "Curry" is not a spice
- Let's see...
- What are we going to talk about?
- Functions. Functions having multiple formal parameters
- λ calculus only considers functions with a single argument \Rightarrow some functional programming languages allow to define single-argument functions
- How to implement a function like $f(a, b)=a^{2}+b^{2}$?

An Example

Multivariable functions: let's try to understand them Function "sum2" implementing $f(x, y)=x^{2}+y^{2}$ From a matemathical point of view, $f: \mathcal{N}^{2} \rightarrow \mathcal{N}$ It can be implemented as a function with a couple of integers as its single argument:

```
int sum2(std::pair<int, int> v)
{
    return v.first * v.first + v.second * v.second;
```

\}

Can we do this without using structured data types as formal parameters?

- No "std: : pair<>" or similar, only scalar types!

From the Mathematical Point of View

- Functions like $f: \mathcal{N}^{2} \rightarrow \mathcal{N}$ requires structured data types (a tuple, in this case) for the parameter Alternative: we need two arguments, but we can have only one... Let's return a function that receives the second argument!
- Instead of having (x, y) as an argument and returning $x^{2}+y^{2}$, let's have x as an argument and return a function that receives y as an argument and returns $x^{2}+y^{2}$!
- The function is now $\mathcal{N} \rightarrow(\mathcal{N} \rightarrow \mathcal{N})$
- Simple, no?

Currying

- Currying: generic technique used to transform a multivariable function in a "chain of functions" with a single argument
- Comes from Haskell Curry (mathematician), not from Masala Curry (spice)...
Currying transforms $f(x, y): \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}$ into $f_{c}(x)=C(f): \mathcal{A} \rightarrow(\mathcal{B} \rightarrow \mathcal{C})$ (often written $\mathcal{A} \rightarrow \mathcal{B} \rightarrow \mathcal{C}) \ldots$
- ...So that $\left(f_{c}(x)\right)(y)=f(x, y)$
- Note: " $f_{c}(x)$ " is a function of y... We can have

$$
g=f_{c}(x), \text { with } g(y)=f(x, y)!
$$

This also works with more than 2 arguments

Mathematically Speaking...

- Since Haskell Curry was a mathematician...
- ...Let's try to formalize the currying mechanism from a mathematical point of view!
- Set F of functions $f: \mathcal{D} \rightarrow \mathcal{C}: \mathcal{F}=\mathcal{C}^{\mathcal{D}}$ (set of subsets of $\mathcal{D} \times \mathcal{C}$)
For two-variables functions, $\mathcal{D}=\mathcal{A} \times \mathcal{B}$:
$f(x, y): \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C} \ldots \mathcal{F}=\mathcal{C}^{\mathcal{A} \times \mathcal{B}}$
- Instead of $f: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}$ we can use

$$
f: \mathcal{A} \rightarrow(\mathcal{B} \rightarrow \mathcal{C})
$$

Set \mathcal{F}_{c} of functions from \mathcal{A} to functions from \mathcal{B} to \mathcal{C} : $\mathcal{F}_{c}=\left(\mathcal{C}^{\mathcal{B}}\right)^{\mathcal{A}}$

- Currying can be seen as a mapping from \mathcal{F} a \mathcal{F}_{c} (which ensures that the final result is preserved)

Mapping Functions to Curried Functions

Currying as a mapping / mathematical function

- From the set \mathcal{F} of functions $f(x, y): \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}$
- To the set \mathcal{F}_{c} of functions $f_{c}(x): \mathcal{A} \rightarrow(\mathcal{B} \rightarrow \mathcal{C})$

$$
\text { curry }: \mathcal{C}^{\mathcal{A} \times \mathcal{B}} \rightarrow\left(\mathcal{C}^{\mathcal{B}}\right)^{\mathcal{A}}
$$

Fundamental importance: we can consider only functions with a single scalar argument!

- Ok, the return type is not scalar... :)

Practical Currying

- Some programming languages (example: ML) allow to define only functions with a single argument...
- ...The currying mechanism shows that this is not a limitation!
- And functions with multiple arguments can be encoded using currying
- We will see that this also happens with " λ " Simple example in Standard ML
- (fn $x=>\operatorname{fn} y \Rightarrow x * x+y * y) a b=$ ((fn $x=>\operatorname{fn} y=>x+x+y+y) a) b$
- First, the "fn x " thing is applied to "a", then the resulting function is applied to "b"!
- Can we do this in C++, too?

Currying in C++

```
int sum2(std::pair<int, int> v)
        return v.first * v.first + v.second * v.second;
}
becomes
std::function<int(int)> sum2_c(int a)
{
        return [a](int b)
        return a * a + b * b;
    };
}
which can be invoked as "f_c (a) (b)"
```


Currying: not in C!

```
int (* sum2_c(int a)) (int)
{
    int s(int b) {
        return a + b;
    } ;
    return s;
}
```

OK, nested functions are a non-standard GNU extension...
But, can you see other issues?

- Hint: sum2_c here returns a function pointer, not a closure...

Exercizes

- Using C++ lambdas, write the curried form of:
- The factorial function, with tail recursion
- The GCD computation function
- The function solving the problem of the Towers of Hanoi

Look at the "derivative" and "compute derivative" examples again, and think again about differences and similiarities between the two functions

