
Functional Programming:

Spicing it Up

Luca Abeni

luca.abeni@santannapisa.it



Function and... Spices???

Functional Programming Techniques Functions and Spices

• How are functions (in particular, pure functions)
related to spices???

• In no way... Here, “Curry” is not a spice
• Let’s see...

• What are we going to talk about?

• Functions. Functions having multiple formal
parameters

• λ calculus only considers functions with a single
argument ⇒ some functional programming
languages allow to define single-argument
functions

• How to implement a function like f(a, b) = a2+ b2?



An Example

Functional Programming Techniques Functions and Spices

• Multivariable functions: let’s try to understand them
• Function “sum2” implementing f(x, y) = x2 + y2

• From a matemathical point of view, f : N 2 → N

• It can be implemented as a function with a couple of
integers as its single argument:

int sum2(std::pair<int, int> v)
{

return v.first * v.first + v.second * v.second;
}

• Can we do this without using structured data types
as formal parameters?

• No “std::pair<>” or similar, only scalar types!



From the Mathematical Point of View

Functional Programming Techniques Functions and Spices

• Functions like f : N 2 → N requires structured data
types (a tuple, in this case) for the parameter

• Alternative: we need two arguments, but we can
have only one... Let’s return a function that receives
the second argument!

• Instead of having (x, y) as an argument and
returning x2 + y2, let’s have x as an argument and
return a function that receives y as an argument
and returns x2 + y2!

• The function is now N → (N → N )
• Simple, no?



Currying

Functional Programming Techniques Functions and Spices

• Currying: generic technique used to transform a
multivariable function in a “chain of functions” with a
single argument

• Comes from Haskell Curry (mathematician), not
from Masala Curry (spice)...

• Currying transforms f(x, y) : A× B → C into
fc(x) = C(f) : A → (B → C) (often written
A → B → C)...

• ...So that (fc(x))(y) = f(x, y)
• Note: “fc(x)” is a function of y... We can have

g = fc(x), with g(y) = f(x, y)!

• This also works with more than 2 arguments



Mathematically Speaking...

Functional Programming Techniques Functions and Spices

• Since Haskell Curry was a mathematician...

• ...Let’s try to formalize the currying mechanism
from a mathematical point of view!

• Set F of functions f : D → C: F = CD (set of subsets
of D × C)

• For two-variables functions, D = A× B:
f(x, y) : A× B → C... F = CA×B

• Instead of f : A× B → C we can use
f : A → (B → C)

• Set Fc of functions from A to functions from B to C:
Fc = (CB)A

• Currying can be seen as a mapping from F a Fc

(which ensures that the final result is preserved)



Mapping Functions to Curried Functions

Functional Programming Techniques Functions and Spices

• Currying as a mapping / mathematical function

• From the set F of functions f(x, y) : A× B → C

• To the set Fc of functions fc(x) : A → (B → C)

curry : CA×B → (CB)A

• Fundamental importance: we can consider only
functions with a single scalar argument!

• Ok, the return type is not scalar... :)



Practical Currying

Functional Programming Techniques Functions and Spices

• Some programming languages (example: ML) allow
to define only functions with a single argument...

• ...The currying mechanism shows that this is not
a limitation!

• And functions with multiple arguments can be
encoded using currying

• We will see that this also happens with “λ”
• Simple example in Standard ML

• (fn x => fn y => x * x + y * y) a b =
((fn x => fn y => x * x + y * y) a) b

• First, the “fn x” thing is applied to “a”, then the
resulting function is applied to “b”!

• Can we do this in C++, too?



Currying in C++

Functional Programming Techniques Functions and Spices

int sum2(std::pair<int, int> v)
{

return v.first * v.first + v.second * v.second;
}

becomes
std::function<int(int)> sum2_c(int a)
{

return [a](int b) {
return a * a + b * b;

};
}

which can be invoked as “f_c(a)(b)”



Currying: not in C!

Functional Programming Techniques Functions and Spices

int (* sum2_c(int a))(int)
{

int s(int b) {
return a + b;

};

return s;
}

• OK, nested functions are a non-standard GNU
extension...

• But, can you see other issues?

• Hint: sum2 c here returns a function pointer, not
a closure...



Exercizes

Functional Programming Techniques Functions and Spices

• Using C++ lambdas, write the curried form of:

• The factorial function, with tail recursion
• The GCD computation function
• The function solving the problem of the Towers of

Hanoi

• Look at the “derivative” and “compute derivative”
examples again, and think again about differences
and similiarities between the two functions


	Function and... Spices???
	An Example
	From the Mathematical Point of View
	Currying
	Mathematically Speaking...
	Mapping Functions to Curried Functions
	Practical Currying
	Currying in C++
	Currying: not in C!
	Exercizes

