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Chapter 1

For Imperative Programmers

1.1 Programming Styles and Paradigms

Functional programming is a programming style (or paradigm); although some programming languages
help in using this programming style (or even force the programmer to use it), it is possible to develop
programs using the functional programming paradigm independently from the used programming lan-
guage (it is even possible to use a programming languages that are traditionally considered imperative,
like the C programming language).

To better understand what functional programming really is (and how to use this programming style),
consider Euclide’s algorithm to compute the great common divisor (gcd) of two natural numbers. This
algorithm is something like: “given two natural numbers a and b, if b = 0 then return a; otherwise, assign
the value of b to a, assign a%b (reminder of the division a/b) to b, and restart from beginning”.

A simple implementation of this algorithm using an imperative programming paradigm can be ob-
tained by simply “traslating” the algorithm to a computer programming language. As an example,
Figure 1.1 shows the algorithm’s translation into the C programming language. This program is a se-
quence of instructions (actions) operating on values stored in memory or I/O devices (some kind of
mutable shared state) and directly maps to the architecture of a modern computer (which is based on an
evolution of the so-called “Von Neumann architecture”).

Looking at the code, it is immediately possible to understand that it correctly implements the al-
gorithm mentioned above, but it is not immediately possible to understand why this function correctly
computes the gcd of the two aruments (in other words, why does the Eclide algorithm work? Can we
prove that it correctly computes the gcd?). The behaviour of the algorithm can be more or less formally
explained as follows:

• The greatest common divisor between a and 0 is a, because 0 can be divided by any number, with
reminder 0

• The greatest common divisor between a and b 6= 0 is equal to the maximum common divisor between
b and a%b (this can be proved by induction)

From the mathematical point of view, this can be written as

gcd(a, b) =

{
a if b = 0
gcd(b, a % b) otherwise

and this equation can result in a new implementation of the gcd function, as shown in Figure 1.2. This
implementation is however not structured, because it has an entry point and 2 different exit points (there
are 2 return statements). This “issue” can be addressed by using the so-called “arithmetic if”, as shown
in Figure 1.3.

Comparing Figure 1.1 (called “imperative implementation”) with Figure 1.3 (called “functional im-
plementation”), some important differences can be immediately noticed:

• While the imperative implementation executes modifying the values stored in some local variables
“a”, “b”, and “tmp”, the functional implementation does not change the value stored in any variable
(that is, it does not use the assignment operator “=”)

• While the imperative implementation uses a “while(b != 0)” loop, the functional implementation
uses recursion (using the “b == 0” condition to stop recursion / as an inductive base)

5
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unsigned int gcd (unsigned int a , unsigned int b)
{

while (b != 0) {
unsigned int tmp ;

tmp = b ;
b = a % b ;
a = tmp ;

}

return a ;
}

Figure 1.1: Euclide’s algorithm implemented in C.

unsigned int gcd (unsigned int a , unsigned int b)
{

i f (b == 0) {
return a ;

}

return gcd (b , a % b ) ;
}

Figure 1.2: Euclide’s algorithm implemented through recursion.

unsigned int gcd (unsigned int a , unsigned int b)
{

return (b == 0) ? a : gcd (b , a % b ) ;
}

Figure 1.3: Purely functional implementation of the Euclide’s algorithm.

The second property of the functional implementation (using recursion instead of iteration) is a con-
sequence of the first one (not changing the values stored in variables): a “while” loop is based on a
predicate (“b != 0”, in this case) which is evaluated (repeating the execution of the loop at every evalu-
ation) until it becomes false. The truth value of such a predicate depends on the values stored in one or
more variables (variable “b”, in this case); if such values do not change, predicate will be always true or
always false, making the “while()” loop useless (the loop will repeat forever, or will never be executed).
For this reason, if variables are immutable the iteration constructs like while() and similar cannot be
used.

A functional implementation of an algorithm is based on pure functions, which are mathematical
functions (relations f ⊂ D × C between a set D called domain and a set C called codomain, associating
at most an element of the codomain to each element of the domain). These functions are characterized
by the absence of side effects. More formally, f(x) = y means (x, y) ∈ f and indicates that:

• function f always associates the same value y ∈ C to value x ∈ D

• computing y from x is the only effect of the function

Since modifying the value stored in a variable is a side effect of the assignment operator “=”, pure
functions cannot use assignment operators. Hence, the functional programming paradigm does
not allow to use mutable variables. As just explained, the first consequence of this requirement is
that loops cannot be used and are replaced by recursive invocations. All the commands having side effects
cannot be used (only expressions without side effects are used), and programs are not executed modifying
some mutable state, but evaluating expressions. For this reason, the traditional “if” selection command
(which selects the alternative execution of two different commands) is not used, but the arithmetic if
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int f ( int v )
{

stat ic int acc ;

acc = acc + 1 ;

return v + acc ;
}

Figure 1.4: Example of non-pure function, having a side effect.

expression (the “... ? ... : ... construct of the C language) is used instead. This expression
evaluates to one of two different expressions depending on the truth value of a predicate. A noticeable
consequence of using arithmetic if expressions (and not selection commands) is that the “else” branch
must always be present.

Multiple evaluations of the same expression (or multiple invocations of the same pure function) must
always generate the same result. This property looks intuitive and natural for mathematical functions, but
it is not respected by functions having side effects. As an example, look at Figure 1.4: some consecutive
invocations f (2); f (2); f (2); will generate different results (2, 3 e 4). To understand why this can be an
issue, consider the expression (f(2) + 1) ∗ (f(2) + 5): if the invocation of f(2) on the left is evaluated
first, the result of the expression is (2 + 1) ∗ (3 + 5) = 24, otherwise it is (3 + 1) ∗ (2 + 5) = 28.

1.2 Recursion and Iteration

While the basic constructs of imperative programming are (according to the structured approach) the
command sequence, the selection command (conditional execution, if) and the loop (for example, while),
the basics constructs of functional programming are function invocation, the arithmetic if expression, and
recursion.

In particular, the functional equivalent of a loop (iteration) is recursive function invocation (recursion):
every imperative algorithm that requires a (finite or infinite) cycle, when coded according to the functional
paradigm results in a recursion (again, finite or infinite).

The recursion technique (closely related to the mathematical concept of induction) is used in computer
science to define some kind of “entity”1 based on itself. Focusing on recursive functions, a function f() is
defined by expressing the value of f(n) as a function of other values computed by f() (typically, f(n−1)).

In general, recursive definitions are given “by case”, ie they are composed of several clauses. One of
these is the so-called basis (also called inductive basis); then there are one or more clauses or inductive
steps which allow to generate / calculate new values starting from existing values. The basis is a clause
of the recursive definition that does not refer to the “entity” being defined (for example: the greatest
common divisor of a and 0 is a, etc...) and stops the recursion: without an inductive basis, the function
evaluation results in an infinite recursion.

Basically, a function f : N → X can be defined by defining a function g : N × X → X , a value
f(0) = a and imposing that f(n+1) = g(n, f(n)). More in detail, a function can be defined by recursion
when its domain is the set of natural numbers (or a countable set); the codomain can instead be a generic
set X . The inductive basis defines the value of the function for the smallest value belonging to the domain
(for example, f(0) = a, with a ∈ X ), while the inductive step defines the value of f(n+ 1) based on the
value of f(n). As mentioned earlier, this can be done by defining f(n+ 1) = g(n, f(n))). Note that the
domain of g() is the set of pairs containing an element fo the domain and an element of the codomain of
f(), while the codomain of g() is equal to the codomain of f().

The typical example of recursive function is the factorial function, shown in Figure 1.5. A more
functional version (because it uses only expressions, and not commands) of the factorial is instead shown
in Figure 1.6

This example can be useful to see that the execution of a program written according to the functional
paradigm can be seen as a sequence of “simplifications” or “substitutions” (technically, reductions) similar
to the ones used to evaluate an arithmetic expression. For example, consider the computation of fact(4).
The definition of the fact() function has been defined modifies the environment by introducing a binding

1The term “entity” is used here informally to generically refer to functions, sets, values, data types, ...
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unsigned int f a c t (unsigned int n)
{

i f (n == 0) {
return 1 ;

}

return n ∗ f a c t (n − 1 ) ;
}

Figure 1.5: Recursive implementation of the factorial function.

unsigned int f a c t (unsigned int n)
{

return (n == 0) ? 1 : n ∗ f a c t (n − 1 ) ;
}

Figure 1.6: Functional implementation of the factorial function.

between the name “fact” and a denotable entity (the body of the factorial function). To evaluate the
expression “fact(4)” it is therefore possible to search the environment for such a binding and replace
“fact” with its definition, using ‘ ‘4” (actual parameter) instead of the formal parameter “n”: fact(4)
→ (4 == 0) ? 1 : 4 ∗ fact(4 − 1) → 4 ∗ fact(3) where the first step replaces the name “fact” with
the function body (according to the binding found in the environment) and replaces the name of the
formal parameter “n” with the value of the actual parameter “4”. The second step evaluates “4 == 0”;
since this boolean predicate is false (4 6= 0), the second expression “4 ∗ fattoriale (4 − 1)” is evaluated.
Moreover, since 4− 1 = 3 “fact(4 - 1) is replaced by “fact(3)”. At this point, the reduction process
can start again, searching again for a binding for “fact” in the environment and performing the same
replacements as above: 4 ∗ fact(3) → 4 ∗ ((3 == 0) ? 1 : 3 ∗ fact(3 − 1)) → 4 ∗ (3 ∗ fact (2)).

Repeating this process again, we get: 4 ∗ (3 ∗ fact (2)) → 4 ∗ (3 ∗ ((2 == 0) ? 1 : 2 ∗ fact(2 − 1)))
→

→ 4 ∗ (3 ∗ (2 ∗ fact (1))) → 4 ∗ (3 ∗ (2 ∗ ((1 == 0) ? 1 : 1 ∗ fact(1 − 1)))) →
→ 4 ∗ (3 ∗ (2 ∗ (1 ∗ fact (0)))) →
→ 4 ∗ (3 ∗ (2 ∗ (1 ∗ ((0 == 0) ? 1 : 0 ∗ fact(0 − 1))))) →
→ 4 ∗ (3 ∗ (2 ∗ (1 ∗ 1))) = 24.

From a logical point of view the computation of the factorial only required to:

1. search in the environment (to apply a function to its actual parameters, you need to find the binding
between the function name and its body in the environment)

2. replace some text (the application of a function to its arguments is obtained by replacing the formal
parameters with the actual parameters in the body of the function found in item 1)

3. compute arithmetic operations (this includes both “simple” arithmetic operations such as products
and subtractions as well as evaluating arithmetic ifs)

This example shows that according to the functional paradigm the a program is executed by reduction,
i.e. by textual replacement of expressions and sub-expressions: a function applied to an argument is
replaced by the body of the function and the formal parameter is replaced by the actual parameter.
Conceptually, this reduction process does not require the execution of assembly instructions or programs,
but only manipulations of text strings.

Clearly, this concept of computation as reduction is applicable only to pure functions (functions
without side effects): if fact() had side effects (such as the modification of global variables, or similar)
it would not be possible to replace “ factorial (4)” with “4 ∗ factorial (3)” (because the function’s side
effects would be lost). This is why the absence of side effects is (as already anticipated) a fundamental
requirement for the functional programming paradigm. Eliminating mutable variables is an easy way
to eliminate a whole large class of side effects (the side effects due to I/O remain, but these cannot be
eliminated without rendering the program useless).
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The functional programming paradigm, which has been presented in these pages as an alternative
to the “traditional” imperative paradigm, has the same expressive power as the imperative paradigm
(i.e.: any algorithm that can be codified using an imperative approach can also be implemented using
the functional approach). Readers more accustomed to the imperative approach may object that “giving
up” modifiable variables and iteration seems to complicate program development and that consequently
the functional approach may appear a bit unnatural. Actually this is more a problem of getting used
to and once you understand the logic of functional programming, developing programs according to this
approach will be easier. Furthermore, some problems are more easily solved using recursion and are not
exactly simple to solve using a purely imperative approach. For example, consider the problem of the
“Towers of Hanoi”.

The problem consists in moving a tower composed of N disks (of decreasing size) from a peg to a
different one, using a third “spare” (or “support”) peg for the movements. The rules of the game state
that only one disc can be moved at a time and that a larger disc cannot be placed on top of a smaller
one. While developing a non-recursive solution to the problem is not very simple (and requires the use
of complex data structures), a recursive solution is trivial. In practice, the problem of moving N disks
from peg a to peg b (using peg c as spare/support) can be decomposed ias:

• Move N − 1 disks from peg a to peg c

• Move remaining (largest) disk from peg a to peg b

• Move the N − 1 disks from peg c to peg b

Now, while the second step of the algorithm (moving a disk from a peg to another) is simple, the first and
third steps require moving N − 1 disks and are not directly implementable. But if we know how to move
N disks, we can (recursively!) use the same algorithm to move N − 1 disks (and this will require moving
N −2 disks, then one disk and then N −2 disks again). And this recursion can be invoked multiple times
(to be exact, N − 1 times) until the problem is reduced to moving one single disk.

Figure 1.7 shows a simple implementation of this algorithm using the C language. In this case the
condition for terminating the recursion (inductive basis) corresponds to moving one single disk (as in the
algorithm described above). An alternative implementation could have used the condition “n == 0” (no
disks to move) as an inductive basis, resulting in the move() function shown in Figure 1.8.

An important consideration to make about the proposed code is that although it uses recursion it is
not yet implemented according to a purely functional approach: the move() function uses a sequence of
commands (move( ) and move disk() have no return value) and only works thanks to the side effects of
these commands (printing to the screen via printf()). To implement move() as a pure function, these
side effects have to be removed (i.e., eliminate the call to printf() from move disk(), adding a return
value to move() and move disk()). The simplest solution is to make move() and move disk() return a
string containing their output (in other words, the sequence of moves must not be printed to the screen
via printf(), but saved in the return value of the function). A possible implementation (unfortunately
not very readable due to the syntax of the C language) is shown in Figure 1.9.

In this solution, the utility function concat() receives two strings (in C, array of characters) in input
and returns a string containing (as the name suggests) the concatenation of the two. There are a few
important things to note:

• Using the functional notation for concat() (instead of an infix operator, as in other languages)
reduces the readability of the code. However, the reader should not be confused by long chains
“concat(concat(concat(...)))”, which do nothing but concatenate long sequences of strings

• The move() and move disk() functions are now pure functions, as they don’t have side effects

• All the side effects are now in the main() function, which performs I/O... It is clear that if the
program has to communicate with the external environment then some I/O (which is a side effect)
is needed; a program can therefore never be “purely functional”, but will tend to concentrate
all side effects in specific points (in this case, the main() function; in functional languages, the
Read-Evaluate-Print loop or some runtime support)

• Confirming the fact that they are pure functions, move() and move disk() do not modify the
contents of variables (they do not use assignments, or other commands, but are composed only of
expressions)
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#include <un i s td . h>
#include <s t d l i b . h>
#include <s t d i o . h>
#include <s t r i n g . h>

void move disk ( const char ∗ from , const char ∗ to )
{

p r i n t f ( ”Move a d i sk from %s to %s \n” , from , to ) ;
}

void move(unsigned int n , const char ∗ from , const char ∗ to , const char ∗ v ia )
{

i f (n == 1) {
move disk ( from , to ) ;

return ;
}

move(n − 1 , from , via , to ) ;
move disk ( from , to ) ;
move(n − 1 , via , to , from ) ;

}

int main ( int argc , char ∗argv [ ] )
{

unsigned int he ight = 0 ;

i f ( argc > 1) {
he ight = a t o i ( argv [ 1 ] ) ;

}
i f ( he ight <= 0) {

he ight = 8 ;
}

move( height , ” Le f t ” , ”Right” , ”Center ” ) ;

return 0 ;
}

Figure 1.7: Solution to the problem of the Towers of Hanoi.

void move(unsigned int n , const char ∗ from , const char ∗ to , const char ∗ v ia )
{

i f (n == 0) {
return ;

}

move(n − 1 , from , via , to ) ;
move disk ( from , to ) ;
move(n − 1 , via , to , from ) ;

}

Figure 1.8: Alternative solution.

• The most expert readers might have noticed that the program has memory leaks: concat() dy-
namically allocates memory for the returned string, but that memory is never freed. This fact is a
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const char ∗ concat ( const char ∗a , const char ∗b)
{

char ∗ r e s ;

r e s = mal loc ( s t r l e n ( a ) + s t r l e n (b) + 1 ) ;
memcpy( res , a , s t r l e n ( a ) ) ;
memcpy( r e s + s t r l e n ( a ) , b , s t r l e n (b ) ) ;
r e s [ s t r l e n ( a ) + s t r l e n (b ) ] = 0 ;

return r e s ;
}

const char ∗move disk ( const char ∗ from , const char ∗ to )
{

return concat ( concat ( concat ( concat ( ”Move d i sk from ” , from ) ,
” to ” ) , to ) , ”\n” ) ;

}

const char ∗move( int n , const char ∗ from , const char ∗ to , const char ∗ v ia )
{

return (n == 1) ?
move disk ( from , to )

:
concat ( concat (move(n − 1 , from , via , to ) ,

move disk ( from , to ) ) , move(n − 1 , via , to , from ) ) ;
}

Figure 1.9: Functional solution to the problem of the Towers of Hanoi.

consequence of the previous item (the content of the strings is never modified, but the concatenation
of two strings occurs by dynamically allocating memory for the result string) and shows how the
functional programming paradigm requires a garbage collector (which is in fact always included in
abstract machines that implement functional programming languages)

Most of the drawbasks of the code shown in Figure 1.9 are not due to the functional programming
style, but are a consequence of the C programming language syntax (for example, the C language has
no real strings, but only array of characters). Figure 1.10 shows a re-implementation in C++ (which is
similar to C, but provides a more advanced support for strings). From the figure it can be seen that this
code is much more readable and looks more natural.

1.3 Recursion and Stack

As seen, to evaluate an expression by substitution/reduction it is not conceptually necessary to introduce
the concepts of invocation of subroutines, stacks, activation records and the like. On the other hand,
if the abstract machine that executes the program (or, evaluates the expression) is implemented on a
hardware architecture based on the Von Neumann model (like all modern PCs) it will use the subroutine
call mechanism (Assembly instruction call on Intel architectures, etc...) to invoke the execution of a
function.

Returning to the previous example (factorial function), every time the fact() function invokes itself
a new activation record (or stack frame) is pushed to the stack, increasing its size (this also applies to
generic - non recursivo - invocations of other functions). Each recursive invocation of the function will
add an activation record (containing the actual parameter with which fact() was invoked, some links to
previous stack frames, and some space to store the return value) on the stack. Hence, invoking “fact(4)”
results in the situation shown in Figure 1.11.

Since “fact(3)” will also be recursively invoked, the stack evolves as shown in Figure 1.12, growing
at each recursive invocation. This means that computing the factorial of a large enough number n will
require a large amount of memory. Note that the activation record corresponding to “fact(n)” cannot
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#include <c s t d l i b>
#include <iostream>
#include <s t r i ng>

std : : s t r i n g move disk ( std : : s t r i n g from , std : : s t r i n g to )
{

return ”Move d i sk from ” + from + ” to ” + to + ”\n” ;
}

std : : s t r i n g move( int n , std : : s t r i n g from , std : : s t r i n g to , s td : : s t r i n g v ia )
{

return (n == 1) ?
move disk ( from , to )

:
move(n − 1 , from , via , to ) +

move disk ( from , to ) + move(n − 1 , via , to , from ) ;
}

int main ( int argc , char ∗argv [ ] )
{

int he ight = 0 ;
std : : s t r i n g r e s ;

i f ( argc > 1) {
he ight = a t o i ( argv [ 1 ] ) ;

}
i f ( he ight <= 0) {

he ight = 8 ;
}

r e s = move( height , ” Le f t ” , ”Right” , ”Center ” ) ;

s td : : cout << r e s ;

return 0 ;
}

Figure 1.10: Functional solution to the “Towers of Hanoi” problem written in C++.

...

n = 4

...

fact(4)

...

Figure 1.11: Stack frame for the invocation fact(4).

be removed from the stack until “fact(n - 1)” returns, because it contains the value “n” by which the
result of “fact(n - 1)” must be multiplied. Basically, when “fac(0)” is evaluated, the previous stack
frames contain all the numbers to be multiplied; as the various instances of fact() return, their stack
frames are removed from the stack one after the other (after using the value of “n” contained in the stack
frames). The various stack frames are then needed until the related “fact” instance finishes, and they
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...

n = 4

...

fact(4)

n = 3

...
fact(3)

...

4 * fact(3)

...

n = 4

...

fact(4)

n = 3

...
fact(3)

n = 2

...
fact(2)

...

4 * 3 * fact(2)

...

n = 4

...

fact(4)

n = 3

...
fact(3)

n = 2

...
fact(2)

n = 1

...
fact(1)

...

4 * 3 * 2 * fact(1)

...

n = 4

...

fact(4)

n = 3

...
fact(3)

n = 2

...
fact(2)

n = 1

...
fact(1)

...fact(0)

...

4 * 3 * 2 * 1 * fact(0)

Figure 1.12: Evolution of the stack when fact(4) is invoked.
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/∗ Try 24635743 . . . ∗/

unsigned int even (unsigned int n ) ;
unsigned int odd (unsigned int n)
{

i f (n == 0) return 0 ;
return even (n − 1 ) ;

}

unsigned int even (unsigned int n)
{

i f (n == 0) return 1 ;
return odd (n − 1 ) ;

}

Figure 1.13: Example of mutual recursion to test if a number is even or odd.

unsigned int f a c t t r (unsigned int n , unsigned int r e s )
{

return (n == 0) ? r e s : f a c t t r (n − 1 , n ∗ r e s ) ;
}

unsigned int f a c t (unsigned int n)
{

return f a c t t r (n , 1 ) ;
}

Figure 1.14: Tail recursive version of the factorial function.

cannot be removed from the stack before that.

This problem seems to compromise the real usability of functional programming techniques, since long
chains of recursive calls would lead to excessive memory consumption (while long iterations generally have
low and constant memory consumption). As another example, look at Figure 1.13, that presents two
function to test if a number is even or odd in a funny (mutually recursive) way. The proposed solution
uses a mutual recursion between the even() and odd() functions, based on the idea that 0 is even,
1 is odd (inductive bases) and every number n > 1 is even if n − 1 is odd or is odd if n − 1 is even
(inductive step). By looking at the code it is immediately possible to realize that calling even() or
odd() on large numbers could end up in a stack overflow. In fact, the program is compiled with gcc

evenorodd.c and tested for small numbers, everything seems to work... But when trying big enough
numbers (for example 24635743, as suggested in the comment) a segmentation fault is generated due
to stack overflow. However, if the program is compiled with gcc -O2 evenorodd.c, it works correctly
with any input number! This happens because of the so-called “tail call optimization” (enabled by the
“-O2” switch of tt gcc), which allows, under appropriate hypotheses, to replace function invocations with
simple jumps (thus transforming recursion into iteration).

To better understand how this optimization works, let’s consider the “tail recursive” version of the
factorial, shown in Figure 1.14. Intuitively, the fact tr() function uses a second argument to “accumu-
late” the result: multiplication by “n” occurs before the recursive call (to compute the value of the second
actual parameter) and not after. This means that the “n” value will not be needed when the recursive
call returns and it is hence not necessary to save it... The expression “fact(4)” is evaluated as follows:
fact(4) → fact tr (4, 1) → (4 == 0) ? 1 : fact tr (4 − 1, 4 ∗ 1) →

→ fact tr (3, 4) → (3 == 0) ? 4 : fact tr (3 − 1, 3 ∗ 4) →

→ fact tr (2, 12) → (2 == 0) ? 12 : fact tr (2 − 1, 2 ∗ 12) →

→ fact tr (1, 24) → (1 == 0) ? 24 : fact tr (1 − 1, 1 ∗ 24) →

→ fact tr (0, 24) → (0 == 0) ? 24 : fact tr (0 − 1, 0 ∗ 24) → 24

The key observation here is that when “fact tr(0, 24)” returns, “fact tr(1, 24)” can immediately
return the result of fact tr(0, 24)... The same holds for “fact tr(2, 12)”, “fact tr(3, 4)” and “
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...

n = 4

res = 1

...

fact tr(4, 1)

n = 3

res = 4

...

fact tr(3, 4)

...

fact tr(3, 4 * 1)

...

n = 4

res = 1

...

fact tr(4, 1)

n = 3

res = 4

...

fact tr(3, 4)

n = 2

res = 12

...

fact tr(2, 12)

...

fact tr(2, 3 * 4 * 1)

...

n = 3

res = 4

...

fact tr(3, 4)

n = 2

res = 12

...

fact tr(2, 12)

n = 1

res = 24

...

fact tr(1, 24)

...

fact tr(1, 2 * 3 * 4 * 1)

...

n = 2

res = 12

...

fact tr(2, 12)

n = 1

res = 24

...

fact tr(1, 24)

n = 0

res = 24

...

fact tr(0, 24)

...

fact tr(0, 1 * 2 * 3 * 4 * 1)

Figure 1.15: Evolution of the stack for the invocation offact(4).
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f a c t t r :
movl %es i , %eax
test l %edi , %ed i
je . L2
subq $8 , %rsp
imu l l %edi , %e s i
subl $1 , %ed i
ca l l f a c t t r
addq $8 , %rsp

. L2 :
ret

Figure 1.16: Tail-call factorial compiled without optimizations.

f a t t o r i a l e t r :
movl %es i , %eax
test l %edi , %ed i
je . L2
imu l l %edi , %e s i
subl $1 , %ed i
jmp f a c t t r

. L2 :
ret

Figure 1.17: Tail-call factorial compiled with optimizations.

fact tr(4, 1)” (everyone of these functions can immediately return the value returned by its recursive
invocation). Thus, activation records containing the value of “n”, the return value and the return address
are no longer needed: “fact tr(0, 24)” can directly return the result 24 to the original caller “fact(4)”,
without passing through “fact tr(1, 24)”, “fact tr(2, 12)”, etc... Figure 1.15 shows the details of
the stack evolution resulting from the invocation of “fact(4)”, clarifying even more that during the
execution of an instance of fact tr() the activation records corresponding to the previous instances
contain data that will not be used anymore (and is therefore unnecessary / useless!!!). Basically, when
“fact tr(0, 24)” is evaluated, all the data necessary for the calculation are contained in the current
parameters and the activation records of “fact tr (1, 24)”...“fact tr(4, 1)” that are on the stack are
not accessed. Such activation records are removed from the stack one after the other (when the various
instances of fact tr() return) without having to do any further operations on them: when “fact tr(n

- 1, ...)” terminates, “fact tr(n, ...)” directly returns its return value, without performing any
further operations on it. This means that when the recursive call returns, each instance of fact tr()

can terminate immediately, passing the return value received from the recursive call directly to its caller.
The various stack frames can then be removed from the stack at recursion time (before the associated
function terminates), effectively turning a recursive call into a simple jump.

This optimization is possible whenever a function returns as return value the result obtained by calling
another function (basically, “return otherfunction(...)”). In practice, statements like “return f(n);”
are not compiled as invocations to the subroutine f(), but as jumps to the body of that function. This
allows you to implement recursion without causing excessive stack consumption, making it feasible to use
the functional programming paradigm (provided you write code that uses tail calls).

To understand how tail call optimization works in practice, consider the x86 64 assembly code gener-
ated by gcc -O1 when compiling the function fact tr() of Figure 1.14. This code is shown in Figure 1.16.

The first instruction (movl) copies the second argument (contained in the %esi register) into the
%eax register (which will be used for the return value); the second instruction (testl) checks whether
the first argument (contained in the register %edi) is 0: in this case, it immediately jumps to the exit
of the function (label .L2) returning the value contained in %eax (into which the second argument was
just copied). If, instead, the first argument is > 0, the function multiplies the second argument by
the first and then invokes itself recursively (the statements subq and addq applied to %rsp are required
due to Intel 64-bit ABI calling conventions). Note that upon return from the recursive call (statement
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int sum( int a , int b)
{

return a + b ;
}

Figure 1.18: C function summing 2 integers.

int (∗ sum c ( int a ) ) ( int b)
{

int s ( int b) {
return a + b ;

}

return s ;
}

Figure 1.19: Attempt at curryifying the sum2() function (Figur2 1.18) using the C language.

following the call) no further statements are executed and the function terminates immediately. So,
it is possible to avoid pushing successive useless return addresses onto the stack (when an instance of
fact tr() returns, all previous instances will return immediately, one after the other, without executing
Assembly instructions between various “ret”). This can be done simply by eliminating the instructions
that manipulate the stack (register %rsp) and replacing the call fact tr with a jmp fact tr, as shown
in Figure 1.17.

1.4 Functions and Spices

In mathematical analysis, we are used to functions f : D → C which map one or more elements of the
domain D into at most an element of the codomain C. In practice, f is a relation (subset f ⊂ D×C of the
pairs having the first element in D and the second element in C) with (x1, y1) ∈ f∧(x1, y2) ∈ f ⇒ y1 = y2.
If f has more than one argument, the domain D is represented as a cartesian product of other sets: for
example, a function from pairs of real numbers to real numbers will be f : R×R → R2.

From a computer science point of view, we are instead used to considering multi-argument functions in
which each argument is represented by a formal parameter. For example, “int f(int a, float x, unsigned int z)”
is a function that takes three arguments: the first one is an integer number, the second one represents the
approximation of a real number and the third one is a positive integer number (that is, a natural num-
ber). This C function can hence be considered equivalent to f : Z ×R×N → Z. In some programming
languages it is possible to use a tuple (a structured type) to group all arguments and better represent
values belonging to Z ×R×N .

Several mathematicians showed that any function with multiple arguments can be represented using
multiple functions with one single argument. For example, using the so-called currying3 a function with n
arguments can be represented as a “chain” of functions having one argument. The “trick” to obtain this
result is that each function of this “chain” returns a function (and not a “simple value”). For example,
a function f : R×R → R can be represented as f : R → (R rightarrowR).

This fact has some important consequences, both theoretical and practical. The first theoretical
consequence is that a mathematical formalism (such as for example the λ-calculus) which considers only
functions having a single argument can be perfectly generic, provided that these functions can return
functions and accept functions as arguments (such functions are often called higher-order functions). The
second consequence, which has many practical implications, is therefore the introduction of higher order
functions, i.e. functions that can manipulate other functions (as parameters or as return value). For this
reason, in functional programming languages there is uniformity between code and data, in the sense
that functions are values that can be stored into variables and expressed4.

2typically, advanced analysis courses consider functions f : Rn
→ calRm).

3Note that the name of this technique comes from Haskell Curry, not a spice!
4Remember that a value can be stored when it can be assigned to a variable and is expressible when it can be generated

as a result of an expression.
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int main ( )
{

int (∗ f ) ( int b ) ;

f = sum c ( 3 ) ;

p r i n t f ( ”3 + 2 = %d\n” , f ( 2 ) ) ;

return 0 ;
}

Figure 1.20: Using function sum2 c() (Figure 1.19).

int main ( )
{

int (∗ f 1 ) ( int b ) ;
int (∗ f 2 ) ( int b ) ;

f 1 = sum c ( 3 ) ;
f 2 = sum c ( 4 ) ;

p r i n t f ( ”3 + 2 = %d\n” , f 1 ( 2 ) ) ;
p r i n t f ( ”4 + 2 = %d\n” , f 2 ( 2 ) ) ;

return 0
}

Figure 1.21: Issue with the “sum c()” function of Figur3 1.19.

Notice that from a computer scientist’s point of view the currying technique can requires the usage of
functions that return functions (and not “simple” function pointers) as a return value. This fact makes
it impossible, for example, to use currying in programming languages such as C. To understand this,
consider the “sum()” function shown in Figure 1.18 and try to generate its “curryified form”. Such a
function should receive an integer a as input and generate as a result a function that given an integer b
adds a to b. Using a small extension to the C language implemented by gcc, which allows you to nest
function definitions, you could think about coding this function as in Figure 1.19. Ignoring the strange
syntax of the C language that makes the code difficult to read/understand (and the fact that a definition
of s() is nested inside the definition of sum c(), which is not allowed by the standard C language), this
code implements a function sum c which takes a formal parameter a of type int and returns a pointer
to a function that takes a formal parameter of type int and returns a value of type int. The function
is then usable as shown in Figure 1.20, where f is a variable of type “pointer to function from integer to
integer”.

Although gcc can compile this code (which even appears to work correctly in some cases), there is a
major conceptual error: sum c() returns a pointer to the s() function which uses a non-local variable a

(here, “non-local” refers to the environment of “s()”). This variable is the actual parameter of sum c(),
which is stored on the stack during the sum c() lifetime... But it is removed when from the stack sum c()

returns! The invocation f(2) will therefore access some memory that has been freed (and potentially
re-used), generating undefined behavior. Although some simple tests may work correctly, the example of
Figure 1.21 will show all the limits of the previously proposed solution.

The problem can only be solved by making the sum c() function return a real function (also includ-
ing its non-local environment!) and not simply a function pointer. Technically, this solution can be
implemented using a closure, i.e. an “(environment, pointer to function)” pair where the environment
will contain the binding between the name “ tt a” and a variable which is not allocated on the stack,
but in some other memory structure. The typical solution is to allocate such variables in the heap; this
clearly creates the risk of memory leaks (which are not encountered with the “traditional” allocation
of activation records on the stack) and makes it necessary to implement a garbage collector (when the
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int−>int sum c ( int a )
{

int s ( int b) {
return a + b ;

}

return s ;
}

Figure 1.22: Correct Currying of the sum() function (Figur2 1.18) using a pseudo-language similar to C.

double compute der ivat ive (double (∗ f ) (double x ) , double x )
{

const double de l t a = 0 . 0 0 1 ;

return ( f ( x ) − f ( x − de l t a ) ) / de l t a ;
}

Figure 1.23: Computation of the value of the derivative of function f() in a point x, in C.

double−>double d e r i v a t i v e (double f (double x ) )
{

double f 1 (double x )
{

const double de l t a = 0 . 0 0 1 ;

return ( f ( x ) − f ( x − de l t a ) ) / de l t a ;
}

return f 1 ;
}

Figure 1.24: Computing the derivative of a function.

closure is no longer used, the activation record allocated on the heap can be deallocated). On the other
hand, we have already seen how the functional programming paradigm requires to use garbage collectors.

Using a syntax like “<type1> -> <type2>” to represent the type of a function that takes an argument
of type “<type1>” and returns a result of type “ <type2>”, the correct solution to the above problem
(encode the “currified form” of the “sum()” function of Figure 1.18) is shown in Figure 1.22. In general, a
function the curryified form of a function“type3 f(type1 a, type2 b)” is “ em type2->type3 fc(type1a)”,
with f(a,b) = (fc(a))(b) (mathematically, f(a, b) → f ′(a) = fa : fa(b) = f(a, b)).

In summary, multi-argument functions and single-argument higher-order functions have the same
expressive power; many functional programming languages (providing higher order functions) are limited
to only one formal argument/parameter per function. ML and Haskell adopt this approach: even if there
is a simplified syntax that allows defining functions as if they had multiple arguments (for example, using
the fun keyword in Standard ML) this is then converted by the abstract machine into the definition
of the “curryified” function. For example, in Standard ML fun f p1 p2 p3 ... = exp; is equivalent to
val rec f = fn p1 => fn p2 => fn p3 . . . => exp;.

Maybe the concept of currying can be better understood by looking at the following example. Consider
the implementation of a compute derivative() function which (as the name suggests) computes an
approximation of the derivative of a given function at a specified point. The function therefore receives
as arguments a function f : R → R (or, a pointer to it) and a real value x ∈ R in which to calculate the
derivative of f , returning an approximation d ∈ R of the value of the derivative of f in point x. A simple
implementation of compute derivative() in the C programming language is shown in Figure 1.23.

Now, try to implement a derivative() function which returns the derivative function instead of
calculating its value in a point x. The derivative() function thus receives a function f : R → R as



20 CHAPTER 1. FOR IMPERATIVE PROGRAMMERS

#include <iostream>
#include <f unc t i ona l>

double f (double x )
{

return x ∗ x + 2 ∗ x + 1 ;
}

std : : funct ion<double (double)> d e r i v a t i v e ( std : : funct ion<double (double)> f )
{

return [ f ] ( double x ) {
const double ep s i l o n = 0 . 0001 ;

return ( f ( x + ep s i l o n ) − f ( x ) ) / ep s i l o n ;
} ;

}

int main ( )
{

double x = 2 ;
std : : funct ion<double (double)> f 1 ;

s td : : cout << ” f ’ ( ” << x << ” ) = ” << ( d e r i v a t i v e ( f ) ) ( x ) << std : : endl ;

f 1 = de r i v a t i v e ( f ) ;
s td : : cout << ” f ’ ( ” << x << ” ) = ” << f 1 ( x ) << std : : endl ;

return 0 ;
}

Figure 1.25: Derivative of a function in C++.

an argument and returns a function f ′ : R → R. Since the return value must be a function (including
its non-local environment) and not a simple function pointer, derivative() cannot be implemented
in C (see previous example with sum()). Using a language similar to C but supporting higher order
functions (with the syntax described previously), it can be implemented as shown in Figure 1.24. The
smartest readers will surely have noticed that derivative() is nothing more than the “curryified” form
of compute derivative()5!

As another example, Figure 1.25 shows the implementation of the derivative() function in C++
(using functional extensions provided by C++11, such as lambda expressions). From the code, you can
see some interesting things. First of all, the “std::function” class provided by the C++ language
(starting from the C++11 standard) allows you to use a simpler and more intuitive syntax than that
of function pointers of C. Furthermore, such a class does not simply store a function pointer, but a
complete closure (composed of the function and its non-local environment); this closure will store (within
the object of class “std::function”) the values of “f”. Finally, it should be noted that the “[f](double
x)” syntax allows you to define an anonymous function, which is stored (together with its environment)
in the value returned by “derivative()” (this construct is called “lamba function”, for reasons that will
become clear as you read in the next sections).

1.5 Functional Programming Languages

As discussed, the functional programming paradigm is characterized by the absence of the mutable
variables (to eliminate the side effects associated with them), the consequent use of recursion instead
of iteration and the fact that programs are composed of expressions and not of commands (which have
side effects). An important consequence of the lack of side effects is the possibility to execute programs

5Trying to re-implementing the two functions with any functional language, this becomes even more evident
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using some replacement / reduction mechanism instead of modifying the state of the abstract machine.
Moreover, expressions and functions are expressible and storable entities, leading to another interesting
feature of functional programming: the presence of higher order functions (functions that can operate
on other functions, receiving functions as arguments and generating functions as results). Higher-order
functions become even necessary if the number of possible arguments for a function is limited to one (and
the currying technique is used to implement multi-argument functions).

Although this programming style can also be used with “more traditional” languages, some program-
ming languages, called functional programming languages,that try to favor (or even force) its use. The
fundamental characteristic of this class of programming languages is therefore the attempt to minimize
side effects: although some functional programming languages include the concept of mutable variable,
they can also be used without making use of this construct; some functional languages (such as Haskell),
then, do not really foresee the existence of mutable variables. Such languages are called pure functional
programming languages. A fundamental feature of functional languages is the possibility of treating code
and data in a homogeneous way (in addition to the traditional data types there is the “function type”,
there are higher order functions, etc...).

The specific syntax and/or semantics of the various functional programming languages are not dis-
cussed here, but for these details, please refer to specific documents.

In functional languages, therefore, there is an environment that contains bindings between names and
values (of scalar, structured, or function types). Some bindings are created when a function is invoked
(binding between formal parameter and expression passed as actual parameter), but it is often useful
(although not strictly necessary) to also have an environment which is not local to any function. Hence,
every high-level functional programming language provides some way to map names to values in a global
environment. A functional language thus provides:

• A type system, which is a set of predefined types, a set of operators to build valid expressions with
values of such types, and a set of rules to assign a type to each valid value and to verify if an
expression si correctly typed;

• Some way to define functions: an abstraction mechanism that given an expression abstracts it with
respect to the value of a formal parameter. This mechanism is often implemented as an operator
returing a (anonymous) function as a result;

• A “function application” mechanism, used to build valid expressions based on existing values,
operators, and on functions defined through abstraction;

• Some mechanism to associate names to values in a global environment (define in scheme, val in
Standard ML, “= ” in Haskell, etc...)

• Depending on the type system used by the language, some mechanisms can be provided to define
new data types based on the existing ones.

The mechanisms and the syntax used by a programming language to implement these items result in
different functional programming languages, with different features and abstractions. For example, the
type system used by the language can vary, performing more or less strict checks at runtime (as for example
in Lisp, scheme and similar languages) or at build time (as for example in Haskell, Standard ML, but also
C++). More dynamic (and less “strict”) type systems increase the possibility of programming errors (by
failing to identify some class of type errors) and introduce overhead (performing some checks at runtime
instead of build time). On the other hand, languages with dynamic and relaxed type systems look more
flexible and powerful (for example, implementing a Y combinator in Lisp or scheme is much more easier
than implementing it in Haskell, Standard ML or C++).

As far as defining functions is concerned, some readers will probably be more accustomed to the ap-
proach followed by many imperative programming languages, which generally provide a single mechanism
that simultaneously specifies the function body and creates a link in the environment between the body
of the function and its name. However, the most common functional programming languages make a
distinction between two different mechanisms: abstraction, which generates a function-type value without
assigning it a name (a so-called “anonymous function” — consider as an example lambda expressions in
C++) and a second mechanism which allows to modify the environment (even the global environment)
by associating a name to a generic value (which can be a function or something else). As an important
consequence, when the body of a function is defined this function is not yet associated with a name. This
can clearly create some issues when trying to define a recursive function, as we will see better in the
future when talking about λ calculus.
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Finally, a fundamental aspect of functional programming languages is (clearly) function invocation.
Although it may seem simple and natural to us, it deserves a minimum of discussion: for example, looking
at the definition of a “fact(unsigned int n)” function such as “(n == 0) ? 1 : n ∗ fact(n − 1)”, it is
natural to think that “fact(4)” is evaluated as

(4 == 0) ? 1 : 4 ∗ fact(4 − 1) → 4 ∗ fact(3) → ...
by immediately computing 4 − 1 = 3. However, this is not the only possible way to evaluate the

function: a valid alternative could be
(4 == 0) ? 1 : 4 ∗ fact(4 − 1) → 4 ∗ fact(4 − 1) →
→ 4 ∗ ((4 − 1 == 0) ? 1 : (4 − 1) ∗ fact(4 − 1 − 1)) →
→ 4 ∗ ((4 − 1) ∗ fattoriale (4 − 1 − 1)) → ...
by computing the results of the various arithmetic operations only when strictly needed (when the

results are actually used).
A functional programming language must therefore clearly specify how and when to evaluate expres-

sions. Different evaluation strategies are possible, and the most famous are:

• eager evaluation strategies: when a function f is applied to an expression e the expression is
evaluated (reducing it to an irreducible value) before invoking the function

• lazy evaluation strategies: when a function f is applied to an expression e the function is called
without first trying to reduce its actual argument (thus passing an unevaluated expression and not
an irreducible value).

Note how the first strategy substantially coincides with passing parameters by value (each actual
parameter is evaluated to an irreducible value before invoking the function), while the second strategy
coincides with passing parameters by name (a thunk is passed as an actual argument to the function —
remember that a thunk is an expression with no local variables, which is not evaluated before actually
being used).

Generally, pure functional languages (like Haskell) tend to favor lazy evaluations, while non-pure
functional languages (functional programming languages with side effects, like ML, Scheme, etc...) are
forced to use eager evaluation strategies. To understand why, consider a language with mutable variables
(and therefore “not too functional”) and a function bad bad function() defined as

void bad bad funct ion (void )
{

x++;
}

where “x” is a global variable. If “x” is initialized to 0 when the program starts, what is the value
stored into this variable after invoking some function(bad bad function(), bad bad function())? If a lazy
evaluation strategy is used, it is not possible to answer this question, because the answers depends on how
many times “some function()” evaluates its arguments. If an eager evaluation strategy is used, instead,
the answer is “2”, because “bad bad function()” is evaluated one time for each actual argument.

Although the previous example essentially concerns a non-problem (functional programming lan-
guages shouldn’t implement mutable variables), I/O operations represent much more real and serious
problems. In fact, any input or output operation is a side effect and in the presence of lazy evalua-
tion risks to introduce non-determinisms in the behavior of the program (which would be the output
of some function(bad bad function(), bad bad function( )) if bad bad function() printed something on
the screen?). Pure functional languages can address this problem by modeling I/O functions as functions
that take an entity “world” as input and output a modified version of that “world”. Or can introduce
I/O functions that return descriptions of “I/O operations” to be performed by a non-purely-functional
engine, without using lazy evaluation (I/O functions are lazily evaluated, but I/O operations are not).
Languages based on lazy evaluation then provide various types of mechanisms for serializing the execution
of I/O operations, in order to make the program’s interactions with the outside world deterministic. As
an example, the serialization of the execution of two functions f1() and f2() is implemented by making
f2() be invoked by receiving the output of tt f1() (the “world” entity, for example). Since handling
I/O in this waycan lead to complex and unintuitive notations, some languages such as Haskell provide
a simplified syntax for these mechanisms, inspired to the syntax of imperative languages (to do this,
Haskell uses complex mathematical tools such as category theory monads).

The practical effects of using different evaluation strategies are visible, for example, trying to im-
plement the Y combinator (an implementation of Y in Haskell is possible, while an implementation in
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Standard ML or Scheme will result in infinite recursion and will require to implement a different combi-
nator, such as Z).

It can be proved that if both lazy and eager evaluation mechanisms reduce an expression to a value,
then the value obtained by lazy evaluation and the one obtained by eager evaluation are the same (for
this, see the Church-Rosser theorem). Furthermore, if lazy evaluation leads to infinite recursion then
eager evaluation also leads to infinite recursion (but on the other hand there are situations where eager
evaluation leads to infinite recursion while lazy evaluation allows to reduce the expression to a value -
again, see Y combinator).

1.6 Computation as Reduction

Based on the mechanisms just described, a program written according to the functional programming
paradigm can be “executed” through reduction, implemented by repeating 2 operations:

• Search for names in the environment (and text replacement of a name with the corresponding
functional value - represented as an abstraction)

• Application of functions (text replacement of formal parameter with actual parameter)

A functional program is therefore represented as a set of definitions and environment modification op-
erations (creation of bindings) which may require the evaluation of expressions to be processed. The
computation of this program will be carried out by the abstract machine through a series of text replace-
ments / reductions which will lead to simplification until we arrive at simple forms that cannot be further
reduced (called values).

To simplify the usage of functional programming techniques, other constructs are often provided
(although they are not strictly necessary). Examples are:

• A way to modify the environment (usually, the let construct);

• A mechanism similar to the fixed point operator fix, which allows you to define recursive functions;

• Some constructs which constitute “syntactic sugar” to define multi-argument functions (hiding the
use of currying), etc...

Regarding the construct (usually called let) used to modify the environment in which an expression
is evaluated, note that this construct is not strictly necessary because it can be implemented via function
call and parameter passing. For example, consider a generic construct “let x = e1 in e2” (where “x ” is
a generic name while “e1” and “e2” are two expressions) which binds the name “x” to the expression ‘
‘e1” when evaluating “e2”. This can be implemented by defining a function f() with formal parameter
“x” and body “e2” and invoking this function with actual parameter “e1”6. Even better, you can use an
anonymous function: using Standard ML syntax “let x = e1 in e2” becomes “(fn x => e2) e1”.

The construct equivalent to the fixed point operator fix is instead very useful for simplifying the
definition of recursive functions: as previously mentioned (and as it will become clearer by studying the
λ calculus), without this mechanism the definition of recursive functions would not be simple: the name
of a function cannot be used in its definition, because it is not yet bound to any value in the global
environment. To define recursive functions it would be necessary to implement a fixed point combinator
(like Y or Z) and apply this operator to the “closed version” of the function to be defined. This mechanism
(called val rec or fun in Standard ML, letrec in Scheme, etc...) instead allows you to use recursion
directly.

In languages that use more powerful type systems a pattern matching mechanism is often provided
to manipulate values of user-defined types (for example, distinguishing the various variants of a type,
etc...).

1.7 A Minimal Functional Language

To conclude, the most curious readers might wonder how the simplest possible functional programming
language looks like. Such a minimal language does not contain “high-level” features which are useful for

6This trick of replacing a variable with a formal parameter and its value with the actual parameter is often used to
reimplement imperative code using the functional paradigm.
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making the code more readable, but are not strictly necessary. In other words, what can be obtained
by removing from a functional programming language all the features that are not essential for Turing-
completeness, such as

• the presence of a global environment (which, as mentioned, simplifies the definition of recursive
functions, but is not strictly necessary)

• a strong type system with “strict typing” and more complex data types (which increase the read-
ability of the code but are not essential: notice how even in the imperative programming paradigm
the Assembly language only uses binary values and does not define any other data type)

• the various constructs that represent “syntactic sugar”.

What remains is a language in which programs are (pure!) expressions composed of:

1. variable names (irreducible terms)

2. function definitions (abstraction)

3. applications of functions

For names, the simplest and most minimal choice is to use single lowercase letters, even if sometimes
identifiers composed of several characters are used.

Regarding function applications, programmers who are familiar with languages of the C family (C,
C++, Java, ...) use “f(x)” to represent the application of the “f” function to the “x” actual parameter
(remember that for simplicity we can only consider functions with one argument). The parentheses
around the actual parameter are useless though, so you might as well use the “f x” syntax, which is
often preferred. If function application is left-associative, the composition g ◦ f of the functions f and
g can then be represented as “g (f x)” instead of “g(f(x))”. The syntax “g f x is instead equivalent
to “(g(f))(x)” (and this, as you will see, makes the currying syntax more natural). Some languages of
the LISP family instead expect parentheses around the function application instead of around the actual
parameter (“(f x)” instead of “f(x)”); in this case, g ◦ f becomes “(g (f x))”.

Finally, the language must provide some mechanism for constructing expressions that are evaluated
to functions (allowing to somehow “define” a function starting from an expression “e” and a formal
parameter “ x”). Regardless of the syntax that the language uses, this construct abstracts the expression
“e” from the specific value of the formal parameter “x”; must therefore contain some language-specific
keyword (which can be the Greek letter λ, the symbol “\”, the word “fn”, a sequence of square, parenthe-
ses and curly brackets, or other), the name of the formal parameter and the expression to be abstracted.
Examples could be “λx.e”, “\x -> e”, “fn x => e”, “[]( auto x) { e }”, “(lambda (x) (e))” or
similar...

Not having strict typing, this “minimal language” knows only generic “functions” that operate on
expressions (they take another generic function as an argument and generate a generic function as a
result), without precisely specifiying the domain and codomain of the functions (these sets coincide with
the set of expressions that make up the language). The language resulting when the “λx.e” syntax is used
for abstraction is name λ calculus. Surprisingly enough, such a language is still Turing complete: it is
possible to encode natural numbers, booleans and other values using only functions, and it is possible to
use various types of fixed point combinators to implement recursive functions even if no global environment
is provided by the language. For this reason, λ calculus is often considered as a kind of “Assembly of
functional programming languages”.



Chapter 2

First Meeting with the Lambda

Calculus

The λ calculus is a formalism (or, if we prefer to see it from a CS point of view, a programming language)
which allows us to define the fundamental concepts of functional programming: functions, definition of
functions and application of functions.

If we see λ calculus as a programming language, we can notice how it introduces the basic mechanisms
needed to write functional programs without introducing the abstractions that characterize higher-level
functional programming languages. Thus, λ calculus can be seen as the FP version of the Assembly
language. It is interesting, however, to note that even lower-level functional languages exist, because
they introduce even fewer abstractions (for example, we will see that the function definition construct
can be omitted).

From a different point of view, the λ calculus can be seen as the theoretical foundation for functional
programming, as it can be proved to be turing-complete. This result has a remarkable importance, because
it means that the functional programming paradigm allows to implement any computable algorithm (ie:
it has the same expressive power as the imperative programming paradigm).

Summing up, the basic elements of λ calculus are just names, the concept of abstraction (definition
of functions), and function application. Therefore, higher-level concepts such as data types, global en-
vironment, and the like do not exist. Since there are no different types of data, the basic elements of
the λ calculation are generic “functions”, which receive another function as an argument and generate
a function as a result. The domain and codomain of these functions are generic expressions (better,
λ-expressions) and are not explicitly specified.

We will see that there is a typed version of the λ calculus, in which the type of a function is specified
by the function’s domain and codomain (as traditionally done in the various analysis or algebra courses).
Paradoxically, however, this formalism loses the expressive power of the original λ calculus and is no
longer Turing-complete.

The basic idea of λ calculus is to express algorithms (or to code programs) as expressions, called
λ-expressions in the following. As we will see, the execution of a program then consists in evaluation of
a λ-expression (using a simplification mechanism called “reduction”). So let’s see how λ-expressions are
composed The incredibly simple syntax reflects the fact that λ-expressions are built starting from the
three simple concepts already mentioned:

1. Variables (which actually represent functions). They constitute the terminal elements of the lan-
guage and are indicated by names (identifiers), which will be represented by single letters written
in italic (for example, “x”, “y” or “f” ) in the following

2. Abstractions, which allow you to specify that a variable “x” is an argument in the following expres-
sion. Technically, an abstraction is said to “bind” a variable into an expression (the reason for this
terminology will become clear later). In practice, an abstraction “creates” (informally speaking) a
function starting from a λ expression, specifying the argument of the function (the bound variable)

3. Functions applications. They represent the inverse operation of abstraction and allow to trans-
form an abstraction and a λ expression into a single λ expression by removing the bound variable
(actually, the whole abstraction is removed)

Using BNF notation, the syntax of a λ-expression is:

25
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<expre s s i on> ::= <name> ; l owercase l e t t e r in i t a l i c
| ( λ<name>.<expre s s i on >) ; ab s t r a c t i on
| (< expre s s i on> <expre s s i on >) ; f unc t i on app l i c a t i o n

This is equivalent to the following inductive definition:

• A name / variable / function (indicated with a single italic letter below) is a λ expression

• If e is a λ expression and x is a name, then (λx.e) is a λ expression

• If e1 and e2 are λ expressions, then (e1e2) is a λ expression

Based on the definitions above, the following are examples of λ expressions:

• x (variable / function)

• (λx.(xy)) (abstraction: bind variable “x” in the expression “xy”, transforming that expression into
a function of variable “x”)

• ((xy)z) (application: apply function “x” to “y”, then apply the result to “z”)

• (λx.(xy))z (more complex expression)

According to what explained so far, any abstraction or application of a function should be enclosed
in parentheses (to make the syntax less ambiguous); actually, the following conventions are assumed to
reduce the number of parentheses used:

• Function application is left-associative: ((xy)z) is therefore equivalent to xyz

• The “λ” operator is right-associative and has lower precedence than function application: (λx.(xy))
is therefore equivalent to λx.xy

Another convention often used in the literature is that the variables linked by several immediately
successive abstractions are grouped together; for example, λx.λy.f can be written as λxy.f . However,
this convention will not be used in the following and we will keep only one variable for λ.

It is interesting to notice how the syntax of the λ-calculus allows to distinguish the definition of a
function from its application: in the commonly used mathematical notation, the term “f(x)” is used
both to indicate that the function “f()” is applied to the value “x” and to define this function (as in
“f(x) = x2”). In the λ-calculus, however, “fx” represents the application of “f” to “x”, while “λx.f”
represents the definition of a function with argument “x”.

Another interesting thing to note is that given the absence of a global environment it is not possible
to dynamically create associations between λ expressions and non-local names. In other words, not only
the λ-calculus has no concept of “assignment” of values to a mutable variable, but it also lacks the
equivalent of variable declaration (not even immutable variables). For convenience it is possible to use
symbolic names for complex λ expressions (see applied λ calculus, below), but these are macro-like, static
definitions (not bindings in a global environment that may vary dynamically at runtime).

As a result, only anonymous expressions and anonymous functions can be created in the λ-calculus
(similar to what was done in standard ML with the fn construct, in Haskell with “\” or in C++ with
lambda expressions “[](...){...}”). This could imply that λ-calculus does not allow defining recursive
functions (and consequently is not Turing complete); we will see later how it is instead possible to define
functions that require recursion by using the concepts of fixed point and fixed point combinator.

The only (name,value) bindings that can be created dynamically are the local bindings between formal
parameters and actual parameters that are created during function application. This means that at least
the concept of a local environment exists in the λ-calculus.

2.1 Semantic of the Lambda Calculus

As previously mentioned, λ-calculus allows programs to be encoded as expressions, which are “executed”
by evaluating them via a process called reduction. Informally speaking, we can say that this process is
based on the meanings that have been associated with the various basic elements of a λ expression. To
define the semantics of the λ-calculus in a more formal way, it is first necessary to introduce some basic
concepts, such as “free variables” and “bound variables”.
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Intuitively, a variable “x” is bound by a construct “λx.E” (where E is a generic λ expression), while
it is free in an expression “E” if in “E” there is no λx abstraction that binds “x”. To give a more formal
definition, we must refer to the recursive definition of λ expressions: in particular, if B(E) represents the
set of bound variables in “E” and F(E) represents the set of free variables in “ E”, we can say that:

• For each variable “x”, F(x) = {x} and B(x) = ∅

• F(E1E2) = F(E1) ∪ F(E2); B(E1E2) = B(E1) ∪ B(E2)

• F(λx.E) = F(E)− {x}; B(λx.E) = B(E) ∪ {x}

Basically, this definition says that if an expression is composed of only one variable, that variable is
free; composing two expressions (applying one expression to another) does not change the state of the
variables (free variables remain free and bound variables remain bound) and the operator “λx.E” binds
the variable “ x” in the expression “E” (it removes “x” from the set of free variables of “E” and adds
it to the set of bound variables). The λ operator is said to bind variable “x” in “λx.E” because when
the expression “λx.E” is applied to an expression E1 a binding between x and E1 is created in the local
environment of E.

Based on this simple recursive definition it is possible to compute the set of free variables and bound
variables for each λ expression. A λ expression which contains no free variables but is composed only of
bound variables) is called a “combinator” and has the important property that the result of its evaluation
only depends on the arguments (current parameters) used to evaluate it. More formally, a λ expression
E is a combinator if F(E) = ∅.

We can now define the concept of α equivalence between two λ expressions. Informally, two λ ex-
pressions E1 and E2 are α equivalent (E1 ≡α E2) if they differ only in the parameters’ names. This
means that when defining a function the name of the function argument is not important (using a more
familiar mathematical notation, f1(x) = x2 and f2(y) = y2 represent the same function); so, for example,
λx.xy ≡α λz.zy. The correct definition of α equivalence is obviously more complex, because, for exam-
ple, λx.xλx.xy is not α equivalent to λz.z.λx.zy but is α equivalent to λz.z.λx.xy. Basically, λx.E is α
equivalent to λz.E[x → z], where E[x → z] represents the expression “E” with variable “x” is replaced
by expression “z” only if it is free:

• If “x” and “y” are variables and E is a λ expression, x[x → E] = E and y 6= x ⇒ y[x → E] = y

• Given two λ expressions E1 and E2, (E1E2)[x → E] = (E1[x → E]E2[x → E])

• If “x” and “y” are variables and E is a λ expression,

– y 6= x ∧ y /∈ F(E′) ⇒ (λy.E)[x → E′] = λy.(E[x → E′])

– y = x ⇒ (λy.E)[x → z] = λy.E

Looking back at the previous example, we can see how the rule “y = x ⇒ (λy.E)[x → z] = λy.E”
allows us to obtain the correct result: λx.xλx.xy ≡α λz.(xλx.xy)[x → z] = λz.x[x → z](λx.xy)[x → z] =
λx.zλx.xy as expected. It is also interesting to note that the rule “y 6= x ∧ y /∈ F(E′) ⇒ (λy.E)[x →
E′] = λy.(E[x → E′])” contains the condition “y /∈ F(E′)”: this condition is needed to avoid wrong
substitutions like (λx.xy)[y → x] = λx.xx which would lead to α equivalences like λy.λx.xy ≡α λx.λx.xx,
clearly incorrect. This phenomenon, in which a free variable “y” in “λx.xy” becomes bound after a
substitution is called variable capture (because a simple substitution transforms a variable free in a
bound variable) and should be avoided during substitutions. The substitution mechanism E[x → y]
defined above is then called capture-avoiding substitution and can be used to formally define the α
equivalence relation:

λx.E ≡α λy.E[x → y]

As suggested by the name, α equivalence is an equivalence relation: E1 ≡α E2 is therefore a symmetric,
reflexive and transitive relation between λ expressions:

• E ≡α E

• E1 ≡α E2 ⇒ E2 ≡α E1

• E1 ≡α E2 ∧ E2 ≡α E3 ⇒ E1 ≡α E3
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Capute-avoiding substitutions play a fundamental role in the λ-calculus , as they are used in the
reduction mechanism to simplify λ expressions as well as for α equivalences. Informally speaking, reducing
a λ expression consists in applying functions (removing abstractions) as in (λx.xy)z → zy. This procedure
may appear simple, but it hides a series of complications; for example, the reduction (λx.(xλy.xy))y →
yλy.yy is clearly wrong, because the “y” variable is bound in the process (this is one of the reasons
why the capture-avoiding substitution mechanism was defined earlier!). Thus, whenever you have an
abstraction (“λx.E”) applied to an expression E1, you can use a capture-avoiding substitution of E1

in E (replacing x) to reduce the λ expression eliminating the abstraction.
More formally, a redex (reducible expression) is defined as a λ expression of the type (λx.E)E1 and

E[x → E1] is defined as is its reduced. Based on this, the β reduction “→β” can be defined as the
replacement of a redex by its reduction:

(λx.E)E1 →β E[x → E1]

It might appear that some redexes cannot be reduced because capture-avoiding reduction cannot be
used (for example, a variable “y” is bound in “E” and “y” appears among the free variables of E1 - in this
case, a simple replacement would capture the free “y”). Consider the λ expression (λy. lambdax.xy)(xz):
this expression clearly represents a redex, so one could try to reduce it using the β reduction mechanism,
which would lead to (λx.xy)[y → (xz)]. Note however that x ∈ F(xz), so none of the rules presented in the
definition of the capture-free substitution mechanism can be used (again: (λx.xy)[y → (xz)] = λx.x(xy)
is not a capture-avoiding substitution, because it would capture the red “ x”). How can this kind of redex
be reduced, then? The concept of α equivalence comes to our aid, allowing us to rename the variables
which are bound in E so that they do not appear among the free variables of E1. In the previous example:

(λy.λx.xy)(xz) ≡α (λy.λk.ky)(xz) →β (λk.ky)[y → (xz)] = λk.k(xz)

this time the reduction does not capture any free variable, and is correct (the capture-avoiding substitution
(λk.ky)[y → (xz)] is now possible because k /∈ F(xz) ).

The β reduction is not an equivalence relation, as it does not have the reflexive property: E1 →β E2

does not imply E2 →β E1. However, an equivalence relation (called β equivalence “≡β”) can be created
by computing the β reduction reflexive and transitive closure. In practice, E1 ≡β E2 means that there
is some chain of β reductions which “connect” E1 and E2 (β reducing E1 and E2 multiple times it is
possible to arrive at the same expression E).

More formally, the β equivalence ≡β is defined as:

• E1 →β E2 ⇒ E1 ≡β E2

• ∀E,E ≡β E

• ∀E1, E2 : E1 ≡β E2, E2 ≡β E1

• E1 ≡β E2 ∧ E2 ≡β E3 ⇒ E1 ≡β E3

Finally, it is interesting to note that a generic λ expression usually contains multiple redexes and the
rules of the λ computation do not define an order for applying the possible β reductions. In this case it is
possible to reduce the expression following any order for the β reductions (provided that the parentheses
and the rules of associativity and precedence between operators are respected).

The order in which to evaluate the various redexes is decided by defining an evaluation strategy in
addition to the reduction rules of the λ-calculus (for example, proceed to the right starting from the
leftmost redex, or start from the “innermost” redex, etc...). The various evaluation strategies (lazy vs
eager, by name vs by value, etc...) used by higher level programming languages derive from this evaluation
strategy.

An important theorem (the Church-Rosser Theorem) proves that if a λ expression E can be reduced
to E1 by 0 or more β reductions and E can be reduced to E2 6= E1 by 0 or more β reductions, then
there exists E3 such that both E1 and E2 can be reduced to E3 by 0 or more β reductions (E →β ... →β

E1 ∧ E →β ... →β E2 ⇒ ∃E3 : E1 →β ... →β E3 ∧ E2 →β ... →β E3).
An important corollary of this theorem is that if E is reducible to a normal form (λ expression which

no longer contains any redex), then this normal form does not depend on the order of β reductions. In
other words, every λ expression E has at most 1 normal form. Note the use of the term “at most”, as
there are λ expressions which cannot be reduced to a normal form (the reduction process never ends). A
typical example is the combinator Ω = ωω, where ω = λx.xx:

Ω = ωω = (λx.xx)(λx.xx) →β (xx)[x → (λx.xx)] = (λx.xx)(λx.xx) = ωω = Ω
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therefore, Ω →β Ω!!! This is the equivalent of an infinite loop in an imperative language, or an in-
finite recursion in a functional language. The existence of this type of expression (which generates a
non-terminating sequence of reductions) is necessary for the Turing-completeness of the λ-calculus (the
Turing machine allows to encode infinite computations; if the λ calculus did not allow to encode infinite
reductions, then it could not implement such Turing machine programs).

2.2 Encoding High-Level Languages

After seeing the most important definitions of the λ-calculus and the details of the reduction mechanism,
it is quite difficult to understand how such a simple and seemingly inexpressive formalism can be Turing
complete. In fact, it might seem that the λ computation could only be useful for manipulating functions
or the like.

Making a parallelism with imperative programming, we can remember that programs written in a
high-level languages are transformed into Assembly (by a compiler or an interpreter) to be executed by
a physical CPU. Just as the λ-calculus allows you to work only with functions (and to perform relatively
simple reduction operations on expressions composed only of functions, abstractions and applications),
the Assembly language also allows you to operate only on binary numbers (stored in CPU registers or
RAM) and has no concept of datatypes or global environment. Yet we have no problem in thinking
that a program written in a high-level language with a global environment and strictly typed variables
is converted to Assembly: we “just” need to implement all the high-level concepts based on Assem-
bly instructions that operate on registers or memory. Similarly, the same high-level concepts can be
implemented by using just functions, abstractions, and function applications.

In general, the various high-level abstractions we will be encoded by using combinators (which, as
already said, are λ expressions in which no free variables appear). This is because the encoding must not
depend on the context (hence, it must not refer to any symbol that is not a formal parameter / argument
of the expression). As an example, some notable combinators known in the literature are:

• The combinator representing the identity function: I = λx.x

• The combinator representing function composition: B = λf.λg.λx.f(gx)

• K = λx.λy.x

• S = λf.λg.λx.fx(gx)

• ω = λx.xx

• Ω = ωω

• Y = λf.(λx.f(xx))(λx.f(xx))

The importance of the Y combinator is fundamental for the λ-calculus, as it is a so-called fixed point
combinator (this will be discussed later). The K and S combinators are interesting as they allow to define
a subset of the λ calculus (called “SK calculus” or “SKI calculus”) in which the abstraction operator λ
is not explicitly used (!!!) (this will also be explained later) Before going on, note that the “=” symbol
that has been informally used above to define the various combinators represents some kind of equality
/ equivalence (indicating, for example, that writing “I ” is equivalent to writing “λx.x”) and is not a
formally defined construct in the λ-calculus. Remember that the λ-calculus does not allow to modify
some kind of non-local environment or to create bindings between names and symbols (again: in the λ
calculation, there is no construct that allows you to create links between names and symbols at a global
level!).

After these necessary premises, we can start to see how to implement the high-level constructs we are
interested in using the λ calculus. The first thing to do is find a “λ encoding” for the natural numbers
(and for the operations that can be performed on them). These encodings can then be used to encode
integers (natural numbers with sign), rational numbers, real numbers, and so on.

Then, λ expressions will be used to also represent boolean values, basic logical operations and the
so-called “arithmetic if” (which allows to evaluate an expression E1 or an expression E2 depending on
the truth value of a boolean expression). Finally, more complex data structures can be implemented to
show how higher-level data types can be represented by λ expressions.

Recalling that the λ-calculus is a functional formalism, it is quite clear that it will be necessary to
use an inductive definition of the natural numbers, similar to Peano’s:
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• 0 is a natural number

• Given a natural number n, the successor of n (computable as succ(n)) is a natural number

The idea is therefore to use a λ expression to represent the natural number 0 and define a combinator
which, applied to the representation of a natural number n, computes the representation of n + 1. The
Church numerals implement this idea:

• 0 is represented by the λ expression λf.λx.x

• The succ() function (which calculates the successor of a natural number n) is represented by the λ
expression λn.λf.λx.f(nfx)

This encoding has the interesting property that the natural number n ∈ N is represented by the

function f applied n times to x: n ≡ λf.λx.

n
︷ ︸︸ ︷

f(. . . f(x) . . .) (to simplify the notation, the expression

“

n
︷ ︸︸ ︷

f(. . . f(x) . . .)” is sometimes written as “fn(x)”).
As an exercise, we can try to compute the representation of the natural number 1 as 1 = succ(0):

1 = succ(0) = (λn.λf.λx.f((nf)x))(λf.λx.x)

(λn.λf.λx.f((nf)x))(λf.λx.x) →β (λf.λx.f((nf)x))[n → (λf.λx.x)] = λf.λx.f(((λf.λx.x)f)x) →β

→β λf.λx.f(((λx.x)[f → f ])x) = λf.λx.f((λx.x)x) →β λf.λx.f((x)[x → x]) = λf.λx.f(x)

Similarly, it is possible to compute the encoding of 2:

2 = succ(1) = (λn.λf.λx.f((nf)x))(λf.λx.f(x))

(λn.λf.λx.f((nf)x))(λf.λx.f(x)) →β (λf.λx.f((nf)x))[n → (λf.λx.f(x))] = λf.λx.f(((λf.λx.f(x))f)x) →β

→β λf.λx.f(((λx.f(x))[f → f ])x) = λf.λx.f((λx.f(x))x) →β λf.λx.f(f(x))

Without pretending to give rigorous proofs, let’s try to better understand the encoding of succ():
informally speaking, succ must transform λf.λx.fn(x) in λf.λx.f(fn(x)). This can be done:

1. By somehow “removing” the two abstractions λf.λ.x. from the encoding of n

2. Then applying f to the expression obtained above

3. Then adding back the two abstractions λf.λ.x. removed in step 1

4. And finally abstracting everything from the number n

The first step (removal of the abstractions λf.λ.x.) can easily be accomplished by applying the nat-
ural number encoding to f and x: in fact, (λf.λx.fn(x))f →β λx.fn(x) and ((λf.λx.fn(x))f)x →β

(λx.fn(x))x →β fn(x). Thus, if the function n represents the encoding of a natural, then (nf)x is an
expression containing f applied n times to x. As mentioned (step 2), f must be applied to this expres-
sion once again, obtaining f((nf)x); after step 3 we obtain λf.λx.f((nf)x) and abstracting everything
with respect to n (so that n is an argument of the combinator succ and not a free variable) we get
λn.λf.λx.f((nf)x) which is just the encoding of succ presented above.

Based on the definitions of Church numerals, it is possible to define the encoding of the various
operations on the natural numbers. For example, the sum can be encoded using a combinator which,
applied to the encodings of two natural numbers n and m, generates the encoding of their sum. The
expression of this combinator is λm.λn.λf.λx.(mf)((nf)x) and can be obtained in this way:

1. First, we apply n to f and x to remove the abstractions λf.λx., similar to what we did for encoding
succ

2. Next, apply m to f to remove the abstraction λf.

3. Next, applying the result of mf (that is, “m” without “λf”) to the result of ((nf)x) (which is
“fnx”), we add m “f(” to the left of “fnx”. The result is “fn+mx”

4. As done for succ, we abstract again with respect to f and x to add the λf.λx. removed in step 1
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5. Finally, we abstract with respect to n and m, in order to obtain a combinator

It is then possible to define the encoding of the other operations on natural numbers, but the the details
are omitted here for the sake of brevity. Coding a “pred” operator (which calculates the predecessor of
a natural number) is possible, but not easy (and there are strange anecdotes involving Alonso Church
- inventor of the λ calculus - one of his PhD students - who solved the pred encoding problem - and a
barber). Without going into details, the encoding of this operator involves transforming the encoding
of n into a pair containing the encoding of n and the encoding of n − 1, and then taking the second
element of the pair. The encoding of (n, n− 1) is generated from the encoding of n by starting from the

encoding of (0, 0) and iterating n times a function f̂ which transforms the pair (n,m) into (n + 1, n).
Now, remembering that the encoding of n is a combinator that applies n times its first argument to its
second argument, it becomes clear that (n, n − 1) can be obtained applying n to f̂ and then applying
the resulting function to the encoding of (0, 0). At this point, as mentioned, the encoding of n − 1 can
be obtained by applying to the result a function that returns the second element of a pair. As usual,
everything must be abstracted from n. In light of this, it is therefore important to understand how to
encode pairs using the lambda-calculus.

The “(a, b)” pair can be encoded as λz.zab and in general the function that generates the encoding of
the “(a, b)” pair from “a” and “b’is λx.λy.λz.zxy. Given the encoding of a pair, it is possible to obtain
the first element using the function “first” = “λz.z(λx.λy.x)” and the second element using the function
‘ ‘second” = “λz.z(λx.λy.y)”.

As already mentioned, in addition to natural numbers and arithmetic operations, the λ-calculus allows
you to encode everything needed to implement any algorithm. It is hence important to encode the boolean
values true and false, and the selection operation (arithmetic if). A simple encoding for true could be
“λt.λf.t”, while false could be encoded as “λt.λf.f”: informally speaking, true and false are encoded
as λ expressions with two arguments, which return the first or second argument.

The selection function (arithmetic if), on the other hand, can be encoded as “λc.λa.λb.cab”: it is a
λ-expression that receives 3 arguments “c”, “a” and “b”, where “c” is the encoding of a boolean value.
If “c” is the encoding of true, then the expression evaluates to “a”, otherwise it evaluates to “b”:

(λc.λa.λb.cab)(λt.λf.t) →β λa.λb.(λt.λf.t)ab →β λa.λb.(λf.a)b →β λa.λb.a

And
(λc.λa.λb.cab)(λt.λf.f) →β λa.λb.(λt.λf.f)ab →β λa.λb.(λf.f)b →β λa.λb.b

Based on these encodings it is then possible to implement the boolean operators and (λp.λq.pqp), or
(λp.λq.ppq), and so on1.

It is then possible to encode boolean predicates such as “is zero” (which receives the encoding of a
natural number as an argument and evaluates to true if the number is 0), “less than” , “equal” and
similar.

Although the encodings of values and operations presented so far allow to implement generic functions
(a mechanism to implement / encode recursion or iteration is still missing, but will be shown shortly),
the resulting lambda expressions risk to be too complex. For example, the simple arithmetic expression
“2 + 3” is encoded as “2 + 3 ≡ (λn.λm.λf.λx.(nf)((mf)x))(λf.λx.f(fx))(λf.λx.f(f(fx)))”!!! And the
encoding of the function “f(a) = a+2” is “λa.(λn.λm.λf.λx.(nf)((mf)x))a(λf.λx.f(fx))” . To simplify
the expressions, it is possible to use a notation sometimes known as “applied lambda calculus”, in which
the encodings of the various values and operations are replaced with more common mathematical symbols.
Thus, “+” is a synonym for “(λn.λm.λf.λx.(nf)((mf)x))”, “2” is a synonym for “(λf.λx.f(fx))” and
so on. It then becomes possible to write “λa.a+ 2” instead of the lambda expression mentioned above.

At this point, the most important thing that seems to be missing is a loop construct (or rather,
recursion, since we are talking about functional programming!). As already mentioned, the lack of a
global environment seems to make it impossible to implement recursion. But the latest surprise of λ-
calculus, the concept of fixed point combinator, comes to our aid.

As known, if the “imperative” version of an algorithm contains a loop, its implementation according
to the functional paradigm is based on recursion: in other words, the implementation of a function calls
the function itself (the typical example is the factorial). But the λ-calculus allows you to define only
anonymous functions (λ abstractions) and without a global environment, a function cannot call itself, as
it has no name. In other words, a recursive function contains at least one free variable (therefore it is
not a combinator), which indicates the name of the function itself, to be called recursively. The first step

1The reader can verify the correctness of the encodings of and and or as a simple exercize.
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unsigned int f a c t o r i a l (unsigned int n)
{

unsigned int i r e s = 1 ;

for ( i = 2 ; i <= n ; i++) {
r e s = r e s ∗ i ;

}

return r e s ;
}

Figure 2.1: Iterative implementation of the factorial() function.

unsigned int f a c t o r i a l (unsigned int n)
{

i f (n == 0) return 1 ;
return n ∗ f a t t o r i a l e (n − 1 ) ;

}

Figure 2.2: Recursive implementation of the factorial() function.

to implement recursion in the λ-calculus is therefore to eliminate this free variable (thus transforming
the recursive function into a combinator). This can be done by passing the name of the function as an
argument. Therefore, if f = E is an expression that recursively calls f (itself), it is transformed into
fc = λf.E, binding the variable f , which then becomes the first argument of fc.

In other words, f can be seen as the result obtained by passing f as an argument to fc: f = fcf ,
where in this case “=” means “ ≡β” (β equivalent). This is not simply a syntactic trick, but allows
us to reformulate our problem as an equation whose solution f is the recursive function we are looking
for. Such an equation f ≡β fcf is solved by finding the “fixed point” of fc. The existence of fixed
point combinators (combinators that given a function fc compute its fixed point f = fcf) shows us that
recursion is implementable in λ-calculus, even if only anonymous functions exist.

The most famous fixed point combinator is Y = λf.(λx.f(xx))(λx.f(xx)).
As an example, let’s see how to use the fixed point combinator Y to calculate the factorial function. A

possible imperative implementation of the factorial is shown in Figure 2.1, while the traditional recursive
implementation is shown in Figure 2.2. Figure 2.3 shows a “more functional” implementation of this
function. A first attempt (not too successful, actually) of conversion to λ-calculus could be

factorial = λn.cond (n = 0)1(n ∗ (factorial (pred n))

Note that this function, which might look strange when talking about pure λ-calculus (as it contains
functions like “pred”,predicates like n = 0, and expressions like n − 1, which are not part of the pure
λ-calculus), was written using the applied λ-calculus. Remember that the selection “cond” (arithmetic
if) can be replaced with the λ-expression λc.λa.λb.cab, the predicate “n = 0” can be replaced with the
λ-expression encoding of “is zero” and pred can be replaced with its encoding mentioned earlier.

As already noted several times, this is a strange form of definition because it requires the presence of
a binding for its own name in the global environment. This problem is solved by defining the function fc
as

λf.λn.cond(n = 0)1(n ∗ (f(pred n))

and finding the function factorial such that factorial= fcfactorial (fixed point of fc). This function
f can be calculated using the fixed point combinator Y : factorial= Y fc.

Finally, it should be noted that the encodings of data types2 and high-level functions presented above
are not unique. For example, using Church numerals it is possible to define operations such as addition
or predecessor in different ways (of course all the definitions will be functionally equivalent).

Going further, it can be seen that Church encoding is only one of the possible way to encode high-level
data structures and functions and other alternative encodings are possible. For example, the so-called

2Actually, only the encoding of natural numbers has been presented... But it is possible to encode in λ-calculus any type
of data.
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unsigned int f a c t o r i a l (unsigned int n)
{

return (n == 0) ? 1 : n ∗ f a t t o r i a l e (n − 1 ) ;
}

Figure 2.3: Functional implementation of the factorial() function.

Scott’s numerals propose an alternative encoding of natural numbers (and operations on them) to that
of Church:

• The natural number 0 is represented by the λ expression λf.λx.f

• The function succ which calculates the next of a natural number n is encoded by the λ expression
λn.λf.λx.xn

Although Scott’s coding is less known (and less used!) than Church’s, in some cases it has advantages
(for example, it allows simplifying the definition of the predecessor function pred which is codable as
λn.n(0)(λx.x)).

2.3 Removing Abstractions

As seen, the main constructs of the λ-calculus are abstraction (definition of functions) and function
application. Actually, it is possible to define a minimal functional programming language even without
using the abstraction mechanism, provided that an adequate set of predefined functions is provided.
What you get in this way is a “combinatory calculus”, so called because of the predefined combinators
(the set of predefined functions mentioned above) on which it is based.

The syntax of an expression of this type of calculus can be defined as:

<expre s s i on> ::= <name> ; l owercase l e t t e r
| <Combinator> ; d e f au l t f unc t i on
| (< expre s s i on> <expre s s i on >) ; a pp l i c a t i o n

where <name> is the name of a variable and <Combinator> is a built-in function (with a well-defined
behavior). This is equivalent to the following inductive definition:

• A name / variable (denoted by a single lowercase letter) is an expression of combinatory calculus

• A combinator (denoted by a single uppercase letter) is an expression of combinatory calculus

• If e1 and e2 are expressions of the calculus, then (e1e2) is an expression too

Note how all the variables appearing in an expression are free variables (because there is no concept of
abstraction that can bind them).

The details of a combinatory calculus clearly depend on the predefined combinators and it is clear
that not all the combinations of combinators result in a turing complete calculus.

The most important of the combinatory calculus is probably the “SK calculus” (sometimes known as
“SKI calculus”), where the default combinators are S and K (plus optionally the identity combinator I)
defined by the following properties:

Kxy = x

Sxyz = xz(yz)

Ix = x

The combinator I is often used to simplify calculus expressions, but it is not strictly necessary, as it
can be obtained as I = SKK: (SKK)x = SKKx = Kx(Kx) = x.

The S and K combinators presented in Section 2.2 (S = λf.λg.λx.fx(gx) and K = λx.λy.x) enjoy
the properties described above (and the proof of this is is left to the reader). It is therefore easy to
convert an expression of the SK calculus (or SKI calculus) into a λ-expression. Since it is also possible to
convert any λ-expression into an expression of the SK calculus, the SK calculus has the same expressive
power as the λ-calculus and is therefore Turing-complete.

The conversion of a generic λ-expression E into an expression of the SK calculus can be performed
proceeding by cases. In particular, E can be:
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• An identifier x, which maps to the expression x of the SK calculus

• An application E1E2, which maps to the expression E1E2 of the SK calculation

• An abstraction λx.E′, which must be converted into an expression E′′ of the SK calculus proceeding
by case:

– If E′ is an identifier, it can be x, in which case E = λx.x maps to E′′ = I = SKK, or a
symbol y 6= x, in which case E = λx.y maps to E′′ = Ky

– If E′ is an application E′

1E
′

2, E = λx.E′

1E
′

2 must be converted into E′′ such that (λx.E′1E′

2)v =
E′′v. This implies that

(λx.E′

1E
′

2)v = E′′v ⇒ E′

1[x → v]E′

2[x → v] = E′′v ⇒

(λx.E′

1v)(λx.E
′

2v) = E′′v ⇒ S(λx.E′

1)(λx.E
′

2)v = E′′v ⇒

E′′ = S(λx.E′

1)(λx.E
′

2)

– If E′ is an abstraction λy.E′

1, E = λx.λy.E′

1 must be converted into E′′ by recursively applying
this procedure at E′

1.

Applying this reasoning, one can convert any λ-expression into an expression based only on free variables,
the operator S and the operator K.

Another important property of the SK calculus is that every λ-expression that contains no free vari-
ables (that is, a combinator) can be converted to an SK calculus expression that contains no variables.
In other words, to model combinators it is possible to remove the first clause (a variable name is an
expression of the SK calculus) from the definition of the SK calculus.

The process which converts an expression “E” into an expression Rx(E) which does not contain the
free variable “x” but behaves like λx.E (that is that is, Rx(E)E1 = E[x → E1]) is known as bracket
abstraction and can be used to convert any λ-expression to an expression of the SK calculation eliminating
the abstractions λx. one by one. A very simple (although not efficient) bracket abstraction algorithm is
based on the following transformations:

1. Rx(x) = SKK, where “x” is the variable to be eliminated

2. Rx(y) = Ky, where y is a predefined combinator (S or K) or a variable other than the variable x
to be eliminated

3. Rx(E1E2) = SRx(E1)Rx(E2)

To make the algorithm slightly more efficient, the second rule can be replaced by Rx(E) = KE, where
“E” is an expression that does not contain as a variable free the variable “x” that has to be removed.

To convert a λ-expression into an SK calculus expression, one can proceed by removing the λ ab-
stractions one by one by applying the three rules above. Note the close relationship between this bracket
abstraction algorithm and the conversion methodology shown above.

2.4 Typed Lambda Calculus

As noticed, in the “pure” λ-calculus there is no concept of data type. It has been shown how it is possible
to use expressions of the untyped λ-calculus to encode the various data types (and the operations on
them), but the variables of the λ-calculus represent generic functions (with unspecified domain and
codomain).

Although the lack of data types does not impact the expressivity of the formalism (as mentioned,
the λ-calculus is Turing complete), it can compromise the readability and simplicity of use, making it
easier to introduce programming errors (for this reason the λ-calculus is considered a sort of “Assembly
of functional languages”). For example, if you code the function f(a) = a + 2 using λ-calculus you
get λa.(λn.λm.λf.λx.(nf)((mf)x))a(λf.λx.f(fx)) (not exactly intuitive expression...), which using the
applied λ-calculation simplifies to λy.y+2. However, this encoding has lost a fundamental characteristic of
the initial function: the fact that the function operated on numbers! In fact, it is possible to apply λa.a+2
(which, we recall, is equivalent to λa.(λn.λm.λf.λx.(nf)((mf)x))a(λf.λx.f(fx))) to any λ-expression,
even if it doesn’t encode a number! If the function is applied to an expression E which encodes a natural
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number, a λ-expression which encodes a natural number is generated as a result, otherwise a λ-expression
E′ without any clear interpretation can be generated.

To solve this kind of problems, it is possible to associate a type with each λ-expression (or with each
argument). For example, introducing the constraint that λa.(λn.λm.λf.λx.(nf)((mf)x))a(λf.λx.f(fx))
is a function N → N or, better, that in this expression “a” is the encoding of a natural number (a : N ).

In this section (which does not claim to be exhaustive, but only to introduce some concepts that can
then be further explored by the readers) it will be shown how to extend the original formalism to specify
domain and codomain for each function. Of course this can be done in various ways which result in
different definitions of typed λ-calculus, the most famous of which are due again to Alonso Church and
Haskell Curry. We will then talk about λ-calculus with types “a-la Church” or “a-la Curry”.

Surprisingly enough, associating types to functions actually reduce the expressive power of the for-
malism, which is no longer Turing complete. This happens because it can be proved that the reduction of
any “well-typed” expression (this concept will be introduced intuitively in the next few pages) by a typed
λ-calculus always ends (it is therefore no longer possible to express infinite recursions). For a simple
intuition of this fact try to compute the type of the Y operator, which is necessary to encode recursive
functions.

First of all, to define a typed λ-calculus we need to introduce the concept of type; this can be done
by introducing a set P of basic types, or primitive types, and a rule for defining new datatypes starting
from existing ones (this is analogous to what was done to define the expressions of the λ-calculus, created
starting from a set of base names and 2 rules which allow to create new expressions starting from valid
expressions). Since we are defining types for a λ-calculus, a new type γ could be defined starting from
two types α and β: γ = α → β (γ is the type of functions having α as domain and β as codomain). In
other words, the set T of possible data types can be generated through the following inductive definition:

• A primitive type name refers to a type: α ∈ P ⇒ α ∈ T

• If α and β are types, then α → β is also a type: α, β ∈ T ⇒ α → β ∈ T

As it is easy to understand from this definition, the number of possible types (the cardinality of the set
T of types) is infinite.

Given a λ-expression E, its type is computable according to the following rules:

• The type of a free variable x must be known a-priori

• If E1 and E2 are expressions with types α → β and α, then the type of E1E2 is β: E1 : α → β,E2 :
α ⇒ E1E2 : β

• If E is an expression of type β, λx.E has type α → β: E : β ⇒ λx.E : α → β

the third rule can be better clarified by modifying the syntax of the abstraction to specify the type of
the argument. In these cases λx : α.E (explicit typing) is used instead of λx.E (implicit typing). Making
an analogy with higher level languages, we can consider the C language (in which a variable declaration
requires to specify the variable’s type), the C++ language (in which the compiler can be asked to infer
the tyoe of a variable, by usign the ‘ ‘auto” keyword), and standard ML or Haskell (where variables can
be declared without specifying their type, because the compiler is able to infer it himself).

Also note that to associate a type with an expression E it is necessary to make assumptions about
the types of the free variables contained in E (see the first rule above). These assumptions (obviously
only necessary for non-closed expressions) are contained in some sort of “type environment”, or “type
context”. In summary, the type of a closed expression can be somehow “computed” (better: inferred)
without needing additional information, while the type of an open expression depends on the environment
(or context) of the types.

Informally speaking, an expression E is correctly typed if it is possible to associate E with a type
α ∈ T that is consistent with the rules presented above. For example, the expression λx : int.x is
correctly typed (and has type int → int). The expression I = λx.x (or I = λx : α.x) is also correctly
typed and has type α → α. The combinator ω = λx.xx is instead not correctly typed: assuming that x
has type α (x : α), we have that ω : α → β, where β is the type of the expression “xx”. But for “xx” to
be a valid expression, x must be a function, with domain α (the type of the argument). Thus, x : α → β,
but also x : α, from which we derive α = α → β, which is not a valid expression in the type system we
have defined (that is, using the type generation rules given above it is not possible to “construct” a type
α ∈ T that has this property).

Once the concept of types and correctly typed expressions has been introduced, two different ap-
proaches can be followed:



36 CHAPTER 2. FIRST MEETING WITH THE LAMBDA CALCULUS

• The first approach consists in defining the semantics of expressions regardless of their type (in
practice, we define β reduction rules that do not depend on the types of the expressions). The
concept of type is then only used a posteriori to “reject” incorrectly typed expressions as invalid

• The second approach is to specify semantics only to correctly typed expressions. In other words, if
an expression is not correctly typed (that is, its type cannot be generated with the rules presented
above), it doesn’t even make sense to try to reduce it.

According to the first approach, which results in the so-called “λ-calculus with types a-la Curry”, the
introduction of types is used to “eliminate” from the calculus the expressions which ‘ ‘do not behave as
desired” (for example, expressions whose reduction does not finish). But the reduction of such expressions
is still defined. In essence, types simply add extra constraints on expressions, which characterize “valid
expressions”.

In the second approach, which results in the so-called “λ-calculus with types a-la Church”, the type
of an expression is considered fundamental for its semantics (it is not possible define the semantics of
an incorrectly typed expression). Hence, the reduction rules for λ-expressions explicitly refers to the
expressions’ types.

In the literature, implicit typing is sometimes used in the a-la Curry calculus and explicit typing in
the a-la Church calculus, but this is not strictly necessary.

Regardless of whether implicit or explicit typing is used, it is possible to reduce a typed λ-calculus
expression using the traditional β reduction rule of the untyped λ-calculus, after removing type annota-
tions (“: α” and similar) from bound variables. Following the “a-la Church” approach, this can only be
done provided that the correct typing of the expression has been verified.

As an alternative, once a type is associated to each expression, the β reduction rule must be updated
to take it into account: if in the typeless λ-calculus

(λx.E)E1 →β E[x → E1]

in typed lambda calculus, reduction is possible only if “x” and “E1” have the same type:

E : α ⇒ (λx : α.E)E1 →β E[x → E1]

.



Chapter 3

Haskell for Dummies

3.1 Introduction

Imperative programming languages base their computation model on the Von Neumann architecture,
describing programs as sequences of commands (instructions) that modify a state (for example, the
contents of memory locations identified by variables). On the other hand, functional programming
languages encode programs as expressions that are evaluated, generating values as results. Therefore,
there is no longer a direct reference to the Von Neumann architecture and the very concept of “state” or
mutable variables (variables whose content can be modified) is missing.

As mentioned, programs written in a functional language are executed by evaluating expressions.
Informally speaking, there are “complex” expressions, which can be simplified, and “simple” expressions,
which cannot be further simplified. An expression that cannot be simplified is a value, while a complex
expression can be simplified to a value; the operation that computes this value is called reduction (or
evaluation) of the expression1.

A complex expression is therefore composed of operations (or functions) applied to values and the
order in which these functions and operations are evaluated depends on the language. For example, 4 ∗ 3
is a “complex” expression composed of the values 4 and 3 and the multiplication operation. By evaluating
this expression, it reduces (simplifies) to 12, which is the value of its result. The expression “if (n ==

0) then (x + 1) else (x - 1)”, on the other hand, is more “interesting”, because it is not clear if
and when the subexpressions “x + 1” and “x - 1” are evaluated: a programming language could decide
to always evaluate the two expressions before evaluating the expression if, or it could decide to evaluate
“x + 1” only if “n == 0” and evaluate “ x - 1” only if “n != 0”.

In case of “eager evaluation”, the evaluation of the expression is done by first evaluating the parameters
of each operation and then applying the operation to the obtained values, while in case of “lazy evaluation”
the various sub-expressions are evaluated only when their value is actually used: therefore, if an expression
is passed as a parameter to a function (or as an argument to an operation) but the function does not use
that parameter, the value of the expression is not is evaluated.

In languages such as Standard ML that use an “eager” evaluation mechanism, therefore, an expression
composed of an operator applied to one or more arguments is evaluated by first reducing its arguments
and then applying the operator to the values obtained by evaluating the arguments. Conversely, in
languages like Haskell that use a “lazy” evaluation mechanism, an expression composed of an operator
applied to one or more arguments is evaluated by reducing the arguments only when the operator actually
uses them .

In summary, a program written in a functional language is nothing more than an expression (or set
of expressions), which is evaluated when the program executes. Complex programs are often written by
defining functions (in the mathematical sense of the term) which are then called by the “main” expression
describing the program itself. In theory, evaluating these expressions should have no side effects, but some
types of side effects (for example, inputs and outputs) are often very difficult to avoid. From all this
one can at least guess how a functional programming language can be informally seen as a “high-level
version” of λ calculus (which adds at least the concept of global environment and some syntactic sugar).

In this regard, it is important to note that in languages such as Haskell and Standard ML (unlike
other functional languages such as LISP or Scheme) the various expressions that compose a program are

1It should be noted that there are expressions for which the reduction process never ends and so the simplification does
not arrive at a value. Such expressions can be seen as the “functional equivalent” of infinite loops.

37
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written as operations or functions acting on values belonging to a type. The functions themselves are
characterized by a type (an arrow between the type of the argument and the type of the result)2. In this
sense, we can say that languages like LISP or Scheme derive directly from the “simple” λ calculus, while
languages like those of the ML family (Standard ML, ocaml, F#, ... ) and Haskell derive from typed λ
calculus (although they must use a recursive type system to be Turing-complete).

In a statically typed language, the type of an expression and its parameters is determined before
executing the code: the compiler/interpreter infers (extrapolates) the types of parameters and expression
by analyzing the code, without executing it. Some of the static, strictly typed languages, such as Haskell,
complicate things a bit because they use a type system that is also polymorphic, i.e., a single expression
can assume different types depending on the context in which it is used (but, once the context is fixed,
each expression is evaluated — albeit lazyly — to a value belonging to a type, so the typing remains
strict). The use of this polymorphic type system coupled with the lazy evaluation used by Haskell can
sometimes be misleading into thinking that the language does not use strict typing.

In cases where the type of values and expressions cannot be easily inferred by the compiler (or by the
interpreter) or it is not desired to make use of polymorphism, some languages (including, for example,
the languages of the ML family and Haskell) may allow the programmer to annotate expressions with
their type, using a special syntax (which you will see later).

3.2 Expressions and Data Types in Haskell

The basic data types provided by Haskell are: () (sometimes called “unit”, which is the equivalent of
the “void” type in other languages), tt Bool, Char, Int, Float, Double and String.

In addition to providing these basic types, Haskell allows you to use combinations of types in the
form of tuple, to define synonyms for existing data types, and to define new data types (whose values are
generated by special functions called constructors).

The type () is composed of a single value, also called ()3 and is generally used as part of the result
of expressions that would not generate any value (and that are only important for their own side effects).
In theory such expressions should not exist in a purely functional programming language, but the need to
do Input/Output (which is a side effect) complicates things. Haskell solves the problem by making I/O
expressions return both an effect (encoded by the type “IO α”) and a value (which for output functions
is often not relevant, so the type “()” is used... The type of the output functions will then be “IO ()”).
Another way to think of the “()” type is to think of it as a “tuple of 0 items” type.

The Bool type, on the other hand, is composed of two values (True and False).

The Int type is composed (as the name suggests) of positive and negative integers. Some operators
are defined on these numbers: the unary operator - and the standard binary operators representing
the basic arithmetic operations *, + and -4. The division operator / is not defined on integers (while
there is a function div which computes the integer division). Note that unlike other languages Haskell
accepts expressions like “5 / 2” (instead of reporting an error because 5 and 2 are integer values but the
operation “/” is not defined on integers). This happens because Haskell implicitly converts 5 and 2 to
floating point values 5.0 and 2.0. Finally, it should be noted that “div” is a function, not an operator,
so the correct syntax to use it is “div 5 2”, not “5 div 2” (If you wish, Haskell allows you to use binary
functions with the infix operator notation as long as you quote them in single quotes: “5 ‘div‘ 2”).

The Float and Double types are composed of a set of approximations of real numbers (in single
precision for Float and in double precision for Double). The values of these types can be expressed by
integer and fractional parts (for example, 3.14) or by using the exponential form (for example, 314e-2).
Again, the - symbol can be used to negate a number (reverse its sign). Two special values NaN (Not a
Number) and Infinity can be used to indicate values that cannot be represented as real numbers or
infinite values (the result of dividing a real number by 0).

The Char type is composed of the set of characters. A value of this type is represented enclosed in
single quotation marks, as in C; for example, ’a’.

The String type is composed of the set of strings, represented in quotation marks; for example
"test". Haskell defines the ++ concatenation operator on strings: "Hello, " ++ "world" = "Hello,

World".

2Formally, a type can be defined as a set of values and the type of a value indicates the set to which that value belongs
3Warning! Note that the type and its only value have the same name, “()”, and this can sometimes cause some confusion
4note that in Haskell the operation - (subtraction) and the unary operator - which reverses the sign of a number are

represented by the same symbol.
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In addition to the “classic” operators on the various types of variables, Haskell provides a selection
operator if, which allows you to evaluate two different expressions depending on the value of a predicate.
The syntax of an if expression in Haskell is:

i f <p> then <exp1> else <exp2>

where <p> is a predicate (an expression evaluating to a boolean value) and <exp1> and <exp2> are two
expressions evaluating to values of the same type or compatible types (note that tt ¡exp1¿ and <exp2>

must have compatible types because the value of the resulting if expression has the same type as <exp1>
and <exp2 >). The expression if evaluates to <exp1> if <p> is true, while it evaluates to <exp2> if <p >

is false.
Although Haskell’s if operator is often seen as the expression-level equivalent of the if selection

operation provided by imperative languages such as C, C++, Java, or the like, it is important to note a
few differences. For example, the selection constructs of an imperative language allow to execute a block
of operations if the predicate is true (then block) or a different block of operations if the predicate is false
(else block). In theory, each of the two blocks (then or else) can be empty, meaning that there is no
operation to perform for a given truth value of the predicate. Haskell’s if operator, on the other hand
(like the equivalent operator of all functional languages), must always be evaluable to a value. Thus,
neither then or else expression can be empty. In this sense, a Haskell “if predicate then expression1
else expression2” expression is equivalent to the if arithmetic “predicate ? expression1 : expression2” of
the C or C++ language.

An example of using if is

i f a > b then a else b

which implements an expression evaluated to the maximum between a and b.
Finally, an important feature of the Haskell type system should be noted: the existence of classes of

types (typeclasses), which group together various types having certain properties (that is, for which some
specific operations are defined).

For example, the class of types “Eq” contains all types on which the comparison operator “==” is de-
fined, the class “Show” contains all types displayable on screen via “print”, class “Ord” contains all types
on which comparison operators are defined (“<” and “>”), the class “Num” contains all types expressing
numeric values (“Int”, “Float’ ’, “Double”), the class “Fractional” contains all types representing
non-integer numbers (“Float” and “Double ”) and so on.

Haskell’s type inference mechanism will not associate a value with a type, but with a class of types;
so, for example, the value “5” is not associated with the type “Int”, but with a generic type of the class
“Num”; if you want to specify the type of a value in a precise and unambiguous way, this must be done
explicitly.

3.3 Associating Names to Values

The expressions composing a Haskell program can directly use values (irreducible expressions) as operands
or they can use identifiers defined in a environment to represent values (technically, the environment is
said to contain bindings between names and values). An environment can be seen as a set of pairs
(identifier, value) which associate names (or identifiers) to values5.

While there is no concept of a mutable variable, the various “bindings” that bind names and values
in the environment can vary over time. The environment can in fact be modified (actually, extended) by
associating a value (of any type) with a name (identifier) using the “=” operator:

<name> = <value>
<name> : : <type>; <name> = <value>

The “=” operator (called definition in Haskell) adds a binding between the “<name>” identifier and
the “<value>” value to the environment, while “::” (called declaration) allows you to specify the type of
the value. The value can also be the result of an expression evaluation; in this case, the definition takes
the form

<name> = <expre s s i on>

5Note that the environment described here is a global environment and each function will have a then its local environ-
ment.
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for example, v = 10 / 2; binds the name “v” to the value “5”.
An interesting peculiarity of Haskell is that the type of the value associated with a name is not

determined at the moment of definition (moment in which a binding between the name and the value is
added to the environment), but when the value is actually used. This implies that a “a = 5” definition
associates the name “a” to a generic numerical value “5”, not to an integer, floating point or other. More
precisely, the type of “a” is “Num p => p”, indicating a generic type “p” belonging to the class of types
“Num”. Technically, the symbol “p” representing a type is called type variable and the expression “Num
p =>” represents a constraint on that variable ( in this case, “p” must be a numeric type). Note that
the “a/2.5” operation is possible (unlike in other languages), because the “/” operation is defined on
arguments whose type belongs to class “Fractional” and “a” has a type belonging to class “Num”; since
“Fractional” is a subset of “Num”, the type of “a” may be of class “ Fractional” (like the type of the
value “2.5”) and is therefore type-compatible with “/”. The type of the result is obviously “Fractional
a => a”.

If you want the type of the value associated with a name not to be polymorphic (but to be a well-
specified type), you have to declare it explicitly as in

a = 5
to : : Int

In this case, the “a/2.5” operation will not be possible and the compiler will throw an error. It is
important to note the difference between Haskell’s polymorphic inference mechanism and the data type
promotion (or automatic value conversion) mechanism used by other languages: in Haskell, “5 / 2.5” is
possible because the value “5” can have a type belonging to the class “Fractional”, while in C, C++,
Java or similar “ 5” is an integer value that is automatically converted to a floating point to perform
division.

Returning to the creation of new bindings in the environment, it is interesting to note that in Haskell
the binding of a name to a value can be seen as a variable declaration: for example, pi = 3.14 creates a
variable identified by the name pi and binds it to the real value 3.14. But it should still be noted that
these variables are simply names for values, they are not containers of mutable values. In other words,
a variable is immutable and always has a constant, unchangeable value. A subsequent declaration pi =

3.1415 does not modify the value of the variable pi but creates a new value 3.1415 of type Float or
Double and associates it with the “pi” name, “masking” the previous binding. Haskell always uses the
last value that was mapped to a name. This means that the keyword “=” modifies the environment,
not the value of variables: “=” always defines a new variable (initialized with the specified value) and
creates a new binding (between the specified name and the created variable) in the environment.

Finally, remember that in a functional programming language functions are expressible, denotable,
and storable values. Hence, a Haskell variable can denote function values too. As an example, a “sum2”
function can be defined as:

sum2 x y = x ∗ x + y ∗ y

3.4 Functions

A particular data type that has not been previously mentioned but is related to a fundamental feature
of functional programming languages is the function data type. As suggested by the name, a value of
this type is a function, in the mathematical sense of the term: a relation that maps each element of a
domain set into one and only one element of a codomain set. In a functional language, the domain and
codomain sets are defined by the types of the parameter and the returned value. Looking at things from
a different point of view, a function can be considered as a parameterized expression, i.e. an expression
whose value depends on the value of a parameter.

Remember that considering functions with only one parameter is not reductive: the parameter can
be a n-tuple of values (therefore, the domain set is the Cartesian product of n sets), or the currying
mechanism (see Section 3.7) can be used to reduce functions with multiple parameters to functions
with only one parameter. According to the definition given above the only effect of a function is the
computation of a value (result, or return value) based on the value of the parameter. Functions cannot
therefore have side effects of any kind (that is, they cannot have effects that are not in the return value
of the function).

As in all functional languages, function values are expressible, that is, they can be generated as the
results of expressions. In particular, Haskell uses the symbol “\” to represent λ-calculus abstractions
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(“\” is an approximation of the Greek letter λ) and hence generate values of type function. The syntax
is:

\ <param> −> <expre s s i on>

where <param> is the name of the formal parameter while <expression> is a valid expression, which can
use the names present in the global environment plus the name <param>. The expression \x −> exp
when evaluated has therefore as a result a value of type function. Each time the function will be applied
to a value (actual parameter), this value will be linked to the name x (formal parameter) in the local
environment in which the expression exp is evaluated (the “\” construct thus creates a local environment
for the function!).

For instance,

\n −> n + 1

is a function that increments a number (in this case, the formal parameter is n and the expression to
evaluate when applying the function is n + 1). A function can be applied to a value by writing the
function followed by the actual parameter. For instance,

(\n −> n + 1) 5

applies the function \n -> n + 1 to the value 5 (the parentheses are necessary to indicate the order of
precedence of the operations: first the function is defined and then it is applied to the value 5). This
means that the value 5 (actual parameter) is bound to the name n (formal parameter) and then the
expression n + 1 is evaluated, which gives the function return value. The result of this expression is
obviously 6.

Like all other values, a function-type value can also be mapped to a name using Haskell’s “=” definition
mechanism. For example, the following code will define a variable (immutable, remember!) increment

whose value is a function that adds 1 to the value passed as a parameter (in other words, it will associate
the name increment to this function):

increment = \n −> n + 1

The type of this variable is Num a => a ->a (which is equivalent to the mathematical notation “f : X →
X”, where “X” is a numerical set: N , Z, R, ...). It is now possible to apply this function to an actual
parameter by using its name: “increment 5” will obviously result in “6”. Associating symbolic names to
functions (that is, creating variables of function type) is useful when the function must be used/referenced
multiple times... For example, consider

(\x −> x+1) ( (\ x −> x+1) 2)

versus

increment ( increment 2)

Haskell also provides a simplified syntax for defining functions and associate names to them:

<name> <param> = <expre s s i on>

is (almost) equivalent to

<name> = \ <param> −> <expre s s i on>

As an example, the increment function can be defined as

incrementa n = n + 1 ;

which looks more readable than the definition based on the lambda expression and a variable definition
(which is more similar to the λ-calculus).

This syntax does not introduce new functionalities (and does not increase the language’s expressive
power), but is just syntactic shugar used to simplify the “... = \...” definitions6.

6Actually, things are a little bit more complex, for multi-parameters functions.
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3.5 Definitions by Cases

Besides being able to be defined through an arithmetic expression that allows to calculate its value (as just
seen), a function can also be defined “by cases”, explicitly specifying the value of the result corresponding
to each value of the parameter (or to specific values, then using a generic expression for the remaining
cases). This is generally useful for functions defined by induction (or for recursive functions), where we
distinguish values for inductive bases and for inductive steps.

The case definition can be easily implemented using the case operator:

\x −> case x of
<pattern 1> −> <expre s s i on 1>
<pattern 2> −> <expre s s i on 2>

. . .

. . .
<pattern n> −> <expre s s i on n>

where the expression case x of p1 −> e1; p2 −> e2; ... first evaluates the expression x, then compares
the obtained value with the specified patterns (p1, p2, etc...). As soon as the comparison is successful
(a match occurs), the matching expression is evaluated by assigning the resulting value to the case

expression.

An easy way to define a function “by cases” is then to use constant values as a patterns to enumerate
the possible values of the parameter. An example of a function defined by case (or by enumeration) is:

day = \n −> case n of
1 −> ”Monday”
2 −> ”Tuesday”
3 −> ”Wednesday”
4 −> ”Thursday”
5 −> ”Friday”
6 −> ”Saturday”
7 −> ”Sunday”

=> ” Inva l i d day”

note that the strange “ ” pattern is used to “catch” all cases not previously enumerated (integers smaller
than 1 or greater than 7).

Hence, the case operator seems to be the expression-level equivalent of the case or switch command
(multiple selection command) that exists in many imperative languages. However, there is an important
difference: Haskell’s case expression (like the equivalent of many functional languages) allows you to use
not only constant patterns (as seen in the previous example), but also more complex patterns containing
names or constructs such as tuples or similar. When comparing the value of an expression x against
these “more complex” patterns, Haskell employs a pattern matching mechanism. For example, if a
pattern contains variable identifiers, when Haskell compares the expression against that pattern it can
create bindings between these identifiers and values so that the match is successful. For example, in the
following code

f = \a −> case a of
0 −> 1000 .0
x −> 1 .0 / x

if the parameter of the function is not 0 (the first pattern does not match) a binding between x and the
value associated with a is created (so that the second pattern can match).

More complex patterns based on tuples can be used (even without using the “case” keyword) to
define multi-variable functions:

sum = \ ( a , b ) −> a + b

In this case, when the “sum” function is invoked the pattern matching mechanism creates a binding
between “a” and the first value of the pair passed as an actual argument (similarly, a binding between
“b” and the second value of the pair is created).

It also interesting to notice how this expression
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f = \x −> case x of
<pattern 1> => <expre s s i on 1>
<pattern 2> => <expre s s i on 2>
. . .
. . .
<pattern n> => <expre s s i on n>

can be rewritten without using the “case” keyword. For example, as

f x = case x of
<pattern 1> => <expre s s i on 1>
<pattern 2> => <expre s s i on 2>
. . .
. . .
<pattern n> => <expre s s i on n>

which can be further simplified to

f <pattern 1> −> <expre s s i on 1>
f <pattern 2> −> <expre s s i on 2>
. . .
. . .

f <pattern n> −> <expre s s i on n >;

The latter syntax is sometimes more readable, as it allows you to specify even more explicitly the re-
sult value of the function for each value of the argument. More formally, Haskell compares the value
of the actual parameter with which the function is invoked against the various patterns specified in the
definition <pattern 1>...<pattern n>. If the current parameter matches <pattern 1>, the first defini-
tion is considered and the function is evaluated as <expression 1>; if the current parameter matches
<pattern 2>, the function is evaluated as <expression 2> and so on. In other words, the creation of
the link between formal parameter (name) and actual parameter (value) in the local environment of the
function takes place by pattern matching. Note that the “standard” definition f x = <expression> is a
special case of this form.

Using this syntax, the definition of the function day presented above becomes:

day 1 = ”Monday”
day 2 = ”Tuesday”
day 3 = ”Wednesday”
day 4 = ”Thursday”
day 5 = ”Friday”
day 6 = ”Saturday”
day 7 = ”Sunday”
day = ” Inva l i d day”

Again, it is important that the patterns <expression 1>, ... <expression n> cover all possible values
that the function can take as actual parameters. Hence, the special symbol “( )” allows to match all the
values not covered by the previous clauses.

Pattern matching is a very generic mechanism, used in many other contexts and not only to define
functions for cases. In general, it can be said that the pattern matching mechanism is used whenever a
binding between a name and a value is created (even independently from the definition of functions): for
example, the expression

x = 2 .5

creates a link between the floating point value 2.5 and the name x to match the pattern “x” with the
value 2.5. More complex patterns can be used to create multiple links at the same time; for instance

(x , y ) = (4 , 5)

will bind the name x to the value 4 and the name y to the value 5 in order to create a match between
the pattern (x, y ) and the pair value (4, 5).

To define pattern matching more precisely, we can say that a pattern can be:
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• a constant value, which matches only that specific value;

• a variable pattern <var>, which matches any value, after creating a binding between the name
<var> and the value;

• a tuple pattern (<pattern 1>, <pattern 2>, ..., <pattern n>), which composes n simpler pat-
terns in one tuple. In this case we have a match with a tuple of n values if and only if each of the
values of the tuple matches the corresponding pattern of the tuple pattern;

• the wildcard pattern , which matches any value.

Note that the value () can be seen as an example of a pattern tuple (null tuple).
As we all know, a program coded according to the functional programming paradigm uses the recursion

mechanism wherever an imperative program uses iteration. It is hence fundamental to understand how
to implement recursion using Haskell.

A recursive function is a function similar to the other ones, and there is no need to define it in any
particular way: the function body can simply invoke the function itself, without issues. An example is

f a c t = \ n −> i f n == 0 then 1 else n ∗ f a c t (n − 1)

which could also be defined as

f a c t n = i f n == 0 then 1 else n ∗ f a c t (n − 1)

or even

f a c t 0 = 1
f a c t n = n ∗ f a c t (n − 1)

3.6 Controlling the Environment

Like many modern languages, Haskell uses static scoping: in a function, non-local symbols are resolved
(ie: associated with a value) by referencing the environment of the code block in which the function is
defined (and not to the caller’s environment).

Note that the lambda construct (or the “beautified syntax” for defining functions) creates a static
nesting block (like the { and } symbols in C). Inside this block a new binding between the symbol that
identifies the formal parameter and the value of the current parameter with which the function will be
invoked is added. This new binding may introduce a new symbol or mask an existing binding. For
example, a “v = 1” definition creates a link between the symbol “v” and the value “1” in the global
environment. A “f = \v −> 2 ∗ v” definition creates a nesting block (containing the expression “2 ∗ v”
) where the symbol “v” is no longer associated with the value “1”, but with the value of the current
parameter with which “f ” will be invoked. So, “f 3” will return 6, not 2.

Non-local symbols7 are looked up in the active environment when the definition of the function is
evaluated (and not when the function is called) and can be resolved at that time. For example, a
statementf = \ x =>x + y; will result in an error if when this declaration is processed the symbol y is
not bound to any value.

Haskell also provides two mechanisms for creating static nesting blocks and changing the environment
inside them (without changing the environment outside the block): one for creating nesting blocks con-
taining expressions (let <definitions> in <expression>) ed one for modifying the environment inside a
definition (<definition> where <definition>).

In other words, “let <definitions> in <expression>” is an expression evaluated to the value of
<expression> after the environment is changed by adding the bindings defined in <definitions>.
These bindings are used to evaluate the expression and are then removed from the environment im-
mediately after evaluation. For example, the let construct can be used to implement a tail recursive
version of the factorial function. Recall that a function is tail recursive if it uses only tail recursive
calls: the traditional function fact = \n −> if n == 0 then 1 else fact (n − 1) ∗ n It is not tail re-
cursive because the result of fact(n - 1) is not immediately returned, but must be multiplied by n.
A tail recursive version of the factorial function uses a second parameter to store the partial result:
fact tr = \n =>\res =>if n == 0 then res else fact tr (n − 1) ( n ∗ res). This function therefore re-
ceives two arguments, unlike the original fact function. Hence, a wrapper is needed to invoke fact tr

7According to the previous descriptions the local symbols are just the formal parameters of the function.
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f a c t = \ n −>
l et

f a c t t r = \ n −> \ r e s −>
i f n == 0 then

r e s
else

f a c t t r (n − 1) (n ∗ r e s )
in

f a c t t r n 1

Figure 3.1: Implementation of the tail-recursive factiorial function in Haskell, hiding the fact tr function
through a let block.

f a c t = \n −> f a c t t r n 1
where f a c t t r = \n −> \ r e s −> i f n == 0

then
r e s

else
f a c t t r (n − 1) (n ∗ r e s )

Figure 3.2: Implementation of the tail-recursive factiorial function in Haskell, hiding the fact tr function
through the where construct.

with the right parameters: fact = \n =>fact tr n 1. However, such a solution has the problem that
fact tr is visible not only to fact (as it should be), but in the whole global environment. The let

construct allows you to solve this problem, as shown in Figure 3.1.

The “<definition1> where <definition2>” construct instead allows you to use the bindings defined
by <definition2> in <definition1>, then restoring the original environment. The usefulness of the
where construct can be better understood by considering the following example: suppose you want to
implement in Haskell a function f : N → N , even if Haskell does not support the type unsigned int

(corresponding to N ) but only the type Int (corresponding to Z). To overcome this limitation, one can
define a function integer f which implements f() using Int as domain and codomain, calling it from a
function f which checks whether the value of the parameter is positive or not, and returning −1 in case
of negative argument:

f = \n −> i f n < 0 then −1 else i n t e g e r f n
where

i n t e g e r f = \n −> . . .

This solution can be used to avoid making the “integer f” function (which accepts negative arguments
without any check) visible to everyone. Similarly, where can be used to “hide” the two-arguments function
fact tr in the tail recursive definition of the factorial (see previous example in Figure 3.1), as shown in
Figure 3.2.

Comparing the two examples in Figure 3.1 and 3.2, it is easy to understand how there is a close
relationship between the let construct and the where construct and how it can always be possible to use
let instead of where (moving the definitions from the in block outside the construct).

3.7 Functions Working on Functions

Since a functional language provides the function data type and the ability to view functions as denotable
values (handled similarly to values of other more “traditional” types such as integers and floating points),
it is possible to define functions that take other functions as parameters and thus work on functions.
Similarly, the return value of a function can itself be a function. From this point of view, functions
that take functions as parameters and return functions are similar to functions that take and return (for
example) integer values. However, there are some details that deserve to be considered more carefully
and that motivate the existence of this section.
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To analyze some interesting peculiarities of functions working on functions (often referred to as “high-
order functions” in the literature) let us consider a simple example based on the computation of the
derivative (or better, of an approximation of it) of a function f : R → R. Starting by defining a
function computederivative which accepts as parameter the function f to calculate the derivative of
and a number x ∈ R. The function computederivative returns an approximation of the derivative of
f computed in x. This function, which has a function parameter and a floating point parameter and
returns a floating point value, can be implemented, for example, as:

computeder ivat ive = \ ( f , x ) −> ( f ( x ) − f ( x − 0 . 0 01 ) ) / 0 .001

Notice that Haskell is able to infer the type of the “x” parameter (which turns out to be a type “a2”
belonging to the “Fractional” class, therefore a floating point number, due to the expression x - 0.001)
and f (which turns out to be a function from “a1” belonging to the “Fractional” class to “a2” —
also belonging to the “Fractional” class — since f is applied to x and its return value is divided by
0.001). The type of computederivative will therefore be “(Fractional a1, Fractional a2) => (a2

-> a1, a2) -> a1”, where a1 and a2 are type variables with the constraint of representing types of the
“Fractional” class (floating point numbers).

However, the example presented is not surprising, because something similar to the “computederivative”
function presented above can be easily implemented even using an imperative language (for example, using
the C language one can use a function pointer as the first parameter, instead of f). On the other hand,
something considerably more difficult to implement with non-functional languages is a “derivative”
function which receives only the function f as input (and not the point x in which to compute the
derivative) and returns a function (and not a real number) that approximates the derivative of f . This
derivative function has a single parameter, of type (Fractional a1, Fractional a2) => a1 -> a2

(indicating that a1 and a2 are floating point types) and returns a value of type a1 -> a2. The type
of this function will therefore be (Fractional a1, Fractional a2) => (a2 -> a1) -> a2 -> a1 and
its possible implementation in Haskell is the following:

d e r i v a t i v e = \ f −> (\x −> ( f x − f ( x − 0 . 0 01 ) ) / 0 . 001 )

Let’s try to better understand this definition of derivative: derivative = \f −> basically says that
the name “derivative” is associated with a function whose parameter is “f”. The expression that defines
how to compute this function is \x −> (f x − f (x − 0.001)) / 0.001 (some parentheses have been added

to the above example for readability), which indicates a function of variable x computed as fx−f(x−0.001)
0.001 .

Thus, the return value of the function derivative is a function (of the “x” parameter), which Haskell
can identify as a floating point due to the expression x − 0.001. This function is computed based on
“f”, which is a parameter of derivative. By evaluating the definition, Haskell can infer the type of f
(floating point to floating point function).

As a further consideration, it should be noted that the derivative function can be seen as a “cur-
ryfied” version of the computederivative function. Basically, instead of 2 arguments (the function f

to calculate the derivative of and the point x in which to calculate the derivative) the function receives
only the first argument f... When invoked with 2 arguments, the “derivative” function returns a real
number (the value of the derivative of f at the point x); therefore, if applied to a single parameter f the
function cannot return a real, but will return “something” which can become a real number when applied
to a further parameter x (which is a real number)... This “something” is therefore a function f ′ : R → R.

We recall that (informally speaking) the fundamental idea of currying is to transform a function of
two parameters x and y into an equivalent function of the x parameter which returns a function of the y
parameter. Thus, the currying mechanism allows us to express a function in several variables as a function
in one variable which returns a function of the other variables. For example, a function f : RxR → R
which takes two real parameters and returns a real number can be rewritten as fc : R → (R → R).

As another example, the “sum” function that sums two numbers

sum = \ (x , y ) −> x + y

can be rewritten as

sum c = \x −> (\y −> x + y)

To better understand the currying mechanism, consider f(x, y) = x2 + y2 and its curryified version
fc(x) = fx(y) = x2 + y2. Notice that de domain of f() is R2 and the codomain of f() is R, while fc()
has R as a domain and R → R as a codomain. In Haskell these functions are defined as
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f = \ (x , y ) −> x ∗ x + y ∗ y
f c = \x −> (\y −> x ∗ x + y ∗ y )

fc allows partial applications, such as val g = f 5, which defines g(y) = 25+ y2, while f does not allow
anything similar.

The Haskell syntax directly supports currying (thanks to the fact that function application is left-
associative); moreover, it is possible to define multi-parameters functions with something like

f a b = exp ;

which is equivalent to

f = \a −> \b −> exp ;

Again, this is just syntactic sugar that simplifies the usage of currying for imperative programmers.
Thanks to this simplified syntax, the “f” and “fc” functions from the previous example can be written

as

f (x , y ) = x ∗ x + y ∗ y ;
f c x y = x ∗ x + y ∗ y ;

while the definition of “derivative” becomes

d e r i v a t i v e f x = ( f ( x ) − f ( x − 0 . 0 01 ) ) / 0 . 0 0 1 ;

So, a two-parameters function “f (p1, p2) = ... ” can be curryified by changing “(p1, p2)” into “p1
p2”: “f p1 p2 = ...”.

3.8 Haskell and Data Types

So far we’ve been working with Haskell’s predefined data types: (), Bool, Int, Float, Double, Char
and String (although the () type hasn’t been used much... In practice, it is mainly useful for modeling
“strange” functions that take no arguments or that return only effects and not values).

All types recognized by Haskell (“simple types” such as the primitive types just mentioned, or more
complex user-defined types) can be aggregated in various ways to generate more complex types. The
simplest way to compose data types is through tuples (defined on the cartesian product of the types that
compose them). For example, we have already seen how a multi-argument function could be defined as
a function whose only argument is a tuple composed of the function’s arguments:

sum2 = \ ( a , b ) −> a ∗ a + b ∗ b

This function has type “Num a =>(a, a) −> a” which means “function from a pair of elements of the
type a to an element of the type a, where a is a type representing a number (Int, Float, Double)”; in
other words, the only parameter of the function is of type “(a,a)”, which represents the cartesian product
of a numerical set by itself (for example, N ×N ).

More formally speaking, a tuple is an ordered set of multiple values, each of which has a type recognized
by Haskell. Again, notice how the type () (or unit, having a single value ()) can be seen as a tuple of 0
items, and how tuples of 1 items match the item itself. For example, “(6)” is equivalent to “6” and has
type Num p => p; thus, the expression “(6)” is evaluated as “6” and the expression “(6) == 6” evaluates
to True.

As seen, the pattern matching mechanism applied to tuples allows you to create bindings between
several names and symbols at the same time: “pair=(”pi”, 3.14)” creates a link between the sym-
bol “pair” and the pair “(”pi”, 3.14)” (having type “Fractional b => ([Char], b)”). Instead,
“(pi\ name, pi\ value) = pair” binds the symbol “pi name” to the string “"pi"” and binds the sym-
bol “pi value” and the number “3.14” (of a “Fractional” type). This same mechanism is used to pass
multiple parameters to a function using a tuple as the only argument.

Haskell also allows you to define new data types, using the “data” keyword, which allows you to make
the compiler recognize data whose values are not previously known. The simplest way to use data is to
define the equivalent of an enumeration type; for instance

data Currency = Eur | Usd | Ounce gold
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data Currency = Eur | Usd | Ounce gold
data Money = Euros Float | Usdo l l a r s Float | Ounces gold Float

convert ( amount , to ) =
l et toeur ( Euros x ) = x

toeur ( Usdo l l a r s x ) = x / 1 .05
toeur ( Ounces gold x ) = x ∗ 1113 .0

in
( case to of

Eur −> toeur amount
Usd −> toeur amount ∗ 1 .05
Ounce gold −> toeur amount / 1113 .0

, to )

Figure 3.3: Converting amounts of “Money” to different currencies. Notice the pattern matching on the
“Money” and “Currency” types.

data Currency = Eur | Usd | Ounce gold
data Money = Euros Float | Usdo l l a r s Float | Ounces gold Float

convert ( amount , to ) =
l et toeur ( Euros x ) = x

toeur ( Usdo l l a r s x ) = x / 1 .05
toeur ( Ounces gold ) x = x ∗ 1113 .0

in
case to of

Eur −> Euros ( toeur amount )
Usd −> Usdo l l a r s ( toeur amount ∗ 1 . 05 )
Ounce gold −> Ounces gold ( toeur amount / 1113 .0 )

Figure 3.4: Converting amounts of “Money”, final version.

defines three new values (“Eur”, “Usd” and “Ounce gold”) that were not previously recognized: before
this definition, trying to associating the value “Eur” to a name (with “c = Eur”) results in an error. But
after the definition, “c = Eur” succeeds and “c” is associated with a value of type “Currency”.

In this kind of definition, the symbol “|” represents an “or” meaning that a variable of type “Currency”
can have value “ Eur” or “Usd” or “Ounce gold”. Note that names separated by “|”, which represent
the constant values we are defining, must start with an uppercase letter, as the type name. Technically,
they are value constructors, ie functions that return (construct) values of the new type we are defining.
In this case (definition of a type equivalent to an enumerated type), the constructors have no arguments
and are therefore constant constructors; however, there is the possibility of defining constructors that
generate a value starting from an argument.

For example, consider Money come segue:

data Money = Euros Float | Usdo l l a r s Float | Ounces gold Float

(note that “Euros, “Usdollars” and “Ounces gold” have been used here to make the constructors of
the “ tt Money” type different from constructors of the “Currency” type...).

Like all Haskell functions, these value constructors also have only one argument (and as usual, this
limitation can be overcome by using a tuple as an argument).

In this case, “Euros” does not represent a (constant) value of the “Money” type (as was the case with
“Eur” for the “ Currency” type), but it is a function from numbers Float to values of the “Money” type
(in Haskell, “Float −> Money ”). Values of “Money” type are therefore “Euros 0.5” or similar.

Figure 3.3 shows a “convert” function that converts values between different currencies. The function
is implemented using the two new data types just described, doing pattern matching on values of the
“Currency” type in the “toeur” function and doing pattern matching on values of the “Money” type
in the body of “convert”. Note however that the use of these new data types is still partial, because
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this version of “convert” receives a pair where the first element is of type “money” and the second is of
type “currency”, but returns a “(Real, Currency)” pair instead of a value of the “money” type. The
implementation of Figure 3.4 solves this last problem.

When using “data” to define a new data type, it is important to remember that defining a type by
simply specifying its values is not enough. We must also specify how to operate on such values, defining
functions that operate on the type that we defining (going back to the previous example, define the
“Currency” and “Money” types without defining the “convert” function is not very useful...).

3.9 Working with Haskell

An abstract machine for the Haskell language (that is, an abstract machine capable of understanding and
executing programs written in Haskell) can be implemented through interpreters or compilers. Although
there are several compilers or interpreters for Haskell, here we will focus on the Glasgow Haskell Com-
piler (ghc) starting with its interactive version, ghci, which implements a read-evaluate-print loop (Real
Evaluate Print Loop — REPL) for Haskell. This is because an interactive program like ghci is initially
more intuitive and easier to use (avoiding us, at least initially, to consider more complex concepts like
I/O Monad or similar). This means that operationally a user can interact directly with the REPL via a
prompt and test the first commands we will see in a fast and intuitive way. The REPL can be invoked
by typing the command “ghci”, which responds as follows:
luca@nowhere $ ghci

GHCi, version 8.6.5: http://www.haskell.org/ghc/ :? for help

Prelude>

ghci shows its prompt (characterized by the “Prelude>” symbol) and waits for expressions to be
entered to be evaluated.

As already explained, running a functional program means evaluating the expressions that compose it
(see Section 3.1); thus, a Haskell REPL can initially be viewed as an interactive evaluator of expressions.

Expressions entered via the prompt are evaluated by ghci as the user enters them; every time ghci

evaluates an expression, it displays the resulting value on the screen. For example, typing

5

the REPL answer is

5

showing that the expression we enteres has been evaluated to 5. Of course, more complex expressions
can also be tested:

Prelude> 5 + 2
7
Prelude> 2 ∗ 3 ∗ 4
24
Prelude> (2 + 3) ∗ 4
20

and so on.
The “Return” (or “Enter”) key works as a terminator marking the end of an expression. Thus, an

expression is not compiled/evaluated/reduced until a carriage return is encountered; on the other hand,
a carriage return results in immediate evaluation of the expression and this could lead to problems with
multi-line expressions. For example, the following Haskell code declares and defines an integer variable
called “a” and initializes it with the value 5:

a : : Int
a = 5

however, typing these two lines in the ghci REPL we get an error after the first line:

Prelude> a : : Int

< i n t e r a c t i v e > : 4 : 1 : error : Var iab le not in scope : a : : Int
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because ghci tries to compile “a :: Int” before “a = 5” is entered. A possible solution to this issue
is to type the variable declaration and definition on the same line, separated by “;”:

Prelude> a : : Int ; a = 5
Prelude> a
5
Prelude> : t a
a : : Int

as a side note, this example also shows that ghci interprets the “:t” command as a request to show the
type of a variable. If the declaration of the type of “a” was not entered, the result would have been

a = 5
Prelude> a
5
Prelude> : t a
a : : Num p => p

indicating that the value associated to the “a” identifier is has a generic type “p” of the “Num” class (Int,
Float, Double).

The previous examples show how given an expression, the compiler may be able to infer the type of
the variables (but also of the arguments and the return value of the functions). Unlike other languages
like Standard ML, Haskell uses its polymorphic type system to give more flexibility without performing
automatic type conversions. For this reason, expressions like

5 + 2 .0

are perfectly valid:

Prelude> : t 5
5 : : Num p => p
Prelude> : t 2 . 0
2 . 0 : : Fractional p => p
Prelude> 5 + 2 .0
7 .0
Prelude> : t 5 + 2 .0
5 + 2 .0 : : Fractional a => a

This indicates that 5 is a generic number, while 2.0 is a floating point number. The result of the sum
will therefore be a floating point number (a type belonging to the “Fractional” class). The + (sum)
operator accepts as parameters two values of the same type, provided that this type belongs to the “Num”
class. Since the “Fractional” class is a subset of the “Num” class, the sum is possible and its result has
a type belonging to the “Fractional” class.

As previously mentioned, Haskell provides several base types:

Prelude> : t 2
2 : : Num p => p
Prelude> : t 2 . 0
2 . 0 : : Fractional p => p
Prelude> : t 2 > 1
2 > 1 : : Bool
Prelude> : t ”abc”
”abc” : : [Char ]
Prelude> : t ’ a ’
’ a ’ : : Char

We are now ready to do the first thing that every programmer does when facing with a new program-
ming language:

> ”Hel lo , ” ++ ”world”
”Hel lo , world ”
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"Hello, " and "world" are two values of the “String” type (which is a list of characters “[Char]”),
while “++” is the string concatenation operator, which receives two string as parameters and evaluates
to a string representing their concatenation.

So far we’ve seen how to use ghci to evaluate expressions where all values are explicitly expressed, but
Haskell also allows assigning names to “entities” recognized by a language. So let’s see how to associate
names to entities in Haskell and what are the denotable entities in Haskell (in an imperative language,
denotable entities are variables, functions, data types, ...) . Haskell provides the concept of environment
(a function which associates names with denotable values) but there is no concept of memory (function
which associates each variable the value it contains)8; thus, it is possible to map names to values, but it
is not possible create mutable variables:

Prelude> n = 5
Prelude> n
5
Prelude> : t n
n : : Num p => p

These commands bind the “n” identifier to “5”, print the value bound to “n”, and print the type of “n”.
Of course, it is possible to bind a variable name to values computed using more complex expressions:

Prelude> x = 5 .0 + 2 .0
Prelude> n = 2 ∗ 3 ∗ 4

After associating a name to a value, it is possible to use such a name (in place of the value) in the
following expressions:

Prelude> x = 5 .0 + 2 .0
Prelude> y = x ∗ 2 .0
Prelude> x > y
False

notice that “y = x ∗ 2” would not have resulted in any error... Why?
Haskell also allows to define functions, which associate names to blocks of code. While in imperative

languages variables and functions are defined using different constructs, in functional languages (and not
only) there is a “function” data type, generated by lambda expressions similar to λx.e (abstraction of the
λ-calculus). In particular, Haskell uses the “\” symbol instead of the “λ” symbol and “->” (an arrow)
instead of “.”:

Prelude>: t \x −> x + 1
\x −> x + 1 : : Num a => a −> a

in this case the value resulting from the evaluation of the expression is a function (in the mathematical
sense of the term) from a numeric type “a” to itself. Since no definition has been used, this function has
not been given a name (so, it is named anonymous function). However, a function can be applied to data
without giving it a name:

Prelude> (\x −> x + 1) 5
6

ghci is generally able to infer the type of a function, as for all the other data types:

Prelude> : t \x −> x + 1
\x −> x + 1 : : Num a => a −> a
Prelude> : t \x −> x + 1 .0
\x −> x + 1 .0 : : Fractional a => a −> a

At this point, it should be clear how to associate a name to a function, through what in other languages
would be called a function definition and which in Haskell corresponds to a simple variable definition.
Technically, the following code defines a variable “mul2” which has type “function from numbers to
numbers”:

8Theoretically, the concept of memory / modifiable variable also exists in haskell, but we won’t deal with it.
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f a c t t r = \n −> \ r e s −> i f n == 0 then r e s else f a c t t r (n − 1) (n ∗ r e s )
f a c t = \n −> f a c t t r n 1

f a c t t r 1 0 r e s = r e s
f a c t t r 1 n r e s = f a c t t r 1 (n − 1) ( r e s ∗ n)
f a c t 1 n = f a c t t r 1 n 1

Figure 3.5: Fattoriale con ricorsione in coda.

Prelude> mul2 = \n −> 2 ∗ n
Prelude> : t mul2
doppio : : Num a => a −> a
Prelude> mul2 9
18
Prelude> mul2 4 .0
8 . 0

Haskell also provides a simplified syntax for function definition:

Prelude> mul2 n = 2 ∗ n
Prelude> mul2 9
18

The simplified “name a = ...” syntax looks more intuitive than the explicit definition “name = \a ->

...”, but is equivalent to it.
Combining what we have seen so far with the “if” conditional expression, it is possible to define

even complex functions (equivalent to iterative algorithms implemented with an imperative language) via
recursion. For instance,

Prelude> f a c t = \n −> i f n == 0 then 1 else n ∗ f a c t (n − 1)
Prelude> f a c t 5 ;
120

Using the simplified syntax, it is possible to define recursive functions based on the inductive base and
the inductive step:

Prelude> :{
Prelude | f a c t 0 = 1
Prelude | f a c t n = n ∗ f a c t (n − 1)
Prelude | :}
Prelude> f a c t 4
24

Based on what has been discussed so far, it is possible to implement the following recursive functions
in Haskell:

• Compute the factorial of a number using tail recursion (Figure 3.5)

• Compute the greatest common divisor between two numbers (Figure 3.6)

• Solution to the Tower of Hanoi problem (Figure 3.7 and 3.8)

As explained earlier in this document, in addition to allowing you to define and evaluate expressions
(possibly associating expressions or values with names, through the environment concept), Haskell allows
you to define and use new data types. In particular, the data construct allows you to define new data types
by specifying the constructors that generate their variants. For example, one could define a type Color,
which represents a component of red, green, or blue (with the intensity expressed as a real number):

Prelude>: t Red

< i n t e r a c t i v e > : 1 : 1 : error : Data con s t ruc to r not in scope : Red
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gcd = \a −> \b −> i f b == 0 then a else gcd b ( a ‘mod‘ b )

gcd1 a b = i f b == 0 then a else gcd1 b ( a ‘mod‘ b )

gcd2 a 0 = a
gcd2 a b = gcd2 b ( a ‘mod‘ b )

Figure 3.6: Massimo Comun Divisore.

move n from to v ia =
i f n == 0

then
”\n”

else (move (n − 1) from via to ) ++
”Move d i sk from ” ++
from ++ ” to ” ++ to ++
(move (n − 1) v ia to from )

Figure 3.7: Torre di Hanoi.

Prelude> : t Red 0 .5

< i n t e r a c t i v e > : 1 : 1 : error :
Data con s t ruc to r not in scope : Red : : Double −> t

Prelude> data Color = Red Float | Blue Float | Green Float
Prelude> : t Red
Red : : Float −> Colore
Prelude> : t Red 0 .5
Red 0 .5 : : Color

Before defining “data Color = Red Float Blue Float — Green Float—”, the “Red” identifier is not
understood by ghci, which complains about using the “Red” constructor without defining it (see the first
two errors); after the definition, the “Red” identifier is correctly recognised as a data constructor for the
“Color” type (in this case, the constructor is a function from Float to Color).

Finally, it should be noted that ghci may seem non very user-friendly, because entering multi-line
programs is not that easy, even using “:{’ ’ and “:}”. This issue can be addressed by editing complex
Haskell programs in text files (usually with the extension .hs), taking advantage of the features of
advanced editors such as emacs, tt vi, gedit or similar. A program contained in a text file can then be
loaded in ghci using the “:l” directive: “Prelude> :l < file>.hs”

As an example of using :l, you can insert the program of Figure 3.8 into the file hanoi.hs, using
your favorite text editor (for example vi). The program can then be loaded into ghci with

Prelude> : l hanoi . hs
[ 1 of 1 ] Compiling Main ( hanoi . hs , i n t e r p r e t ed )
Ok, one module loaded .

move n from to v ia =
i f n == 1

then
”Move d i sk from ” ++ from ++ ” to ” ++ to ++ ”\n”

else
(move (n − 1) from via to ) ++
(move 1 from to v ia ) ++
(move (n − 1) v ia to from )

Figure 3.8: Torre di Hanoi, versione alternativa.
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∗Main> putStrLn (move 3 ” Le f t ” ”Right” ”Center ” )
Move d i sk from Left to Right
Move d i sk from Left to Center
Move d i sk from Right to Center
Move d i sk from Left to Right
Move d i sk from Center to Left
Move d i sk from Center to Right
Move d i sk from Left to Right

As shown in the previous example, the “move” function is now defined as if it had been entered directly
from the keyboard (about the example, notice how the “putStrLn” function has been used to display the
string, in order to correctly handle newline characters).

Using :l is also useful for debugging, because it reports syntax errors more accurately, indicating the
line of the program where the error occurred.



Chapter 4

Recursive Data Types

4.1 Data Types

Various programming languages allow users to define new data types by defining the set of valid values
and the operations that can be performed on these values.

An example of user-defined data types (perhaps the simplest case of a user-defined type) is represented
by enumerative data types. For example, you can define a “color” type with values “red”, “blue”, and
“green” and then define the various operations you can perform on those values. This way of defining new
data types is clearly not practical when the number of values is very large (and does not allow defining
new data types when the number of values is not finite). To address this issue, the concept of enumerative
type can be generalized by using data constructors instead of simple constant values like “red”, “blue”,
and “green”. The new data type that is going to be defined therefore has values generated by one or
more constructors, which operate on one or more arguments. It is clear that a constructor having an
argument of integer type can generate a large number of values. Also note that the “red”, “blue”, and
“green” values mentioned above are nothing more than special cases of data constructors1.

The values of the new data type are then partitioned into various subsets, called variants; in other
words, the set of possible values (definition set of the data type) is the disjoint union of the variants of
the data type. Each variant is associated with a constructor, which generates all the values composing
the variant; in other words, a variant is the set of values generated by a single data constructor. Note
that if we assume that two different constructors can never generate the same value, we can say that the
definition set of the data type is the union (or sum between sets) of the variants (instead of “disjoint
union”). It will become clear later on why the concept of “sum” is interesting in this context.

Using the Standard ML syntax, it is possible to define a new data type in a very generic way with

datatype <name> = <cons1> of [ type1 ] | <cons2> of [ type2 ] | . . . ;

where the “<cons1>”, ... “<consn>” constructors represent the type variants. A similar definition in
Haskell would be

data <name> = <cons1> [ type1 ] | <cons2> [ type2 ] | . . . | <consn> [ typen ]

(notice that for Haskell the data type names and the constructor names must start with a capital letter).
Note that constructors are real functions that take an argument and map it into a value of the new data
type. In some languages like Standard ML, if you need multiple arguments for a constructor you can
use a tuple argument; in other languages like Haskell a constructor can return a function that returns
the value of the new data type (or a function again...), using the currying technique. Haskell provides a
simplified syntax for these situations, however, which makes valid definitions like

data Test = Constructor1 Int Double | Constructor2 Char String

or similar. In this case, “Constructor1” is not a function with two parameters (as a naive reader might
think), but a function accepting one single parameter (of type “Int”) and returning a function from
“Double” to “Test”. “Constructor1” has hence type “Int -> Double -> Test” (which means “Int
-> (Double -> Test)”).

The example in Figure 4.1 shows how to define a “Num” data type which can have integer or floating
point values.

1In particular, they are constructors that take no input arguments - or have 0 arguments. Thus, each constructor
generates a unique value, which is identified with the name of the constructor.

55
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data Num = Integernum Int | Realnum Double
sumnumbers ( Integernum a , Integernum b) = Integernum ( a + b)
sumnumbers ( Integernum a , Realnum b) = Realnum

( fromIntegral a + b)
sumnumbers (Realnum a , Integernum b) = Realnum

( a + fromIntegral b)
sumnumbers (Realnum a , Realnum b) = Realnum ( a + b ) ;
. . .

Figure 4.1: Example of data type with two constructors (receiving arguments of different types), in
Haskell.

As previously mentioned, a constructor receiving more than one argument as input can use a tuple to
group its arguments, thus realizing a Cartesian product among the argument definition sets2. New data
types can then be created from existing data types using (disjoint) unions and Cartesian products. More
simply, we can speak of sums or products between existing data types.

In this way, an algebra, or algebraic structure, of data types is defined, consisting of a support set -
the set of data types - with a sum operation and a product operation defined on it. The name “Algebraic
Data Types” (ADT) is hence often used to indicate the data types defined in this way.

4.2 Recursion

The recursion technique (closely related to the mathematical concept of induction) is used in computer
science to define some kind of “entity”3 based on itself. The typical example is represented by recursive
functions: a function f() can be defined by expressing the value of f(n) as a function of other values
computed by f() (typically, f(n − 1)). But a similar idea can also be used to define a set by describing
its elements based on other elements contained in the set (example: if the element n belongs to the set,
then f(n) also belongs to the set).

In general, recursive definitions are given “by case”, ie they are composed of several clauses. One of
these is the so-called basis (also called inductive basis); then there are one or more clauses or inductive
steps which allow to generate/calculate new elements starting from existing elements. The basis is a
clause of the recursive definition that does not refer to the “entity” being defined (for example: “the
factorial of 0 is 1”, or “0 is a natural number”, or “1 is a prime number”, etc...) and has the task of
ending the recursion. Without an inductive basis, an endless recursion happens (and this is not useful
from a practical point of view).

It is known how it is possible to use recursion to define functions (and how recursion is the only way
to implement loops in functional programming languages - in other words, recursion can be considered
as a sort of “functional equivalent” of iteration). In essence, a function f : N → X can be defined by
defining a function g : N ×X → X , a value f(0) = a and imposing that f(n+ 1) = g(n, f(n)).

More in details, a function can be defined by recursion when its domain is the set of natural numbers
(or a countable set); the codomain can instead be a generic set X . As an inductive basis, we define the
value of the function for the smallest value belonging to the domain (for example, f(0) = a, with a ∈ X )
and as an inductive step the value of f(n + 1) is defined based on f(n). As mentioned above, this can
be done by defining f(n + 1) = g(n, f(n))). Note that the domain of g() is the set of pairs of elements
taken from the domain and codomain of f(), while the codomain of g() is equal to the codomain of f().

It is important to note that the mathematical concept of induction can be used to define not only
functions but also sets, properties of numbers, etc... For example, a set can be defined by induction
by indicating one or more elements that belong to it (inductive basis) and by defining new elements of
the set starting from elements belonging to it (inductive step). Using this technique the set of natural
numbers can be defined according to the Peano axioms:

• Inductive base: 0 is a natural number (0 ∈ N )

2In some languages, such as Standard ML, a data constructor is restricted to having at most one argument, so the
use of the Cartesian product is mandatory. Other languages, such as Haskell, provide a syntax to create multi-argument
constructors. In this second case the Cartesian product is hidden by the syntax of the language, but conceptually it is
always present.

3The term “entity” here is used informally to generically indicate functions, sets, values... But, as we will see shortly,
also data types!
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i2n 0 = Zero
i2n x = Succ ( i2n (x − 1) )

n2 i Zero = 0
n2i ( Succ n) = 1 + n2i n

nsum Zero n = n
nsum ( Succ m) n = Succ (nsum m n)

Figure 4.2: Various functions working on Peano encoding of the natural numbers (defined using a recursive
data type).

• Inductive step: n ∈ N ⇒ n + 1 ∈ N (that is, it is possible to define a function s : N → N − {0}
computing the successor of a natural number)

4.3 Recursive Data Types

As mentioned, to define a data type it is necessary to define its definition set (set of values belonging to
the data), plus the operations that can be applied to the values of the type. Since a set can be defined
by induction (as seen), one can think of applying recursion to define new data types.

Recall that the values of a data type can be generated by constructors that take one or more arguments
as input (actually, a n-tuple of arguments), it becomes clear how to apply recursion to types data: a
constructor for a data type T can have an argument of type T (or, a tuple containing an element of type
T). Clearly, an inductive basis is needed to avoid infinite recursion; this means that one of the variants of
the type must have a constructor that has no arguments of type T. As an inductive step, there may be
other variants with constructors that have arguments of type T.

For example, it is possible to define the type natural based on the recursive definition of the set of
naturals given by Peano: the type will consist of two variants, one of which (the inductive basis) will have
a constant constructor zero (representing the number 0), while the other will have a succ constructor,
which generates a natural starting from a natural. Using Haskell’s data construct, this would be

data Natural = Zero | Succ Natural

To complete the definition of the “Natural” data type, some simple operations of the values of this
type must be defined. For example, Figure 4.2 shows how to implement a conversion from “Int” to
“Natural” (“i2n” function), a conversion from “Natural” to “Int” (“n2i” function), and the sum of
two natural numbers (“nsum” function).

Curious readers can check a possible C++ implementation of the Peano coding of natural numbers,
shown in Figure 4.3. From this simple example (the implementation of the “i2n” function and the “+”
operator are missing, but they are quite simple) one can immediately observe an interesting thing: since
in C++ the data constructor associated with a class has the same name as the class, to have a “zero()”
constructor and a “succ()” constructor it was necessary to derive two “zero” and “succ” classes from
the “natural” abstract class. This suggests that a data type with multiple variants can be implemented
in C++ by using an abstract base class representing the data type, from which a class for each variant
/ constructor is derived.

Another interesting thing to note is the usage of references to account for the recursive nature of the
“natural” data type. This begins to suggest that there is a relationship (which will become clear as
we look at lists) between recursive datatypes and references / pointers: languages that do not explicitly
support recursion on datatypes are forced to introduce the pointer or reference data type, while languages
that don’t support pointers / references use recursive data types to avoid losing expressive power.

Finally, the “const” keyword is used to guarantee the immutability of the data structures encoding
the natural numbers.

Although interesting from a mathematical point of view, the definition of this “Natural” data type
is not too useful... However, there are a number of data structures that can be defined as recursive types
and they are very useful: they are of lists, trees, and similar dynamic data structures. For example,
a list of integers is recursively definable as follows: a list is empty or it is the concatenation of an
integer and a list. The “empty list” constructor represents the inductive basis, while the “integer and list
concatenation” constructor represents the inductive step. Note that a list is a recursive data structure



58 CHAPTER 4. RECURSIVE DATA TYPES

class natura l {
public :

virtual unsigned int n2i (void ) const = 0 ;
} ;

class zero : public natura l {
public :

z e ro (void ) {
} ;
virtual unsigned int n2i (void ) const
{

return 0 ;
} ;

} ;

class succ : public natura l {
const natura l &prev ;

public :
succ ( const natura l &p) : prev (p)
{
} ;
virtual unsigned int n2i (void ) const
{

return prev . n2 i ( ) + 1 ;
} ;

} ;

Figure 4.3: Example showing a possible C++ implementation of the Peano encoding of natural numbers.

because the “integer and list concatenation” constructor takes values of type list as its second argument.
Using Haskell syntax, a list of integers can therefore be defined as

data List = Empty | Cons Int List

where Empty is the constructor of an empty list, while Cons generates the variant containing all non-empty
lists. Note that the Cons constructor has an argument of type Int and returns a function List -> List,
because a Haskell function can’t have more than one argument (thus, currying is used to support multiple
arguments). However, “Cons Int List” could also be seen as a function that takes two arguments: an
integer and a list.

4.4 Immutable and Mutable Lists

The “List” recursive data type introduced in the previous section represents a very special type of list,
called an “immutable list”. The reason for this name can be understood by considering the operations
implemented on this type. Since immutable lists (and immutable data structures in general) are mainly
used in functional languages, the Haskell language will be used in the next examples (but the examples
are easily translatable into other functional languages, such as those of the ML family).

The first two operations on the “List” data type are the two constructors Empty and Cons, which
respectively generate empty lists and non-empty lists (that is, concatenations of integers and lists). To
operate on immutable lists in a generic way, two other operations traditionally called “car” and “cdr”
are needed. Given a non-empty list, “car” returns the first integer of the list (the so-called “head of the
list”), while “cdr” returns the list obtained by removing the first element. Both “car” and “cdr” are
undefined for empty lists. A simple implementation of these two functions is given by:

car (Cons v ) = v
cdr (Cons l ) = l

Note that these definitions are not exhaustive: both “car” and “cdr” are in fact defined using pattern
matching on a value of the “List” type, but the only pattern present in the definition matches non-empty
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isempty Empty = True
isempty = False

l i s t l e n Empty = 0
l i s t l e n (Cons l ) = 1 + l i s t l e n l

concat Empty b = b
concat (Cons e l ) b = Cons e ( concat l b )

Figure 4.4: Example of Haskell functions working o immutable lists, using only Empty, Cons, car, and
cdr.

i n s = \n −> \ l −>
i f ( ( l == Empty) | | (n < car l ) )

then
Cons n l

else
Cons ( car l ) ( i n s n ( cdr l ) )

Figure 4.5: Ordered insert into a list, implemented in Haskell.

lists (“Cons” constructor)... There is no pattern that matches empty lists (“Empty” constructor). This
means that if “chr” or “cdr” is applied to an empty list, an exception is thrown (not really “purely
functional”). This all reflects the fact that “car” and “cdr” are not defined for empty lists.

Every operation on lists can be implemented based on Empty, Cons, car and cdr only. For instance,
Figure 4.4 shows how to check if a list is empty, compute its length, or concatenate two lists using only
the primitives just mentioned. Note that many of the functions that act on lists are recursive (since lists
are defined as a recursive data type, this shouldn’t be too surprising).

The “isempty” function is very simple and returns a boolean value based on pattern matching: if the
list passed as an argument matches a list generated by the Empty constructor (that is, if it is a empty
list), returns True otherwise (wildcard pattern) returns False.

The “list len” function works recursively, using the “Empty” pattern as an inductive basis (the
length of an empty list is 0) and saying that if the length of a list l is n, then the length of the list
obtained by inserting any integer in front of l is n+ 1 (inductive step).

Finally, the concat function uses the concatenation of an empty list with a generic list “b” as an
inductive basis (by concatenating an empty list with a list “b”, we get b). The inductive step is based
on the fact that concatenating a list composed of an integer n and a list l with a list b is equivalent to
creating a list composed of the integer n followed by the concatenation of l and b.

Finally, a function to insert an integer into a sorted list can be implemented as shown in Figure 4.5.
When we want to insert a new element in an empty list (l = Empty), the resulting list is created (via
Cons) by adding the new element to the head of the list. This is also done if the element to be inserted is
smaller than the first element of the list (n < car l). Otherwise, a new list is created (again via Cons)
by concatenating the head of l (car l) with the list created by inserting the number into the remainder
of l (insert n (cdr l)). In any case, a list containing n inserted in the right position is created by one
or more invocations of Cons, and not by modifying the list l.

For example, consider what happens when you invoke

i n s 5 (Cons 2 (Cons 4 (Cons 7 Empty ) ) )

since 5 > 2, this “ins” expression evaluates to

Cons 2 ( i n s 5 (Cons 4 (Cons 7 Empty ) ) )

and

Cons 2 (Cons 4 ( i n s 5 (Cons 7 Empty ) ) )

which finally stops the recursion evaluating to “Cons 2 (Cons 4 (Cons 5 (Cons 7 Empty)))”. As a result,
3 new values of type “List” have been created.
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struct l i s t {
int va l ;
struct l i s t ∗next ;

} ;

struct l i s t ∗empty (void )
{

return NULL;
}

struct l i s t ∗ cons ( int v , struct l i s t ∗ l )
{

struct l i s t ∗ r e s ;

r e s = mal loc ( s izeof ( struct l i s t ) ) ;
res−>va l = v ;
res−>next = l ;

return r e s ;
}

int car ( struct l i s t ∗ l )
{

return l−>va l ;
}

struct l i s t ∗ cdr ( struct l i s t ∗ l )
{

return l−>next ;
}

Figure 4.6: Example of immutable lists in C.

To better understand the behavior of an immutable list and the reason for its name, it is useful to
see how it can be defined in a language that does not directly support recursive data types, such as the
C language. In this case, pointers are used to connect the various elements of the list: in particular,
each element of the list is represented by a structure composed of an integer field (the value of that
element) and a pointer to the next element of the list. So, instead of having a “list” data type defined
based on itself we have a “list” data type defined using a pointer to “list”. The two “empty()” and
“cons()” constructors are implemented as functions that return a pointer to “list” (these functions
therefore dynamically allocate the memory necessary to contain a “list” structure) and the “car()”
and “cdr” functions simply return the values of the fields of the “list” structure. A list is terminated by
an element which has a pointer to the next element equal to NULL (this can be considered the equivalent
of the inductive basis). In summary, a simple C implementation might look like Figure 4.6. Note that
to simplify the implementation the result of malloc() is not checked (a more “robust” implementation
should instead check that malloc() does not return NULL).

The “insert()” function can then be defined in the same way as in Haskell, using only the “empty()”,
“cons()”, “car()” and “cdr()” functions as shown in Figure 4.7. This definition uses the arithmetic
if operator, which is equivalent to Haskell’s if...then...else...end expression but is perhaps less
readable compared to a “traditional” selection construct. The implementation of Figure 4.8 is equivalent
(albeit unstructured and “less purely functional”).

Now, consider what happens when invoking l = ins(5, l ); if l is a pointer to the list in Figure 4.9,
containing the values 2, 4, and 7. Since 5 > 2, ins() recursively invokes ins (5, cdr(l )); , with cdr(l)

being a pointer to the second element of the “l” list (it is therefore a pointer to a list containing the
values 4 and 7). The result of this recursive invocation of ins() will then be passed to cons() (which
will dynamically allocate a new structure of type “list”). Since car(cdr(l)) returns 4 and 5 > 4,
ins (5, cdr(l )); will again recursively invoke ins(), with parameters 5 and cdr(cdr(l)). Now, since
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struct l i s t ∗ i n s ( int n , struct l i s t ∗ l )
{

return ( ( l == empty ( ) ) | | (n < car ( l ) ) ) ?
cons (n , l ) : cons ( car ( l ) , i n s (n , cdr ( l ) ) ) ;

}

Figure 4.7: Ordered insert into an immutable list, implemented in C.

struct l i s t ∗ i n s ( int n , struct l i s t ∗ l )
{

i f ( ( l == empty ( ) ) | | (n < car ( l ) ) ) {
return cons (n , l ) ;

} else {
return cons ( car ( l ) , i n s (n , cdr ( l ) ) ) ;

}
}

Figure 4.8: Ordered insert into an immutable list, implemented in C without arithmetic if.

2 4 7

Figure 4.9: Example of list containing the integers 2, 4 e 7.

2 4

2 4 5

7

Figure 4.10: List of Figure 4.9 after ins (5, l ); .

car(cdr(cdr(l)))) returns 7 and 5 < 7, ins (5, cdr(cdr(l )) ); will return cons(5, cdr(cdr(l))),
dynamically allocating a structure of type “list”. cons() will then be invoked 2 more times, and as a
result ins(5, l); will return a list consisting of 3 new dynamically allocated elements (cons() has been
called 3 times), without modifying any element of the list of Figure 4.9. This is why this kind of list is
called “immutable”: the val and next fields of the list structure are set when the structure is allocated
(from cons()) and are never modified. The final result is visible in Figure 4.10, which shows below the
3 new dynamically allocated elements (note that now the pointer l points to the element of value 2 on
the bottom).

It is also important to note that in the previous example any reference to the first element of l may
have been “lost”, leaving memory areas that are dynamically allocated but no longer reachable: if a
program invokes

l = vuota ( ) ;
l = in s (4 , l ) ;
l = in s (2 , l ) ;
l = in s (7 , l ) ;
l = in s (5 , l ) ;

the data structures that have been dynamically allocated by the second invocation of ins() (that is,
ins(2, l);) no longer have any pointers “reaching” them.

Returning to the previous example, when l = ins(5, l) is invoked, the structures containing the
first two elements of the “old list” may therefore no longer be reachable, but the memory in which they
are stored has not been released by any call to free(). This clearly indicates that this implementation
of immutable lists is likely to generate memory leaks, so some kind of garbage collection mechanism is
needed.
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struct l i s t {
int va l ;
struct l i s t ∗next ;

} ;

struct l i s t ∗ i n s ( int n , struct l i s t ∗ l )
{

struct l i s t ∗ res , ∗prev , ∗new ;

new = mal loc ( s izeof ( struct l i s t ) ) ;
new−>va l = n ;

r e s = l ;
prev = NULL;
while ( ( l != NULL) && ( l−>va l < n ) ) {

prev = l ;
l = l−>next ;

}
new−>next = l ;
i f ( prev ) {

prev−>next = new ;
} else {

r e s = new ;
}

return r e s ;
}

Figure 4.11: Traditional implementation of linked lists in C, without using immutable data structures.
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The previous implementation of immutable lists in C can be compared with a “more traditional”
implementation based on mutable data structures, shown in Figure 4.11.

2 4

5

7

Figure 4.12: List of Figure 4.9 after ins (5, l ); using “traditional” mutable lists.

Note that this implementation of the “ins()” function modifies the next field of the previous element
to the one being inserted, so the list is not immutable. On the other hand, it doesn’t suffer from
the memory leak problems highlighted for the previous implementation (essentially, this tells us that
garbage collection techniques are only necessary if immutable data structures are used). The result of
l = insert(5, l ); using this implementation of lists is visible in Figure 4.12 (note that the arrow going
out of element “4” has changed).

Finally, for the sake of a comparison Figure 4.13 shows an implementation of an immutable list in
Java (remember that a Java VM implements a garbage collector by default, so memory leaks due to the
use of immutable data structures are not a problem).

It is interesting to note that in Java the final qualifier allows you to explicitly specify that the fields of
the class will never be modified (the data structure is immutable). Also, note that Java (like many other
object-oriented languages) forces you to use the same name for constructors and for the class. Therefore,
there will not be two “Empty” and “Cons” constructors for the two variants, but two constructors both
called “List” which are distinguished by the number and type of their arguments (one constructor - that
of empty list - has no arguments, while the other - the one corresponding to Cons - has one argument of
type int and one of type List).
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public class L i s t {
private f ina l I n t eg e r va l ;
private f ina l L i s t next ;

public L i s t ( ){
va l=null ;
next=null ;

}
public L i s t ( int v , L i s t l ) {

va l = v ;
next = l ;

}
public int car ( ) {

return va l ;
}
public L i s t cdr ( ) {

return next ;
}

public void p r i n tL i s t ( ) {
i f ( next !=null ) {

System . out . p r i n t l n ( va l ) ;
next . p r i n tL i s t ( ) ;

}
}

public L i s t i n s ( int n){
i f ( next==null | | n < va l )
return new L i s t (n , this ) ;
else return new L i s t ( car ( ) , cdr ( ) . i n s (n ) ) ;

}

public stat ic void main ( St r ing a [ ] ) {
L i s t l = new L i s t ( ) ;
l = l . i n s ( 1 ) ;
l = l . i n s ( 5 ) ;
l = l . i n s ( 3 ) ;
l = l . i n s ( 9 ) ;
l = l . i n s ( 7 ) ;
l . p r i n tL i s t ( ) ;

}
}

Figure 4.13: Java implementation of immutable lists.



Chapter 5

Fixpoint and Similar Amenities

5.1 Fixed Point Combinators

In general, a combinator is a higher-order function (function that takes other functions as arguments
and/or returns functions as a result) with no free variables (that is, all variables used in the combinator
are bound in its local environment: they are therefore local variables or parameters)1.

The fixed point combinators (fixpoint combinators) are particularly important in the context of func-
tional programming (and its theoretical foundation, λ calculus). A fixed point combinator is a combinator
that computes the fixed point of its argument. In other words, if g is a function, a fixpoint combinator is
a function Fix with no free variables such that Fix(g) = g(Fix(g)).

Note that defining a generic higher order function Fix that computes the fixed point of the function
passed as an argument is quite easy: by definition

Fix(g) = g(Fix(g))

and this expression can also be seen as a definition of Fix if we consider a small extension of the λ
calculus that allows us to associate names with λ expressions

Fix(g) = g(Fix(g)) ⇒ Fix = λg.g(Fix(g)). (5.1)

As a first consideration, it is interesting to note that if we try to evaluate the equation 5.1 using an
eager strategy (evaluation by value), we get

Fix(g) = (λg.g(Fix(g)))g →β g(Fix(g)) = g((λg.g(Fix(g)))g) →β g(g(Fix(g))) = ...

and the reduction diverges. This happens because an eager evaluation strategy will always evaluate
the innermost expression “Fix(g)” by expanding it to “g(Fix(g))” and so on... Using instead a lazy
(evaluation by name) strategy, “Fix(g)” is evaluated only when g actually invokes it recursively (hence,
it is not evaluated when arriving at the inductive basis... This guarantees that if if the various recursive
invocations lead to the inductive basis then the evaluation of Fix(g) does not diverge). This observation
is important when trying to implement a fixed point combinator in eager languages Standard ML.

Another important observation is that the “Fix” function defined in Equation 5.1 allows (by con-
struction) to compute the fixed point of its argument g, but it is not a combinator: in particular, the
definition of Fix uses the “Fix” variable which is free, not being bound by any λ (while the definition
of a combinator should contain only bound variables). This is especially relevant because “Fix” is just
the name of the function being defined, so the definition of “Fix” is recursive. In other words, we just
moved the recursion from the definition of g to the definition of Fix.

There are many different fixed point combinators that can be used to compute the fixed point of a
function without using explicit recursion either in the definition of the function or in the definition of
the combinator. The existence of fixed point combinators has a remarkable theoretical importance (in
practice, it shows that “pure” λ-calculus - without environment or extensions that allow to associate
names to expressions - can implement the recursion and is Turing complete). From a practical point of
view, it means instead that a functional language that does not implement “val rec” (or the equivalent
“fun”), “let rec’ ’ or similar...) may still allow the implementation of recursive functions!

1Remember that in the particular case of λ calculus a combinator is defined as a λ expression which does not contain
free variables, consistently with this more generic definition.

65
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The most famous of the fixed-point combinators is the Y combinator, developed by Haskell Curry
(yes, the names are always the same at the end...), whose definition (using the λ-calculus) is:

Y = λf.(λx.f(xx))(λx.f(xx)). (5.2)

It is very important (especially when searching for information on the internet!) to notice that in
the literature there are some small terminological inconsistencies: while in general the Y combinator is a
particular fixed point combinator, some people tend to use the term “Y combinator” to identify a generic
fixed point combinator (and thus write that there is an infinity of Y combinators).

5.2 Haskell Implementation

The Y Combinator is defined as
Y = λf.(λx.f(xx))(λx.f(xx))

Trying a simple conversion from the λ-calculus syntax to the Haskell syntax (“λ” becomes “\” and
“.” becomes “->”) we obtain

y = \ f −> (\x −> f ( x x ) ) (\ x −> f ( x x ) )

However, this expression is not accepted by a Haskell compiler or interpreter. For example, ghci
generates the following error:

Prelude> y = \ f −> (\x −> f ( x x ) ) (\ x −> f ( x x ) )

< i n t e r a c t i v e > : 1 : 23 : error :
o Occurs check : cannot cons t ruc t the i n f i n i t e type : t0 ˜ t0 −> t

Expected type : t0 −> t
Actual type : ( t0 −> t ) −> t

o In the f i r s t argument of ’ x ’ , namely ’x ’
In the f i r s t argument of ’ f ’ , namely ’ ( x x ) ’
In the exp r e s s i on : f ( x x )

o Relevant b ind ings in c lude
x : : ( t0 −> t ) −> t ( bound at < i n t e r a c t i v e > : 1 :13)
f : : t −> t ( bound at < i n t e r a c t i v e > : 1 : 6 )
y : : ( t −> t ) −> t ( bound at < i n t e r a c t i v e > : 1 : 1 )

. . .

The meaning of this error becomes clear when trying to figure out the type of “x”. Assuming that “x”
has type “t0”, we have:

• Since “(xx)” indicates that “x” is a function applied to an argument, the type “t0 ” of “x” must
be a function. Let us consider the more generic case: a function α → β, therefore t0 = α → β

• On the other hand, the function “x” is applied to the argument “x”. So the type α of the function
argument “x” must be equal to the type of “x” (“t0”): t0 = α.

Putting it all together you get

t0 = α → β ∧ t0 = α ⇒ α = α → β

which defines the type “t0” recursively (as indicated by the error message, “t0” must be equivalent
to “t0 -> t”). Since Haskell supports recursive data types, one would think that it should be able to
support the “t0” type we are talking about. However, a recursion like α = α → β doesn’t make much
sense in a language performing strict type checks like Haskell. To understand why, it is necessary to go
into a little more details about recursive data types.

When faced with a definition such as α = α → β, we speak of equi-recursive data types (equi-recursive
data types) if α and α → β represent the same data type (same values, same operations on values,
etc...). We speak instead of iso-recursive data types (iso-recursive data types) if the type α and the type
α → β are not equal, but there is an isomorphism (function 1 → 1, invertible, which for each value of α
associates a value of α → β and vice versa) from one to the other. This isomorphism (which establishes
that the two types are essentially equivalent) is the “constructor” function of the algebraic data types.
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Understanding that Haskell supports iso-recursive types (a value of α can be generated using a special
constructor starting from a value of α → β), but not equi-recursive (α and α → β cannot be the same
type!) tt then becomes clear why the definition of Y given above generates a syntax error (in particular,
a type error).

This error does not mean that the definition of the Y combinator (Equation 5.2) is “wrong”, but
simply that it is not directly implementable in Haskell (or in any other language that uses strong typing).
The Y combinator is defined using the λ-calculus, where each identifier is bound to a function, whose
type is not important. Using languages with “less strict” type checking than Haskell (for example, Lisp,
Scheme, Python, Javascript, etc...) or languages that support equi-recursive types (for example, OCaml
with appropriate options), Equation 5.2 can be implemented without issues.

To better understand how to solve this problem, let us consider the “problematic part” of the previous
expression (the application of function “(xx)”), focusing on the function “\x -> (xx)”.

Since in Haskell a recursive data type t0 can be defined using the data construct and (at least) a
constructor mapping values of a type that depends on t0 into values of t0 (iso-recursive type definition),
one can define something like T = F (T → β) to “simulate” the (equi-recursive) type α = α → β of
function x. The resulting type T will then be a function of the type β and in Haskell this is denoted by
“T b”. Remebering the syntax of the “data” keyword, we can write

data T b = F (T b −> b)

where (as mentioned) “T b” is the name of the type and “F” is the name of the constructor that maps
values of T b -> b into values of T b.

At this point, it is possible to use “T b” to correctly type “x” by writing “x” as a function T b -> b

from T b to b. The argument (actual parameter) of this function must therefore be of type T b, which
can be generated from “x” using the constructor F. Instead of “\x −> x x” we can then write:

\x −> ( x (F x ) )

so that Haskell is able to understand and compile this definition.
Note how the impossibility of using equi-recursive types forced us to use the F constructor. The type

of the function defined above is (T b -> b) -> b (function that maps values “x” of type “T b-> b ” to
values of type “b”).

Now that we have seen how to solve the “x” type issue, it is possible to go back to the original Y
combinator expression, which still has a similar problem: “\x - > f(x (F x))” applies to itself, so its
type is recursive like the type of “x”! Again the problem can be solved by using the previously defined “T
b” datatype: “\f −> (\x −> f ( x (F x)))” has type “(b -> c) -> (T b -> b) -> c”, so assuming “b
-> c ” as type for “f” we have that “\x -> f (x (F x))” has type “(T b - > b) -> c”... The value
“\x -> f (x (F x))” to which it is applied must therefore have type “Tb -> b”. Hence, “(T b -> b)”
(type of “x”) must be replaced with “T b” (obtainable from “x” by applying the constructor “F”). The
argument will then be “\f −> (\ (F x) −> f (x (F x)))”.

As a result, the expression of the Y combinator should be:

y = \ f −> (\x −> f ( x (F x ) ) ) ( \ (F x ) −> f ( x (F x ) ) )

and in theory this expression should be accepted by Haskell! Unfortunately, however, some ghc (and
therefore ghci) versions have problems correctly inferring data types2. Other programs, such as the
Hugs interpreter (https://www.haskell.org/hugs) are able to parse and evaluate this definition without
problems.

The problem encountered by some versions of ghc can be overcome by somehow “helping” the compiler
to correctly infer the types of the various subexpressions. For example, you could replace “F x” with a
variable “z” gaving the right type (T b). To do this, however, you need a function that allows you to
extract “x” from “F x”; in practice, the inverse function of the “F” constructor:

invF (F x ) = x

At this point it is possible to replace “\(F x)” with “\z” and the following “x” with “invF z”,
obtaining

y = \ f −> (\x −> f ( x (F x ) ) ) ( \ z −> f ( ( invF z ) z ) )

2This is probably related to a bug described in https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/bugs.html.

https://www.haskell.org/hugs
https: //downloads.haskell.org/~ghc/latest/docs/html/users_guide/bugs.html
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and this expression is accepted by all versions of ghci!
Summing up, the first part of the expression (“\x -> f(x (F x))”) has type “(T b -> b) -> c’

’, while the second part (“\z -> f((invF z) z)”) has type “T b -> c” and is therefore usable as an
argument to the former simply by setting β = γ.

The type of the resulting function is “(b -> b) -> b”, where “b” is clearly a function type (for the
factorial, for example , is a function “Int -> Int”).

The above discussion, which shows how it is possible to implement the fixed point combinator Y in
strictly typed languages (like Haskell) that do not support equi-recursive data types, allows us to intuit
one important thing: Y “eliminates recursion ” by the fixed point operator (Equation 5.1 uses explicit
recursion) by moving the recursion to the data type (indeed it requires using recursive data types of some
kind). This is not immediately visible in Equation 5.2 or scheme (or similar) implementations of Y, but
it becomes clearer trying to implement Y in (for example) Haskell.

Once Haskell has “accepted and understood” our definition of Y, one can, for example, use this Y
combinator to define the factorial function. First of all, let’s define a “closed” version fact closed3 of
the factorial function as

f a c t c l o s e d = \ f −> \n −> i f n == 0 then 1 else n ∗ f (n − 1)

At this point the factorial function can be defined as

f a c t = y f a c t c l o s e d

Note that the type of “fact closed” is “(Eq p, Num p) => (p -> p) -> p -> p”, therefore, since
Y has type “(b -> b) -> b” “y fact closed” has type “(Eq p, Num p) => p -> p”.

So, a possible definition of the Y combinator in Haskell (there are many others) can be:

data T b = F (T b −> b)
invF (F x ) = x
y = \ f −> (\x −> f ( x (F x ) ) ) ( \ y −> f ( ( invF y ) y ) )

Based on this definition it is possible to use ghci to do:

Prelude> f a c t c l o s e d = \ f −> \n −> i f n == 0 then 1 else n ∗ f (n − 1)
Prelude> : t f a c t c l o s e d
f a c t c l o s e d : : (Eq p , Num p) => (p −> p) −> p −> p
Prelude> f a c t = y f a c t c l o s e d
Prelude> : t y
y : : (b −> b) −> b
Prelude> : t f a c t
f a c t : : (Eq p , Num p) => p −> p
Prelude> f a c t 3
6
Prelude> f a c t 4
24
. . .

3This function is called “closed” because it has no free variables. The traditional recursive definition of the factorial
function instead uses a free variable (its name) to call itself recursively.



Appendix A

Some Definitions

A.1 Identifiers, Bindings, and Environment

Almost all of the programming languages allow to associate symbolic names to the various “entities”
composing the programs (values, memory locations, variabiles, functions, etc...).

More formally, a programming language is composed of denotable entities that can be referred through
symbolic names (identifiers). This mechanism is implemented by a function named environment, having
the set of possible identifiers as a domain and the set of denotable entities as a codomain. This function
can change during the program runtime, as it is possible to create new bindings between identifier and
denotable entities, or to destroy existing bindings. Moreover, some bindings between identifiers and
denotable entities only exist in some parts of the code1. Hence, the following definitions hold:

Definition 1 (Binding) A binding between an identifier I and a denotable entity E is a pair (I, E)
associating name and entity.

Definition 2 (Environment) The environment is the set {(I, E)} of bindings existing in a specific
moment of the program execution, while the code of a specific program block is being executed.

this definition is not surprising, since the environment is a function env : I → E (where I is the set of
possible identifiers, and E is the set of denotable entities) and from the mathematical point of view a
function is a set of (I, E) pairs, so env ⊂ I × E .

The set of denotable entities is clearly language-dependent; for example:

• in the Assembly language, identifiers can be associated only to memory locations (so, the only
possible denotable entities are memory addresses)

• in higher-level imperative languages, identifiers can be associated to values, variables, functions, or
data types

• in λ-calculus, identifiers can only be associated to functions (so, functions are the only possible
denotable entities)

• in higher-level functional programming languages, identifiers can be associated to values (mutable
variables do not exist, and functions are values!)

In programming languages having the “code block” concept, it is possible to make a distinction
between local environment (the environment valid inside a code block), non-local environment, and global
environment.

Definition 3 (Local Environent) The local environment of a code block is the subset of the environ-
ment composed of the bindings that have been created inside the code block (and are hence valid only
inside this block)

Definition 4 (Non-Local Environment) The non-local environment of a code block is the subset of
the environment which is not part of the local environment (and hence contains all the bindings that have
been created outside of this block and will remain valid when the execution exits the block)

Definition 5 (Global Environment) The global environment is the subset of the environment con-
taining bindings that are not created inside any code block

1As an example, the environment is modified by a declaration, or by the first usage of a denotable entity.
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A.2 Mutable Variables

According to the imperative approach, the execution of programs happens by modifying the values
contained in some memory locations, which are called variables in high-level languages.

Definition 6 (Mutable Variable) A mutable variable is a denotable entity representing some memory
locations that can contain storable entities

The definition above is based on “storable entities”, which, again, are a language-dependent concept...
But in general a storable entity is some value that can be stored in a variable.

From the conceptual point of view, mutable variables imply the existance of a second function, after
the environment, named “store”, associating each variable with the storable entity contained into it.

Definition 7 (Store) The store is a set of pairs (V,E) (where V is a variable and E is a storable entity)
associating each variable with the value contained into it

The store is hence a function (representing the memory used by the program to store its data, or the
mutable state of the program) which has the set of program’s variables as a domain, and the set of
storable entities used by the program as a codomain.

When, using an imperative programming language, the value stored in variable “x” is used, the
(abstract) machine applies the store function to the value returned by the environment function applied
to identifier “x”: “x”: store(env(x)) (where “env” is the environment).

A.3 Denotable, Storable, and Expressible Entities

As discussed, a program is composed of some “entities” (whose definition depends on the programming
languages, but can be data types, values, variables, functions, etc...). Such entities can be denotable,
storable, and expressible.

(Note: in literature the definitions of “storable”, “expressible”, and “denotable” are often associated
to values)

Definition 8 (Denotable Entities) A denotable entity is a language entity that can be associated to a
symbolic name / identifier

Definition 9 (Storable Entities) A storable entity is a language entity that can be stored in a variable

Definition 10 (Expressible Entities) An expressible entity is a program entity that can be generated
computing an expression

A denotable entity is hence a generic entity that can be referred through a name (defined by the user or
pre-defined in the language); the set of denotable entities is the codomain of the environment function.
An expressible entity is a generic entity that “can be computed/allocated” somehow using the language’s
constructs. Finally, the storable entities (which only exist in imperative programming languages) form
the codomain of the store function.

In a functional programming language, all entities are denotable and expressible, whereas in an im-
perative programming language there can be entities that are denotable but not expressible or storable
(for example, functions in the C programming language).

A.4 Functions

Almost all the high-level programming languages allow some form of code modularization by decomposing
programs into a set of components (subprograms/subroutines/functions/procedures). Each one of these
components implements a specific functionality according to a well-specified interface.

Each subroutine is hence an entity implementing a self-contained part of the code which can be invoked
exchanging some values (parameters and return values) with the caller. A subroutine which can return
a value is generally called “function” (clearly, this is a very different thing respect to a mathematical
function!!!).

Definition 11 (Function) A function is a denotable entity composed of a block of code associated to a
name that can be used to invoke its execution. When the execution of a function is invoked, the caller can
exchange some data with it through its parameters, its return value and some global state of the program.
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void wrong swap ( int a , int b)
{

int tmp ;

tmp = a ; a = b ; b = tmp ;
}

void cor r ec t swap ( int ∗a , int ∗b)
{

int tmp ;

tmp = ∗a ; ∗a = ∗b ; ∗b = tmp ;
}

Figure A.1: Example of C function trying to exchange the values of two variables. Since the C language
mandates parameters passing by value, the “wrong swap()” will have no effect (as its name suggests);
the “correct swap()” function, instead, receives as parameters some pointers to the variables, and can
hence work correctly.

void r e f e r ence swap ( int &a , int &b)
{

int tmp ;

tmp = a ; a = b ; b = tmp ;
}

Figure A.2: Example of function swapping the contents of two variables, implemented in C++ passing
parameters by reference.

Definition 12 (Foramal Parameter) A formal parameter of a function (specified in the function’s
definition) identifies a variable that can be used by the caller to pass data to the function when invoking
it

Definition 13 (Actual Parameter) An actual parameter is an expression (specified when invoking a
function) that will be associated to the corresponding formal parameter during the function’s execution

The fact that a function is composed of a block of code makes it clear that the function is characterised
by a local environment (containing bindings between names and local variables, names and function
parameters, etc...). Moreover, since a function is defined as a denotable entity this block of code (the
function body) can be associated to a name (but this is not always necessary: anonymous functions do
exist!).

The way actual parameters are associated to formal parameters depends on the mechanism used to
invoke the function, and to the parameters passing style that is used. For example, a formal parameter
identifies a variable which can be created when the function is invoked (and is hence a local variable of
the function), or can exist before the function is invoked. Different parameters passing styles can be used,
and the most important are: parameters passing by value, by reference, and by name.

When parameters are passed by name, a new local variable for each formal parameter is allocated
when the function is invoked (and is deallocated when the function returns). The simplest way to
manage these variables is allocating them on the stack. The local environment of the function then
binds the formal parameter name to this variable, and the variable is initialized with the value of the
actual parameter (hence the name “by value”). If the function modifies the value stored in this variable,
the modifications are discarded when the function returns and the variable is deallocated. In other
words, passing parameters by value it is possible to pass data from the caller to the called, but not
vice-versa. This mechanism is the only one supported by the C programming language; as a result,
the “wrong swap()” function in Figure A.1 does not work correctly (and pointers are needed to code a
working “swap” function).

When parameters are passe by reference, instead, no new variable is allocated when the function is
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int f ( int v )
{

int a = 666 ;

return a + v ;
}

Figure A.3: Example of function passing parameters by name.

invoked. Parameters are passed by modifying the local environment of the function so that the formal
parameter’s name is bound to the actual parameter. Hence, the actual parameter has to be a denotable
entity (for example, things like “x + 1” are not valid actual parameters when passing parameters by
reference). Using the C/C++ jargon, this means that actual parameters have to be L-values. This
parameters passing style is not supported by the C language, but is supported by C++; as an example,
see the “reference swap()” function in Figure A.2 (comparing this code with Figure A.1 it is possible
to better understand the differences between passing parameters by name and by reference).

Finally, when parameters are passed by name invoking a function requires to replace each formal
parameter with the corresponding actual parameter (this is just text replacement). This mechanism is
typically used to evaluate (reduce) functional programs. Although parameters passing by name might look
simple to simplement, there are some subtle issues to be addressed. For example, consider the “f()” func-
tion from Figure A.3: the goal of the function is to sum 666 to the value received as input, and if param-
eters are passed by name the “f(n)” is evaluated as “{ int a = 666; return a + n;}”, which is reduced
to “{ return 666 + n;}”, and the return value is correctly “666 + n”. But if “f(a)” is invoked, things be-
come more complex: a simple replacement of “v” with “a” would result in “{ int a = 666; return a + a;}”
which reduces to “666 + 666”, clearly not the expected result... The issue is that when replacing “v”
with “a” it is not possible to make a distinction between two different entities (a local variable and a non
local one) which have the same name “a”.

This issue is generally addressed in functional programming by properly changing the variables’
names: if “f()” is invoked using as an actual parameter an expression containing “a”, then the lo-
cal variable “int a” must be renamed (for example to “a1”) so that the replacement can result in
“{ int a1 = 666; return a1 + a;}” which correctly evaluates to “666 + a”.

From an implementation point of view, parameter passing by name has been historically implemented
by passing “thunks”, which are (environment,expression) pairs, as parameters. Hence, a function receiving
parameters passed by name can be implemented as a function receiving (environment,expression) pairs
as parameters2.

A.5 Closures

void−>int counter (void )
{

int n = 0 ;

int f (void ) {
return n++;

}

return f ;
}

Figure A.4: Example of a function returning a closure.

In some programming languages, functions are storable entities (there are variables that can store
functions) or expressible entities (it is possible to build expressions evaluating to a function). As a result,

2the expressions are the actual parameters, and the environments are used to evaluate such expressions; in the example
of Figure A.3, the expression is “a” and the environment binds this “a” name to the global “a” variable).
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they can be used as actual parameters for other functions, or as return values for functions. In these
cases, the values to be stored, returned, or passed as parameters are technically “closures”

Definition 14 (Closure) A closure is a pair composed of a function and its non-local environment

Basically, a closure is needed to find the entities bound to identifiers for which there are no bindings in
the local environment of the function.

#include <s t d i o . h>

int (∗ counter (void ) ) ( void )
{

int n = 0 ;

int f (void ) {
return n++;

}

return f ;
}

int main ( )
{

int (∗ c1 ) ( void ) = counter ( ) ;
int (∗ c2 ) ( void ) = counter ( ) ;
int (∗ c3 ) ( void ) = counter ( ) ;

p r i n t f ( ” %d %d\n” , c1 ( ) , c1 ( ) ) ;
p r i n t f ( ”%d %d %d\n” , c2 ( ) , c2 ( ) , c2 ( ) ) ;
p r i n t f ( ” %d %d\n” , c3 ( ) , c3 ( ) ) ;

return 0 ;
}

Figure A.5: Example showing the function pointers in C are not closures (the example also uses a non-
standard extension provided by the gcc compiler).

As an example, look at the function “void->int contatore(void)” from Figure A.4, is coded using a
pseudo-language with a C-like syntax in which “void->int” is the type of the functions withot arguments
that return a value of type int. The “counter()” function receives no arguments and returns a function
that generates all the integer numbers starting from 0. It is possible to notice that “n;; is a local variable
of the “counter()” function, and not a variable or an argument of the “f()” function. Hence, when
“counter()” is invoked its local variable contains a binding from “n” to a local variable initialized to 0.
Such a binding is not in the local environment of “f()” (it is in its non-local environment) and when
“counter()” returns the variable bound to “n” is deallocated. So, in order for the program to work 2
things are needed:

1. The variable bound to identifier “n” should not be deallocated when “counter()” returns. Hence,
it cannot be allocated on the stack, but must be allocated on the heap

2. The binding between identifier “n” and such a variable has to be somehow associated to the returned
function. It is hence copied in a new environment that will be part of a closure returned by
“counter()’’

To better understand the differences between closures and function pointers, look at Figure A.5, that
uses a gcc extension to implement the function of Figure A.4 in C. In this case, the “int n” variable is
deallocated when function “counter()” returns, hence the program has an undefined behaviour.

A.6 Closures and Classes
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#include <f unc t i ona l>
#include <iostream>

auto counter (void )
{

int n = 0 ;

return [ n ] ( void ) mutable {
return n++;

} ;
}

int main ( )
{

auto c1 = counter ( ) ;
auto c2 = counter ( ) ;
auto c3 = counter ( ) ;

s td : : cout << c1 ( ) << ” ” << c1 ( ) << std : : endl ;
s td : : cout << c2 ( ) << ” ” << c2 ( ) << ” ” << c2 ( ) << std : : endl ;
s td : : cout << c3 ( ) << ” ” << c3 ( ) << std : : endl ;

return 0 ;
}

Figure A.6: Example showing how to use C++ lambda functions, which implement closures.

#include <iostream>

class Counter {
private :

int n ;
public :

Counter (void ) : n (0 ) {
}
int operator ( ) (void ) {

return n++;
}

} ;

int main ( )
{

auto c1 = Counter ( ) ;
auto c2 = Counter ( ) ;
auto c3 = Counter ( ) ;

s td : : cout << c1 ( ) << ” ” << c1 ( ) << std : : endl ;
s td : : cout << c2 ( ) << ” ” << c2 ( ) << ” ” << c2 ( ) << std : : endl ;
s td : : cout << c3 ( ) << ” ” << c3 ( ) << std : : endl ;

return 0 ;
}

Figure A.7: Implementing the “counter()” function in C++ using classes.
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Closures allow associating a non-local environment to a function, and have been originally introduced
to implement high-order functions (functions returning functions as a result, or accepting functions as
parameters). But the resulting abstraction is much more powerful than this, and allow associating data
(the state contained in the variables bound by the non-local environment) to code (the code implementing
the function’s body). And this is very similar to what classes do.

To better understand the relationship between closures and classes, look at the C++ implementation
of a counter as a closure or as a class, as shown in Figures A.6 and A.7. As it is possible to notice, the
“int n” variable in the first case is a local variable of the “counter()” function (then embedded in the
closure) and in the second case is encapsulated in a class as a private member.
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