
Introduction to Kernel

Programming

Luca Abeni

luca.abeni@santannapisa.it



About the Course

Kernel Programming Introduction to Kernel Programming

• Goal: understand how to code an OS kernel

• This course will introduce the students to the
pains and joys of kernel programming...

• Of course, this is only an introduction!

• First question: so, why is kernel programming so
different?

• But, first of all, what is a kernel?
• ...And what is an Operating System?
• ...And, what is a computer? Where are we

coming from? Where are we going?

• No, I will not answer the last questions...



Practical Details

Kernel Programming Introduction to Kernel Programming

• The course is 20 hours long (2 credits)
• Organized in lessons by 2:30 hours each
• Some theory and some practice

• There cannot be practice without theory...
• ...But theory is useless without practice!

• For informations, email
luca.abeni@santannapisa.it

• Office: TeCIP (via Moruzzi 1)



Overview

Kernel Programming Introduction to Kernel Programming

• Quick recap about architecture, OSs, kernels

• Privileged instructions→ kernel

• The kernel execution environment
• Kernel development: DIY, or existing systems

(Linux)?
• Introduction to the Linux kernel

• Kernel modules, concurrency, synchronization, ...

• Some examples



The Operating System

Kernel Programming Introduction to Kernel Programming

• Operating System: set of computer program acting
as an interface between applications and hardware

• “Set of computer programs”: the OS is not a
single program!

• “Acting as an interface... ”: applications do not
directly access the hardware (must use the OS)

• So, the OS:

• Hides the hardware details to user applications
• Controls the execution of user programs
• Manages the hardware and software resources

• Applications running on an OS can use the CPU
Assembly extended with some additional
instructions: the system calls



The OS Kernel

Kernel Programming Introduction to Kernel Programming

• Modern CPUs: different privilege levels (user level
and privileged level)

• Actually, it can be even more complex than this
← hypervisor mode, ...

• Security / protection→ only a small amount of
trusted code should run with a high privilege level

• OS Kernel: part of the OS executing with a high
privilege level

• Regular user applications execute at a lower
privilege level

• To protect the system from malicious programs



The OS Kernel - Again

Kernel Programming Introduction to Kernel Programming

• Kernel: part of the OS running at high privilege level

• Can do (almost!) everything: even crash the
system

• This is why it must be trusted... Very critical
component of the system

• Security and stability depend on it!
• But also the system performance depends on it...

• “With Great Power Comes Great Responsibility”
• Applications rely on the kernel to do everything

important / critical

• How is kernel execution invoked? Interrupts /
exceptions (hw or sw)



Kernel Responsibilities

Kernel Programming Introduction to Kernel Programming

• Multiprogramming:

• Multiple tasks (processes or threads) on few
CPUs

• Memory protection: multiple address spaces
(paging, segmentation)

• CPU privilege levels: system and user

• Low level hardware details:

• Interrupt handling, boot, device drivers, system
calls, ...

• Important data structures (memory page tables,
...)

• Kernel address space: can see all the system
memory



Kernel Functionalities

Kernel Programming Introduction to Kernel Programming

• System boot→ configure and set-up the system so
that virtual memory and multitasking can work

• Configure memory, page tables & friends
• Once it is done, start the first user-space

process: in Unix, it is init (PID 1)
• Then, execution returns to the kernel only

through interrupts

• Hardware interrupt handlers (ISRs, used by drivers)
• System calls (software interrupts, ...)

• Interrupts cause a privilege change (user→
system)

• Syscalls and ISRs can cause context switches



Task Handling

Kernel Programming Introduction to Kernel Programming

• The kernel handles processes and threads
• Each task is characterised by:

• A Task Descriptor (TSS)
• A Task Body (code implementing the task)
• Some (public or private) data (Address Space)

• Task Descriptor→ contains copy of the CPU
registers, including:

• Pointers to user-space and kernel stack
• Address Space configuration (CR3, ...)
• Protection level (CPL)

• The task body is technically part of the address
space



Task Address Space

Kernel Programming Introduction to Kernel Programming

• Divided in segments:

• Code Segment (task body)
• Data Segment

• Initialised Data, BSS, Heap

• Stack Segment

• Recently, some additional segments (RO data, etc...)

• Before starting a task, the OS kernel has to:

• Initialise memory segments (allocate virtual
memory)

• Allocate and set up a stack, initialise the stack
pointer, etc...

• Allocate and initialise (to 0) the BSS



The Rest of the OS

Kernel Programming Introduction to Kernel Programming

• The kernel is only part of the OS
• There also are many user-space components

• System libraries
• System programs
• ...

• System libraries→ needed to properly invoke kernel
functionalities (hide the syscall mechanism)

• System programs→ needed to properly boot and
use the system



How does a Kernel Look Like

Kernel Programming Introduction to Kernel Programming

• No single entry point

• “Boot entry point” + system calls

• Kernel Memory Address Space: all the memory can
be accessed

• No memory protection!!!
• Kernel-space code can easily corrupt important

data structures!

• No standard runtime

• C code cannot include <stdio.h> and friends...
• No standard C library!



Kernel Programming

Kernel Programming Introduction to Kernel Programming

• The kernel must provide the utility functions to be
used

• Example, no printf(), but printk()...

• Errors do not result in segmentation faults...
• ...But can cause system crashes!
• Other weird details

• No floating point (do not use float or double)
• Small stack (4KB or 8KB)
• Atomic contexts, ...



Kernel Programming Language

Kernel Programming Introduction to Kernel Programming

• OS kernels can be coded in many different
languages

• But some amount of Assembly is needed...

• For some languages, additional restrictions apply
(example: for C++, generally no RTTI)

• And in order to use some languages the kernel
must implement a large runtime...

• Kernels are generally coded in C or C++ (with
restrictions)

• After all, the C language has been invented
exactly for this purpose!

• Simplest choice: C + some Assembly (inline and not)



Example: the Linux Kernel

Kernel Programming Introduction to Kernel Programming

• The Linux kernel uses C
• Subset of C99 + some extensions (likely() /

unlikely() annotations, etc...)
• As said, no access to standard libraries

• Different set of header files and utility functions

• Strict coding style to control the quality
(Documentation/CodingStyle,
scripts/checkpatch.pl)

• Some Assembly is used (for entry points, etc...)
• Example: Linked Lists (include/linux/list.h)



First Adventures in Kernel Land

Kernel Programming Introduction to Kernel Programming

• First experiments with kernel programming

• Should we write our own kernel?
• Or use an existing kernel as a basis?

• Our own didactic kernel: simpler, maybe we learn
more...

• ...But we can easily get lost in low-level hw
details!!!

• Work on an existing kernel: it might be more
complex...

• ...But we can focus on the aspects we are
interested in

• The rest of the kernel already exists!


	About the Course
	Practical Details
	Overview
	The Operating System
	The OS Kernel
	The OS Kernel - Again
	Kernel Responsibilities
	Kernel Functionalities
	Task Handling
	Task Address Space
	The Rest of the OS
	How does a Kernel Look Like
	Kernel Programming
	Kernel Programming Language
	Example: the Linux Kernel
	First Adventures in Kernel Land

