
Introduction to Linux Kernel

Modules

Luca Abeni

luca.abeni@santannapisa.it



Linux Kernel Modules

Kernel Programming Introduction to Linux Kernel Modules

• Kernel module: code that can be dynamically
loaded/unloaded into the kernel at runtime

• Change the kernel code without needing to reboot
the system

• More technically: the modules’ object code is
dynamically linked to the running kernel code

• Form of dynamic linking!

• This mechanism can be used for some simple
experiments on Linux kernel programming!



Using Kernel Modules

Kernel Programming Introduction to Linux Kernel Modules

• Kernel Module: kernel object → .ko file
• Inserted with modprobe <module name>

• Can be removed with rmmod <module name>

• When inserted, a kernel module can:

• Register some services
• Start some tasks (kernel threads)

• A kernel module can use some exported kernel
functions



Kernel Programming - 1

Kernel Programming Introduction to Linux Kernel Modules

• No single entry point (no “main() function)
• No memory protection

• Kernel Memory Address Space: all the memory
can be accessed

• Kernel-space tasks can easily corrupt important
data structures!

• Not linked to standard libraries

• Cannot include <stdio.h> and friends...
• No standard C library!



Kernel Programming - 2

Kernel Programming Introduction to Linux Kernel Modules

• The kernel (or nanokernel, or ...) provides some
functions we can use

• Example, no printf(), but printk()...

• Errors do not result in segmentation faults...
• ...But can cause system crashes!
• Other weird details

• No floating point (do not use float or double)
• Small stack (4KB or 8KB)
• Atomic contexts, ...



Kernel Programming Language

Kernel Programming Introduction to Linux Kernel Modules

• OS kernels are generally coded in C or C++

• The Linux kernel uses C
• Subset of C99 + some extensions (likely() /

unlikely() annotations, etc...)

• As said, no access to standard libraries

• Different set of header files and utility functions

• Some Assembly is used (for entry points, etc...)
• Example: Linked Lists (include/linux/list.h)



Writing Linux Kernel Modules

Kernel Programming Introduction to Linux Kernel Modules

• Written in C99 + extensions (see previous slide)
• Must include some headers:

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>

• Must define two entry points: init and cleanup

• Init entry point: called when the module is
inserted

• Cleanup entry point: called when the module is
removed



The Init Entry Point

Kernel Programming Introduction to Linux Kernel Modules

static int __init my_init(void)
{

...
return 0;

}

module_init(my_init);

• static: not used outside this compilation unit
• init: annotation for the kernel (not used after

insmod)
• return 0;: module initialised without errors
• module init(my init);: mark my init as the

init entry point



The Exit Entry Point

Kernel Programming Introduction to Linux Kernel Modules

static void __exit my_cleanup(void)
{

...
}

module_exit(my_cleanup);

• exit: annotation for the kernel (used only in
rmmod)

• module exit(my cleanup);: mark my cleanup

as the cleanup entry point
• Responsible for undoing things done by init
• If not defined, the module cannot be unloaded



Compiling Linux Kernel Modules

Kernel Programming Introduction to Linux Kernel Modules

• Compiling user-space code is simple

• gcc without additional parameters works
• Makefiles and similar for more complex programs

• But compiling kernel code is more difficult!

• “Freestanding” programming environment →
special compiler options are needed

• The compiler defaults might change from version
to version

• ...

• Fortunately, Linux developers already did the dirty
work for us!

• KBuild system



KBuild

Kernel Programming Introduction to Linux Kernel Modules

• Set of Makefiles, programs and scripts used to build
the Linux kernel

• Already knows which compiler options to use
• Simpler to use than “regular” Makefiles

• We just need to tell kbuild the name of the
module we want to build

• Supports the compilation of kernel modules

• Even external (out-of-tree) modules!



Using KBuild

Kernel Programming Introduction to Linux Kernel Modules

• Based on Makefiles
• Important line: “obj-m = modulename.o”

• This assumes modules composed by one single
compilation unit (.c file)

• In case of multiple compilation units, use
“modulename-objs = ...” (list of .o files)

• To use it, we must tell make where KBuild is

• make -C PathToLinuxSources M=$(pwd)

• Where “PathToLinuxSources” is the
pathname of a compiled Linux kernel

• The “-C ...” complication can be embedded in a
Makefile rule (see example)



Applications as Kernel Modules

Kernel Programming Introduction to Linux Kernel Modules

• The init entry point must return quickly

• modprobe does not terminate until init returns

• It can create some threads, or register some device,
and return

• After loading the module, the application is
started!

• The cleanup entry point stops the threads /
unregister the device

• See example


	Linux Kernel Modules
	Using Kernel Modules
	Kernel Programming - 1
	Kernel Programming - 2
	Kernel Programming Language
	Writing Linux Kernel Modules
	The Init Entry Point
	The Exit Entry Point
	Compiling Linux Kernel Modules
	KBuild
	Using KBuild
	Applications as Kernel Modules

