
Kernel and Locking

Luca Abeni

luca.abeni@santannapisa.it

Monolithic Kernels

Kernel Programming Kernel Locking

• Traditional Unix-like structure
• Protection: distinction between Kernel (running in

KS) and User Applications (running in US)
• The kernel behaves as a single-threaded program

• One single execution flow in KS at each time
• Simplify consistency of internal kernel structures

• Execution enters the kernel in two ways:

• Coming from upside (system calls)
• Coming from below (hardware interrupts)

Single-Threaded Kernels

Kernel Programming Kernel Locking

• Only one single execution flow (thread) can execute
in the kernel

• It is not possible to execute more than 1 system
call at time

• Non-preemptable system calls
• In SMP systems, syscalls are critical sections

(execute in mutual exclusion)

• Interrupt handlers execute in the context of the
interrupted task

Bottom Halves

Kernel Programming Kernel Locking

• Interrupt handlers split in two parts

• Short and fast ISR
• “Soft IRQ handler”

• Soft IRQ hanlder: deferred handler

• Traditionally known ass Bottom Half (BH)
• AKA Deferred Procedure Call - DPC - in

Windows
• Linux: distinction between “traditional” BHs and

Soft IRQ handlers

Synchronizing System Calls and BHs

Kernel Programming Kernel Locking

• Synchronization with ISRs by disabling interrupts
• Synchronization with BHs: is almost automatic

• BHs execute atomically (a BH cannot interrupt
another BH)

• BHs execute at the end of the system call, before
invoking the scheduler for returning to US

• Easy synchronization, but large non-preemptable
sections!

• Achieved by reducing the kernel parallelism
• Can be bad for real-time

Latency in Single-Threaded Kernels

Kernel Programming Kernel Locking

• Kernels working in this way are often called
non-preemptable kernels

• L
np is upper-bounded by the maximum amount of

time spent in KS

• Maximum system call length
• Maximum amount of time spent serving interrupts

Multiprocessor Issues

Kernel Programming Kernel Locking

• Monolithic kernels are single-threaded: how to run
then on multiprocessor?

• The kernel is a critical section: Big Kernel Lock
protecting every system call

• This solution does not scale well: a more
fine-grained locking is needed!

• Tasks cannot block on these locks→ not mutexes,
but spinlocks!

• Remember? When the CS is busy, a mutex
blocks, a spinlock spins!

• Busy waiting... Not that great idea...

Removing the Big Kernel Lock

Kernel Programming Kernel Locking

• Big Kernel Lock→ huge critical section for everyone

• Bad for real-time...
• ...But also bad for troughput!

• Let’s split it in multiple locks...
• Fine-grained locking allows more execution flows in

the kernel simultaneously

• More parallelism in the kernel...
• ...But tasks executing in kernel mode are still

non-preemptable

Spinlocks

Kernel Programming Kernel Locking

• Spinlock: non-blocking synchronization object,
similar to mutex

• Behave as a mutex, but tasks do not block on it
• A task trying to acquire an already locked spinlock

spins until the spinlock is free
• Obviously, spinlocks are only useful on SMP
• For synchronising with ISR, there are “interrupt

disabling” versions of the spinlock primitives

• spin lock(lock), spin unlock(lock)

• spin lock irq(l), spin unlock irq(l)

• spin lock irqsave(lock, flags),
spin unlock irqrestore(lock, flags)

Critical Sections in Kernel Code

Kernel Programming Kernel Locking

• Old Linux kernels used to be non-preemptable...
• Kernel⇒ Big critical section
• Mutual exclusion was not a problem...
• Then, multiprocessor systems changed everything

• First solution: Big Kernel Lock← very bad!

• Removed BKL, and preemptable kernels, ...

• Multiple tasks can execute inside the kernel
simultaneously⇒ mutual exclusion is an issue!

• Multiple critical sections inside the kernel

Enforcing Mutual Exclusion

Kernel Programming Kernel Locking

• Mutual exclusion is traditionally enforced using
mutexes

• Mutexes are blocking synchronisation objects

• A task trying to acquire a locked mutex is
blocked. . .

• . . .And the scheduler is invoked!

• Good solution for user-space applications...
• But blocking is sometimes bad when in the kernel!

Blocking is Bad When...

Kernel Programming Kernel Locking

• Atomic Context

• Code in “task” context can sleep (task blocked)
• . . .But some code does not run in a task context

(example: IRQ handlers)!
• Other situations (ex: interrupts disabled)

• Efficiency

• small critical sections→ using mutexes, a task
would block for a very short time

• Busy-waiting can be more efficient (less context
switches)!

Summing up...

Kernel Programming Kernel Locking

• In some particular situations. . .
• . . .We need a way to enforce mutual exclusion

without blocking any task

• This is only useful in kernel programming
• Remember: in general cases, busy-waiting is

bad!

• So, the kernel provides a spinning lock mechanism

• To be used when sleeping/blocking is not an
option

• Originally developed for multiprocessor systems

Spinlocks - The Origin

Kernel Programming Kernel Locking

• spinlock: Spinning Lock

• Protects shared data structures in the kernel
• Behaviour: similar to mutex (locked / unlocked)
• But does not sleep!

• Basic idea: busy waiting (spin instead of blocking)
• Might neeed to disable interrupts in some cases

Spinlocks - Operations

Kernel Programming Kernel Locking

• Basic operations on spinlocks: similar to mutexes

• Biggest difference: lock() on a locked spinlock

• lock() on an unlocked spinlock: change its state
• lock() on a locked spinlock: spin until it is unlocked

• Only useful on multiprocessor systems

• unlock() on a locked spinlock: change its state
• unlock() on an unlocked spinlock: error!!!

Spinlocks - Implementation

Kernel Programming Kernel Locking

1 int lock = 1;
2
3 void lock(int *sl)
4 {
5 while (TestAndSet(sl, 0) == 0);
6 }
7
8 void unlock(int *sl)
9 {

10 *sl = 1;
11 }

A possible algorithm
(using test and set)

1 lock:
2 decb %0
3 jns 3
4 2:
5 cmpb $0,%0
6 jle 2
7 jmp lock
8 3:
9 ...

10 unlock:
11 movb $1,%0

Assembly implemen-
tation (in Linux)

Spinlocks and Livelocks

Kernel Programming Kernel Locking

• Trying to lock a locked spinlock results in spinning⇒
spinlocks must be locked for a very short time

• If an interrupt handler interrupts a task holding a
spinlock, livelocks are possible...

• τi gets a spinlock SL

• An interrupt handler interrupts τi...
• ...And tries to get the spinlock SL

• ⇒ The interrupt handler spins waiting for SL
• But τi cannot release it!!!

Avoiding Livelocks

Kernel Programming Kernel Locking

• Resource shared with ISRs→ possible livelocks

• What to do?
• The ISR should not run during the critical section!

• When a spinlock is used to protect data structures
shared with interrupt handlers, the spinlock must
disable the execution of such handlers!

• In this way, the kernel cannot be interrupted
when it holds the spinlock!

Spinlocks in Linux

Kernel Programming Kernel Locking

• Defining a spinlock: spinlock t my lock;
• Initialising: spin lock init(&my lock);

• Acquiring a spinlock: spin lock(&my lock);

• Releasing a spinlock: spin unlock(&my lock);

• With interrupt disabling:

• spin lock irq(&my lock),
spin lock bh(&my lock),
spin lock irqsave(&my lock, flags)

• spin unlock irq(&my lock), ...

Spinlocks - Evolution

Kernel Programming Kernel Locking

• On UP systems, traditional spinlocks are no-ops

• The irq variations are translated in cli/sti

• This works assuming only on execution flow in the
kernel⇒ non-preemptable kernel

• Kernel preemptability changes things a little bit:

• Preemption counter, initialised to 0: number of
spinlocks currently locked

• spin lock() increases the counter
• spin unlock() decreases the counter

Spinlocks and Kernel Preemption

Kernel Programming Kernel Locking

• preemption counter: increased when entering a
critical section, decreased on exit

• When exiting a critical section, check if the scheduler
can be invoked

• If the preemption counter returns to 0,
spin unlock() calls schedule()...

• ...And returns to user-space!

• Preemption can only happen on spin unlock()

(interrupt handlers lock/unlock at least one
spinlock...)

Spinlocks and Kernel Preemption

Kernel Programming Kernel Locking

• In preemptable kernels, spinlocks’ behaviour
changes a little bit:

• spin lock() disables preemption
• spin unlock() might re-enable preemption (if

no other spinlock is locked)
• spin unlock() is a preemption point

• Spinlocks are not optimised away on UP anymore
• Become similar to mutexes with the Non-Preemptive

Protocol (NPP)
• Again, they must be held for very short times!!!

Sleeping in Atomic Context

Kernel Programming Kernel Locking

• atomic context: CPU context in which it is not
possible to modify the state of the current task

• Interrupt handlers
• Scheduler code
• Critical sections protected by spinlocks
• . . .

• Do not call possibly-blocking functions from atomic
context!!!

Interrupt Handlers Context

Kernel Programming Kernel Locking

• Remember: ISRs and BHs run in the context of the
interrupted process

• This is why they are in “Atomic Context”→
cannot use mutexes

• What about giving them a proper context?

• IRQ threads (hard - ISR - and soft - BH)
• They are kernel threads activated when an

interrupt fires
• Proper context→ can block, can use mutexes, ...

• When using IRQ threads, interrupt handler can be
scheduled (like the other tasks)

IRQ Threads

Kernel Programming Kernel Locking

• Supported (optionally) by Linux
• Kernel thread: thread which always execute in kernel

mode

• Created with kthread run()

• Soft IRQ Threads and Hard IRQ Threads are just
“regular” kernel threads...

• Always blocked; become ready when a hardware
interrupt (Hard IRQ) fires or a BH (Soft IRQ) is
activated

• Can use all of the kernel functionalities
• A Hard IRQ Thread and a Soft IRQ Thread per

IRQ

Task Descriptors

Kernel Programming Kernel Locking

• On the Intel x86 architecture, TSS

• It is a segment (described in GDT)
• Current task descriptor← TR

• Stores the task context (CPU state, ...)

• Stores EIP→ task body
• Stores CR3→ task address space
• Stores ESP / SS→ task stack (both US and KS)

• Used during context switches
• Can be linked in task queues

Context Switch

Kernel Programming Kernel Locking

• Needed to multiplex many tasks on few CPUs
• 2 phases

• Save the current CPU state in the task descriptor
pointed by TR

• Load the CPU state from a new task descriptor

• Can change CR3 (new address space)

• Consequence: the CPU MUST have a high
privilege level

• Context switches happen in Kernel Space

• Changes the stack

Context Switches and Stack

Kernel Programming Kernel Locking

• During a context switch, the kernel stack is
changed...

• What about user stack???

• Remember? The user-space ESP and SS are on
the kernel stack...

• The User Space EIP and CS are on the stack too...

• Returning to US, a different task will be
executed...

• The context switch changes EIP too (kernel space)

The Scheduler

Kernel Programming Kernel Locking

• A system has M CPUs→M tasks execute
simultaneously

• All the other tasks can be ready for execution or
blocked

• Task descriptors are stored in queues

• Ready task queue (can be global or per-CPU)
• Blocked tasks queues

• Condition variables
• Mutexes and/or semaphores...

• the Scheduler selects tasks from the ready task
queue

Task Queues

Kernel Programming Kernel Locking

• There are multiple task queues inside the kernel

• In the Linux kernel, they are implemented as lists
(remember? linux/list.h)

• Tasks are inserted in the different queues according
to their task state

• Ready
• Blocked on a completion / waitqueue / ...
• ...

• Task states in Linux:

• TASK RUNNING→ ready or executing
• TASK INTERRUPTIBLE,

TASK UNINTERRUPTIBLE→ blocked

Blocking / Unblocking Tasks in Linux

Kernel Programming Kernel Locking

• Tasks descriptors: struct task struct

• Tasks are removed by the ready queue by the
scheduler, when their state changes

• Do not directly mess with the ready queue!

• How to block a task:

• Change its state (set task state())
• Invoke the scheduler (schedule())

• How to wake a task up:

• wake up process()

• Note: sometimes, you can use higher-level
abstractions (completions, waitqueues, ...)

	Monolithic Kernels
	Single-Threaded Kernels
	Bottom Halves
	Synchronizing System Calls and BHs
	Latency in Single-Threaded Kernels
	Multiprocessor Issues
	Removing the Big Kernel Lock
	Spinlocks
	Critical Sections in Kernel Code
	Enforcing Mutual Exclusion
	Blocking is Bad When...
	Summing up...
	Spinlocks - The Origin
	Spinlocks - Operations
	Spinlocks - Implementation
	Spinlocks and Livelocks
	Avoiding Livelocks
	Spinlocks in Linux
	Spinlocks - Evolution
	Spinlocks and Kernel Preemption
	Spinlocks and Kernel Preemption
	Sleeping in Atomic Context
	Interrupt Handlers Context
	IRQ Threads
	Task Descriptors
	Context Switch
	Context Switches and Stack
	The Scheduler
	Task Queues
	Blocking / Unblocking Tasks in Linux

