
Kernel and Locking

Luca Abeni

luca.abeni@santannapisa.it



Monolithic Kernels
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• Traditional Unix-like structure
• Protection: distinction between Kernel (running in

KS) and User Applications (running in US)
• The kernel behaves as a single-threaded program

• One single execution flow in KS at each time
• Simplify consistency of internal kernel structures

• Execution enters the kernel in two ways:

• Coming from upside (system calls)
• Coming from below (hardware interrupts)



Single-Threaded Kernels
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• Only one single execution flow (thread) can execute
in the kernel

• It is not possible to execute more than 1 system
call at time

• Non-preemptable system calls
• In SMP systems, syscalls are critical sections

(execute in mutual exclusion)

• Interrupt handlers execute in the context of the
interrupted task



Bottom Halves
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• Interrupt handlers split in two parts

• Short and fast ISR
• “Soft IRQ handler”

• Soft IRQ hanlder: deferred handler

• Traditionally known ass Bottom Half (BH)
• AKA Deferred Procedure Call - DPC - in

Windows
• Linux: distinction between “traditional” BHs and

Soft IRQ handlers



Synchronizing System Calls and BHs
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• Synchronization with ISRs by disabling interrupts
• Synchronization with BHs: is almost automatic

• BHs execute atomically (a BH cannot interrupt
another BH)

• BHs execute at the end of the system call, before
invoking the scheduler for returning to US

• Easy synchronization, but large non-preemptable
sections!

• Achieved by reducing the kernel parallelism
• Can be bad for real-time



Latency in Single-Threaded Kernels
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• Kernels working in this way are often called
non-preemptable kernels

• L
np is upper-bounded by the maximum amount of

time spent in KS

• Maximum system call length
• Maximum amount of time spent serving interrupts



Multiprocessor Issues
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• Monolithic kernels are single-threaded: how to run
then on multiprocessor?

• The kernel is a critical section: Big Kernel Lock
protecting every system call

• This solution does not scale well: a more
fine-grained locking is needed!

• Tasks cannot block on these locks→ not mutexes,
but spinlocks!

• Remember? When the CS is busy, a mutex
blocks, a spinlock spins!

• Busy waiting... Not that great idea...



Removing the Big Kernel Lock
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• Big Kernel Lock→ huge critical section for everyone

• Bad for real-time...
• ...But also bad for troughput!

• Let’s split it in multiple locks...
• Fine-grained locking allows more execution flows in

the kernel simultaneously

• More parallelism in the kernel...
• ...But tasks executing in kernel mode are still

non-preemptable



Spinlocks

Kernel Programming Kernel Locking

• Spinlock: non-blocking synchronization object,
similar to mutex

• Behave as a mutex, but tasks do not block on it
• A task trying to acquire an already locked spinlock

spins until the spinlock is free
• Obviously, spinlocks are only useful on SMP
• For synchronising with ISR, there are “interrupt

disabling” versions of the spinlock primitives

• spin lock(lock), spin unlock(lock)

• spin lock irq(l), spin unlock irq(l)

• spin lock irqsave(lock, flags),
spin unlock irqrestore(lock, flags)



Critical Sections in Kernel Code
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• Old Linux kernels used to be non-preemptable...
• Kernel⇒ Big critical section
• Mutual exclusion was not a problem...
• Then, multiprocessor systems changed everything

• First solution: Big Kernel Lock← very bad!

• Removed BKL, and preemptable kernels, ...

• Multiple tasks can execute inside the kernel
simultaneously⇒ mutual exclusion is an issue!

• Multiple critical sections inside the kernel



Enforcing Mutual Exclusion
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• Mutual exclusion is traditionally enforced using
mutexes

• Mutexes are blocking synchronisation objects

• A task trying to acquire a locked mutex is
blocked. . .

• . . .And the scheduler is invoked!

• Good solution for user-space applications...
• But blocking is sometimes bad when in the kernel!



Blocking is Bad When...
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• Atomic Context

• Code in “task” context can sleep (task blocked)
• . . .But some code does not run in a task context

(example: IRQ handlers)!
• Other situations (ex: interrupts disabled)

• Efficiency

• small critical sections→ using mutexes, a task
would block for a very short time

• Busy-waiting can be more efficient (less context
switches)!



Summing up...
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• In some particular situations. . .
• . . .We need a way to enforce mutual exclusion

without blocking any task

• This is only useful in kernel programming
• Remember: in general cases, busy-waiting is

bad!

• So, the kernel provides a spinning lock mechanism

• To be used when sleeping/blocking is not an
option

• Originally developed for multiprocessor systems



Spinlocks - The Origin
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• spinlock: Spinning Lock

• Protects shared data structures in the kernel
• Behaviour: similar to mutex (locked / unlocked)
• But does not sleep!

• Basic idea: busy waiting (spin instead of blocking)
• Might neeed to disable interrupts in some cases



Spinlocks - Operations
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• Basic operations on spinlocks: similar to mutexes

• Biggest difference: lock() on a locked spinlock

• lock() on an unlocked spinlock: change its state
• lock() on a locked spinlock: spin until it is unlocked

• Only useful on multiprocessor systems

• unlock() on a locked spinlock: change its state
• unlock() on an unlocked spinlock: error!!!



Spinlocks - Implementation
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1 int lock = 1;
2
3 void lock(int *sl)
4 {
5 while (TestAndSet(sl, 0) == 0);
6 }
7
8 void unlock(int *sl)
9 {

10 *sl = 1;
11 }

A possible algorithm
(using test and set)

1 lock:
2 decb %0
3 jns 3
4 2:
5 cmpb $0,%0
6 jle 2
7 jmp lock
8 3:
9 ...

10 unlock:
11 movb $1,%0

Assembly implemen-
tation (in Linux)



Spinlocks and Livelocks
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• Trying to lock a locked spinlock results in spinning⇒
spinlocks must be locked for a very short time

• If an interrupt handler interrupts a task holding a
spinlock, livelocks are possible...

• τi gets a spinlock SL

• An interrupt handler interrupts τi...
• ...And tries to get the spinlock SL

• ⇒ The interrupt handler spins waiting for SL
• But τi cannot release it!!!



Avoiding Livelocks
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• Resource shared with ISRs→ possible livelocks

• What to do?
• The ISR should not run during the critical section!

• When a spinlock is used to protect data structures
shared with interrupt handlers, the spinlock must
disable the execution of such handlers!

• In this way, the kernel cannot be interrupted
when it holds the spinlock!



Spinlocks in Linux
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• Defining a spinlock: spinlock t my lock;
• Initialising: spin lock init(&my lock);

• Acquiring a spinlock: spin lock(&my lock);

• Releasing a spinlock: spin unlock(&my lock);

• With interrupt disabling:

• spin lock irq(&my lock),
spin lock bh(&my lock),
spin lock irqsave(&my lock, flags)

• spin unlock irq(&my lock), ...



Spinlocks - Evolution
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• On UP systems, traditional spinlocks are no-ops

• The irq variations are translated in cli/sti

• This works assuming only on execution flow in the
kernel⇒ non-preemptable kernel

• Kernel preemptability changes things a little bit:

• Preemption counter, initialised to 0: number of
spinlocks currently locked

• spin lock() increases the counter
• spin unlock() decreases the counter



Spinlocks and Kernel Preemption
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• preemption counter: increased when entering a
critical section, decreased on exit

• When exiting a critical section, check if the scheduler
can be invoked

• If the preemption counter returns to 0,
spin unlock() calls schedule()...

• ...And returns to user-space!

• Preemption can only happen on spin unlock()

(interrupt handlers lock/unlock at least one
spinlock...)



Spinlocks and Kernel Preemption

Kernel Programming Kernel Locking

• In preemptable kernels, spinlocks’ behaviour
changes a little bit:

• spin lock() disables preemption
• spin unlock() might re-enable preemption (if

no other spinlock is locked)
• spin unlock() is a preemption point

• Spinlocks are not optimised away on UP anymore
• Become similar to mutexes with the Non-Preemptive

Protocol (NPP)
• Again, they must be held for very short times!!!



Sleeping in Atomic Context
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• atomic context: CPU context in which it is not
possible to modify the state of the current task

• Interrupt handlers
• Scheduler code
• Critical sections protected by spinlocks
• . . .

• Do not call possibly-blocking functions from atomic
context!!!



Interrupt Handlers Context
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• Remember: ISRs and BHs run in the context of the
interrupted process

• This is why they are in “Atomic Context”→
cannot use mutexes

• What about giving them a proper context?

• IRQ threads (hard - ISR - and soft - BH)
• They are kernel threads activated when an

interrupt fires
• Proper context→ can block, can use mutexes, ...

• When using IRQ threads, interrupt handler can be
scheduled (like the other tasks)



IRQ Threads
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• Supported (optionally) by Linux
• Kernel thread: thread which always execute in kernel

mode

• Created with kthread run()

• Soft IRQ Threads and Hard IRQ Threads are just
“regular” kernel threads...

• Always blocked; become ready when a hardware
interrupt (Hard IRQ) fires or a BH (Soft IRQ) is
activated

• Can use all of the kernel functionalities
• A Hard IRQ Thread and a Soft IRQ Thread per

IRQ



Task Descriptors

Kernel Programming Kernel Locking

• On the Intel x86 architecture, TSS

• It is a segment (described in GDT)
• Current task descriptor← TR

• Stores the task context (CPU state, ...)

• Stores EIP→ task body
• Stores CR3→ task address space
• Stores ESP / SS→ task stack (both US and KS)

• Used during context switches
• Can be linked in task queues



Context Switch
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• Needed to multiplex many tasks on few CPUs
• 2 phases

• Save the current CPU state in the task descriptor
pointed by TR

• Load the CPU state from a new task descriptor

• Can change CR3 (new address space)

• Consequence: the CPU MUST have a high
privilege level

• Context switches happen in Kernel Space

• Changes the stack



Context Switches and Stack

Kernel Programming Kernel Locking

• During a context switch, the kernel stack is
changed...

• What about user stack???

• Remember? The user-space ESP and SS are on
the kernel stack...

• The User Space EIP and CS are on the stack too...

• Returning to US, a different task will be
executed...

• The context switch changes EIP too (kernel space)



The Scheduler

Kernel Programming Kernel Locking

• A system has M CPUs→M tasks execute
simultaneously

• All the other tasks can be ready for execution or
blocked

• Task descriptors are stored in queues

• Ready task queue (can be global or per-CPU)
• Blocked tasks queues

• Condition variables
• Mutexes and/or semaphores...

• the Scheduler selects tasks from the ready task
queue



Task Queues
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• There are multiple task queues inside the kernel

• In the Linux kernel, they are implemented as lists
(remember? linux/list.h)

• Tasks are inserted in the different queues according
to their task state

• Ready
• Blocked on a completion / waitqueue / ...
• ...

• Task states in Linux:

• TASK RUNNING→ ready or executing
• TASK INTERRUPTIBLE,

TASK UNINTERRUPTIBLE→ blocked



Blocking / Unblocking Tasks in Linux
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• Tasks descriptors: struct task struct

• Tasks are removed by the ready queue by the
scheduler, when their state changes

• Do not directly mess with the ready queue!

• How to block a task:

• Change its state (set task state())
• Invoke the scheduler (schedule())

• How to wake a task up:

• wake up process()

• Note: sometimes, you can use higher-level
abstractions (completions, waitqueues, ...)
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