Introduction to Kernel
Programming

Luca Abeni
luca.abeni@santannapisa.it



About the Course

e Goal: understand how to code an OS kernel

e This course will introduce the students to the
pains and joys of kernel programming...
e Of course, this is only an introduction!

e First question: so, why is kernel programming so
different?

But, first of all, what is a kernel?

...And what is an Operating System?
...And, what is a computer? Where are we
coming from? Where are we going?

e No, | will not answer the last questions...

Kernel Programming Introduction to Kernel Programming



Practical Details

The course is 20 hours long (2 credits)
Organized in lessons by 2:30 hours each
Some theory and some practice

e There cannot be practice without theory...
e ...Buttheory is useless without practice!

e [or informations, email
luca.abeni@santannapisa.it

e COffice: TeCIP (via Moruzzi 1)

Kernel Programming Introduction to Kernel Programming



Overview

e Quick recap about architecture, OSs, kernels
e Privileged instructions — kernel

The kernel execution environment
Kernel development: DIY, or existing systems
(Linux)?

e Introduction to the Linux kernel

e Kernel modules, concurrency, synchronization, ...
e Some examples

Kernel Programming Introduction to Kernel Programming



The Operating System

Operating System: set of computer program acting
as an interface between applications and hardware

e “Set of computer programs”: the OS is not a
single program!

e “Acting as an interface... ”: applications do not
directly access the hardware (must use the OS)

So, the OS:

e Hides the hardware details to user applications
e (Controls the execution of user programs
e Manages the hardware and software resources

Applications running on an OS can use the CPU
Assembly extended with some additional
instructions: the system calls

Kernel Programming Introduction to Kernel Programming



The OS Kernel

Modern CPUs: different privilege levels (user level
and privileged level)

e Actually, it can be even more complex than this
< hypervisor mode, ...

Security / protection — only a small amount of
trusted code should run with a high privilege level

e OS Kernel: part of the OS executing with a high
privilege level

Regular user applications execute at a lower
privilege level

e [o protect the system from malicious programs

Kernel Programming Introduction to Kernel Programming



The OS Kernel - Again

e Kernel: part of the OS running at high privilege level

e (Can do (almost!) everything: even crash the
system

e This is why it must be trusted... Very critical
component of the system

e Security and stability depend on it!
e But also the system performance depends on it...

“With Great Power Comes Great Responsibility”
Applications rely on the kernel to do everything
important / critical

e How is kernel execution invoked? Interrupts /
exceptions (hw or sw)

Kernel Programming Introduction to Kernel Programming



Kernel Responsibilities

Multiprogramming:

e Multiple tasks (processes or threads) on few
CPUs

e Memory protection: multiple address spaces
(paging, segmentation)

e CPU privilege levels: system and user

Low level hardware details:

e Interrupt handling, boot, device drivers, system
calls, ...
e Important data structures (memory page tables,

)

Kernel address space: can see all the system
memory

Kernel Programming Introduction to Kernel Programming



Kernel Functionalities

e System boot — configure and set-up the system so
that virtual memory and multitasking can work

Configure memory, page tables & friends
Once it is done, start the first user-space
process: in Unix, itis init (PID 1)

e Then, execution returns to the kernel only
through interrupts

Hardware interrupt handlers (ISRs, used by drivers)
System calls (software interrupts, ...)

e Interrupts cause a privilege change (user —
system)
e JSyscalls and ISRs can cause context switches

Kernel Programming Introduction to Kernel Programming



Task Handling

The kernel handles processes and threads
Each task is characterised by:

e A Task Descriptor (TSS)
e A Task Body (code implementing the task)
e Some (public or private) data (Address Space)

e Task Descriptor — contains copy of the CPU
registers, including:

e Pointers to user-space and kernel stack
e Address Space configuration (CRS, ...)
e Protection level (CPL)

e The task body is technically part of the address
space

Kernel Programming Introduction to Kernel Programming



Task Address Space

e Divided in segments:

Code Segment (task body)
e Data Segment

e Initialised Data, BSS, Heap
e Stack Segment
e Recently, some additional segments (RO data, etc...)

e Before starting a task, the OS kernel has to:

e Initialise memory segments (allocate virtual
memory)

e Allocate and set up a stack, initialise the stack
pointer, etc...

e Allocate and initialise (to 0) the BSS

Kernel Programming Introduction to Kernel Programming



The Rest of the OS

The kernel is only part of the OS
There also are many user-space components

e System libraries
e System programs
o

e System libraries — needed to properly invoke kernel
functionalities (hide the syscall mechanism)

e System programs — needed to properly boot and
use the system

Kernel Programming Introduction to Kernel Programming



How does a Kernel Look Like

e No single entry point
e “Boot entry point” + system calls

e Kernel Memory Address Space: all the memory can
be accessed

e No memory protection!!!
Kernel-space code can easily corrupt important
data structures!

e No standard runtime

e (C code cannotinclude <stdio.h> and friends...
No standard C library!

Kernel Programming Introduction to Kernel Programming



Kernel Programming

e The kernel must provide the utility functions to be
used

e Example, no printf (), but printk ()...

Errors do not result in segmentation faults...
...But can cause system crashes!
Other weird details

e No floating point (do not use float or double)
Small stack (4K B or 8K B)
Atomic contexts, ...

Kernel Programming Introduction to Kernel Programming



Kernel Programming Language

OS kernels can be coded in many different
languages

e But some amount of Assembly is needed...

For some languages, additional restrictions apply
(example: for C++, generally no RTTI)

e And in order to use some languages the kernel
must implement a large runtime...

Kernels are generally coded in C or C++ (with
restrictions)

e After all, the C language has been invented
exactly for this purpose!

Simplest choice: C + some Assembly (inline and not)

Kernel Programming Introduction to Kernel Programming



Example: the Linux Kernel

The Linux kernel uses C
Subset of C99 + some extensions (1ikely () /
unlikely () annotations, etc...)

e As said, no access to standard libraries

e Different set of header files and utility functions

e Strict coding style to control the quality
(Documentation/CodingStyle,
scripts/checkpatch.pl)

Some Assembly is used (for entry points, etc...)
Example: Linked Lists (include/linux/list.h)

Kernel Programming Introduction to Kernel Programming



First Adventures in Kernel Land

e First experiments with kernel programming

e Should we write our own kernel?
e Or use an existing kernel as a basis?

e Our own didactic kernel: simpler, maybe we learn

more...
e ...But we can easily get lost in low-level hw
details!!!
e Work on an existing kernel: it might be more
complex...

e ...But we can focus on the aspects we are

interested In
e The rest of the kernel already exists!

Kernel Programming Introduction to Kernel Programming



	About the Course
	Practical Details
	Overview
	The Operating System
	The OS Kernel
	The OS Kernel - Again
	Kernel Responsibilities
	Kernel Functionalities
	Task Handling
	Task Address Space
	The Rest of the OS
	How does a Kernel Look Like
	Kernel Programming
	Kernel Programming Language
	Example: the Linux Kernel
	First Adventures in Kernel Land

