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About the Course

e Goal: understand how to code an OS kernel

e This course will introduce the students to the
pains and joys of kernel programming...
e Of course, this is only an introduction!

e First question: so, why is kernel programming so
different?

But, first of all, what is a kernel?

...And what is an Operating System?
...And, what is a computer? Where are we
coming from? Where are we going?

e No, | will not answer the last questions...
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Practical Details

The course is 20 hours long (2 credits)
Organized in lessons by 2:30 hours each
Some theory and some practice

e There cannot be practice without theory...
e ...Buttheory is useless without practice!

e [or informations, email
luca.abeni@santannapisa.it

e COffice: TeCIP (via Moruzzi 1)

Kernel Programming Introduction to Kernel Programming



Overview

e Quick recap about architecture, OSs, kernels
e Privileged instructions — kernel

The kernel execution environment
Kernel development: DIY, or existing systems
(Linux)?

e Introduction to the Linux kernel

e Kernel modules, concurrency, synchronization, ...
e Some examples
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The Operating System

Operating System: set of computer program acting
as an interface between applications and hardware

e “Set of computer programs”: the OS is not a
single program!

e “Acting as an interface... ”: applications do not
directly access the hardware (must use the OS)

So, the OS:

e Hides the hardware details to user applications
e (Controls the execution of user programs
e Manages the hardware and software resources

Applications running on an OS can use the CPU
Assembly extended with some additional
instructions: the system calls
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The OS Kernel

Modern CPUs: different privilege levels (user level
and privileged level)

e Actually, it can be even more complex than this
< hypervisor mode, ...

Security / protection — only a small amount of
trusted code should run with a high privilege level

e OS Kernel: part of the OS executing with a high
privilege level

Regular user applications execute at a lower
privilege level

e [o protect the system from malicious programs
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The OS Kernel - Again

e Kernel: part of the OS running at high privilege level

e (Can do (almost!) everything: even crash the
system

e This is why it must be trusted... Very critical
component of the system

e Security and stability depend on it!
e But also the system performance depends on it...

“With Great Power Comes Great Responsibility”
Applications rely on the kernel to do everything
important / critical

e How is kernel execution invoked? Interrupts /
exceptions (hw or sw)
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Kernel Responsibilities

Multiprogramming:

e Multiple tasks (processes or threads) on few
CPUs

e Memory protection: multiple address spaces
(paging, segmentation)

e CPU privilege levels: system and user

Low level hardware details:

e Interrupt handling, boot, device drivers, system
calls, ...
e Important data structures (memory page tables,

)

Kernel address space: can see all the system
memory
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Kernel Functionalities

e System boot — configure and set-up the system so
that virtual memory and multitasking can work

Configure memory, page tables & friends
Once it is done, start the first user-space
process: in Unix, itis init (PID 1)

e Then, execution returns to the kernel only
through interrupts

Hardware interrupt handlers (ISRs, used by drivers)
System calls (software interrupts, ...)

e Interrupts cause a privilege change (user —
system)
e JSyscalls and ISRs can cause context switches
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Task Handling

The kernel handles processes and threads
Each task is characterised by:

e A Task Descriptor (TSS)
e A Task Body (code implementing the task)
e Some (public or private) data (Address Space)

e Task Descriptor — contains copy of the CPU
registers, including:

e Pointers to user-space and kernel stack
e Address Space configuration (CRS, ...)
e Protection level (CPL)

e The task body is technically part of the address
space
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Task Address Space

e Divided in segments:

Code Segment (task body)
e Data Segment

e Initialised Data, BSS, Heap
e Stack Segment
e Recently, some additional segments (RO data, etc...)

e Before starting a task, the OS kernel has to:

e Initialise memory segments (allocate virtual
memory)

e Allocate and set up a stack, initialise the stack
pointer, etc...

e Allocate and initialise (to 0) the BSS
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The Rest of the OS

The kernel is only part of the OS
There also are many user-space components

e System libraries
e System programs
o

e System libraries — needed to properly invoke kernel
functionalities (hide the syscall mechanism)

e System programs — needed to properly boot and
use the system
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How does a Kernel Look Like

e No single entry point
e “Boot entry point” + system calls

e Kernel Memory Address Space: all the memory can
be accessed

e No memory protection!!!
Kernel-space code can easily corrupt important
data structures!

e No standard runtime

e (C code cannotinclude <stdio.h> and friends...
No standard C library!
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Kernel Programming

e The kernel must provide the utility functions to be
used

e Example, no printf (), but printk ()...

Errors do not result in segmentation faults...
...But can cause system crashes!
Other weird details

e No floating point (do not use float or double)
Small stack (4K B or 8K B)
Atomic contexts, ...
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Kernel Programming Language

OS kernels can be coded in many different
languages

e But some amount of Assembly is needed...

For some languages, additional restrictions apply
(example: for C++, generally no RTTI)

e And in order to use some languages the kernel
must implement a large runtime...

Kernels are generally coded in C or C++ (with
restrictions)

e After all, the C language has been invented
exactly for this purpose!

Simplest choice: C + some Assembly (inline and not)
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Example: the Linux Kernel

The Linux kernel uses C
Subset of C99 + some extensions (1ikely () /
unlikely () annotations, etc...)

e As said, no access to standard libraries

e Different set of header files and utility functions

e Strict coding style to control the quality
(Documentation/CodingStyle,
scripts/checkpatch.pl)

Some Assembly is used (for entry points, etc...)
Example: Linked Lists (include/linux/list.h)
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First Adventures in Kernel Land

e First experiments with kernel programming

e Should we write our own kernel?
e Or use an existing kernel as a basis?

e Our own didactic kernel: simpler, maybe we learn

more...
e ...But we can easily get lost in low-level hw
details!!!
e Work on an existing kernel: it might be more
complex...

e ...But we can focus on the aspects we are

interested In
e The rest of the kernel already exists!
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