The CPU Scheduler

Luca Abeni
luca.abeni@santannapisa.it

The Scheduler

e Scheduler: part of the OS kernel responsible for
deciding how to assign resources to tasks
e CPU scheduler: decides which task(s) to execute

e Implements the CPU scheduling algorithm
Responsible for building the schedule
o: N — ([uidle)™ (M is the number of CPUs)

e Function o(t) = (7, ...77) Mapping time in a
set of scheduled tasks

e In Linux, function schedule () (defined in
kernel/sched/core.c)
e Remember? To block a task:

e C(Change its state (set task state())
e Invoke the scheduler (schedule ())

Kernel Programming The Scheduler

Single-Processor vs Multi-Processor Scheduling

e 3Single CPU: o(t) = 7 (where 7 can be “idle”)

e [Function mapping time in one single task (can be
the idle task)

e M CPUs: o(t) = (m,...7;)
e Function mapping time in a tuple of M tasks

e How to implement this in practice?
Various possibilities, including:

e Partitioned scheduling
Global scheduling

Kernel Programming The Scheduler

Global Scheduling

e [he scheduler is free to move tasks between
different CPUs

e Tasks are “migrated” to respect some kind of
global invariant

e The m “best” (highest priority, earliest deadline,
smallest virtual time, ...) tasks are scheduled on m
CPUs / cores

e m =min{M, ||}

e From the conceptual point of view, one single global
queue

e From the implementation point of view, various
possibilities

Kernel Programming The Scheduler

Partitioned Scheduling

Each task is associated to a CPU
e The scheduler does not generally migrate tasks
One ready task queue per CPU / core

e Single-processor scheduling algorithms can be
reused

Appropriate task partitioning is fundamental

e Can be performed by the programmer or by the
kernel
e Possible load-balancing - re-partitioning

Kernel Programming The Scheduler

Scheduling in Unix / POSIX

e Multiple scheduling policies

e Policy == Scheduling Algorithm
e Defined per-task
e Handled on a priority basis

e SCHED OTHER: for “regular” tasks; optimized for
throughput

e SCHED_RR/ SCHED_FIFO: priority based scheduling
algorithm, provides more control to the user

e Other (non-standard) policies can be added by the
OS kernel

Kernel Programming The Scheduler

The Linux CPU Scheduler

e Per-CPU ready task queues (rungqueues)

e Note: this is an implementation detail
Does not mean that Linux uses partitioned
scheduling only!

e From the algorithmic point of view:

e Partitioned scheduling with periodic re-balancing
for SCHED_OTHER

e Global scheduling (or similar) for SCHED_FIFO /
SCHED_RR

e Additional scheduling policy (SCHED_DEADLINE)
based on global scheduling

e The schedule () function works on a single
runqueue

Kernel Programming The Scheduler

Migrations between CPUs

e Migrations: implemented by moving a task from a
runqueue to a different one

« WARNING: locking!

e Can happen periodically (load balancing) as in
SCHED_OTHER

e Or can happen when needed to respect a global
invariant!

e When? Every time a task wakes up or blocks
e Again, locking issues... Migration should happen
only in “safe” instants = callbacks!

“Safe instant”: when releasing the local
rungueue lock is safe

Kernel Programming The Scheduler

Scheduling Classes

e Every scheduling policy is associated to a
“scheduling class”
e Scheduling class: set of functions to be invoked

When a task changes its state

When a new task needs to be scheduled
When a task is preempted / dispatched
Periodically at every system tick

Plus some other migration-related callbacks

e The schedule () function asks all the scheduling
classes (starting from the highest priority one) for a
task to be executed

e pick_next_task/()

Kernel Programming The Scheduler

Scheduling Code in Linux

e Implementation of the scheduler: kernel/sched

e Lot of code, because Linux provides a huge
amount of advanced functionalities (cgroup
scheduling, cpusets, autogroup, ...)

e core.c: main scheduler functionalities (including
schedule () and friends)
A compilation unit (. c file) for each scheduling class
Additional code for advanced functionalities
kernel/sched/sched.h: private definitions for
the scheduler

Kernel Programming The Scheduler

Scheduler Internals

Ready tasks queue: runqueue — struct rqg (in
kernel/sched/sched.h)

e Actually, different policies have different queues
(Struct cfs_rqg, struct rt_rqg, struct
dl_rq)

Task descriptor: struct task_struct (In
include/linux/sched.h)

“Shared” in all the kernel sources...
Contains some “scheduling entities” (different
policies use different entities)

Scheduling policies: defined by
kernel/sched/{rt,deadline, fair}.c and
used by kernel/sched/core.c

Kernel Programming The Scheduler

schedule(): Some Details

e Invoked when a task blocks or wakes up, to select
the next task

e This is an over-simplification; check the
comments before __schedule ()

e Scheduler: must not be interrupted (by interrupts, or
others)

e Avoid recursive scheduler invocations...
Disable preemption and invoke __schedule ()
e Use spinlocks, not mutexes!

e __schedule (): selects anew current

e prev=rg->curr/current
e next =task to be scheduled
e next == prev = NO context switch

Kernel Programming The Scheduler

__schedule(): Some Details

e First, check if prev Is going to block

e prev-—>state different from 0 (TASK_RUNNING)
e Notice: only if no signal pending!!!
e Then, select new task:

e next = pick_next_task /()

e C(Check all the scheduling classes (in priority

order)
e Some optimizations for common cases

If next # prev, context switch!!!
Notice: the runqueue is locked, but can be unlocked
for migrations

Kernel Programming The Scheduler

Implementation of Fixed Priorities

Fixed priority schedulers can be implemented with
an array of queues (one per priority level)

Insertion into the queue (task wake-up) — O(1)
operation

Extraction of the highest priority task from the queue
(scheduling decision)

e Find the highest priority non-empty queue
e (O(n) search!!l Too much overhead!!!

Overhead due to naive implementation, not to an
iInherent problem

Kernel Programming The Scheduler

More Efficient Implementation

e The scheduler scalability can be improved by using a
bitmap

e Array of bits to mark the queues that are
non-empty

e The highest priority queue can be found by finding
the most significant bit in a word

e Exiraction becomes O(1) if there is an Assembly
Instruction that returns the first 1 bit in a word
(CLZ)

e |If not, table to implement the operation |[log w |

Kernel Programming The Scheduler

Implementation of fixed priority - |

extracting atask | .
rquires finding - First task in
LheLlrit non-empty: e the eadylist | .
ucke N Inserting a task requires
s n finding the appmopriate
{ = priority bucket
L —
bi1101.. B
1'\.
L
n
|
0
L
]
111 ...11 n
I

Address of bucket 0

Kernel Programming The Scheduler

	The Scheduler
	Single-Processor vs Multi-Processor Scheduling
	Global Scheduling
	Partitioned Scheduling
	Scheduling in Unix / POSIX
	The Linux CPU Scheduler
	Migrations between CPUs
	Scheduling Classes
	Scheduling Code in Linux
	Scheduler Internals
	schedule(): Some Details
	__schedule(): Some Details
	Implementation of Fixed Priorities
	More Efficient Implementation
	Implementation of fixed priority - I

