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The Scheduler

e Scheduler: part of the OS kernel responsible for
deciding how to assign resources to tasks
e CPU scheduler: decides which task(s) to execute

e Implements the CPU scheduling algorithm
Responsible for building the schedule
o: N — ([uidle)™ (M is the number of CPUs)

e Function o(t) = (7, ...77) Mapping time in a
set of scheduled tasks

e In Linux, function schedule () (defined in
kernel/sched/core.c)
e Remember? To block a task:

e C(Change its state (set task state())
e Invoke the scheduler (schedule ())
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Single-Processor vs Multi-Processor Scheduling

e 3Single CPU: o(t) = 7 (where 7 can be “idle”)

e [Function mapping time in one single task (can be
the idle task)

e M CPUs: o(t) = (m,...7;)
e Function mapping time in a tuple of M tasks

e How to implement this in practice?
Various possibilities, including:

e Partitioned scheduling
Global scheduling
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Global Scheduling

e [he scheduler is free to move tasks between
different CPUs

e Tasks are “migrated” to respect some kind of
global invariant

e The m “best” (highest priority, earliest deadline,
smallest virtual time, ...) tasks are scheduled on m
CPUs / cores

e m =min{M, ||}

e From the conceptual point of view, one single global
queue

e From the implementation point of view, various
possibilities
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Partitioned Scheduling

Each task is associated to a CPU
e The scheduler does not generally migrate tasks
One ready task queue per CPU / core

e Single-processor scheduling algorithms can be
reused

Appropriate task partitioning is fundamental

e Can be performed by the programmer or by the
kernel
e Possible load-balancing - re-partitioning
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Scheduling in Unix / POSIX

e Multiple scheduling policies

e Policy == Scheduling Algorithm
e Defined per-task
e Handled on a priority basis

e SCHED OTHER: for “regular” tasks; optimized for
throughput

e SCHED_RR/ SCHED_FIFO: priority based scheduling
algorithm, provides more control to the user

e Other (non-standard) policies can be added by the
OS kernel
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The Linux CPU Scheduler

e Per-CPU ready task queues (rungqueues)

e Note: this is an implementation detail
Does not mean that Linux uses partitioned
scheduling only!

e From the algorithmic point of view:

e Partitioned scheduling with periodic re-balancing
for SCHED_OTHER

e Global scheduling (or similar) for SCHED_FIFO /
SCHED_RR

e Additional scheduling policy (SCHED_DEADLINE)
based on global scheduling

e The schedule () function works on a single
runqueue
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Migrations between CPUs

e Migrations: implemented by moving a task from a
runqueue to a different one

« WARNING: locking!

e Can happen periodically (load balancing) as in
SCHED_OTHER

e Or can happen when needed to respect a global
invariant!

e When? Every time a task wakes up or blocks
e Again, locking issues... Migration should happen
only in “safe” instants = callbacks!

“Safe instant”: when releasing the local
rungueue lock is safe
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Scheduling Classes

e Every scheduling policy is associated to a
“scheduling class”
e Scheduling class: set of functions to be invoked

When a task changes its state

When a new task needs to be scheduled
When a task is preempted / dispatched
Periodically at every system tick

Plus some other migration-related callbacks

e The schedule () function asks all the scheduling
classes (starting from the highest priority one) for a
task to be executed

e pick_next_task/()
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Scheduling Code in Linux

e Implementation of the scheduler: kernel/sched

e Lot of code, because Linux provides a huge
amount of advanced functionalities (cgroup
scheduling, cpusets, autogroup, ...)

e core.c: main scheduler functionalities (including
schedule () and friends)
A compilation unit (. c file) for each scheduling class
Additional code for advanced functionalities
kernel/sched/sched.h: private definitions for
the scheduler
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Scheduler Internals

Ready tasks queue: runqueue — struct rqg (in
kernel/sched/sched.h)

e Actually, different policies have different queues
(Struct cfs_rqg, struct rt_rqg, struct
dl_rq)

Task descriptor: struct task_struct (In
include/linux/sched.h)

“Shared” in all the kernel sources...
Contains some “scheduling entities” (different
policies use different entities)

Scheduling policies: defined by
kernel/sched/{rt,deadline, fair}.c and
used by kernel/sched/core.c
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schedule(): Some Details

e Invoked when a task blocks or wakes up, to select
the next task

e This is an over-simplification; check the
comments before __schedule ()

e Scheduler: must not be interrupted (by interrupts, or
others)

e Avoid recursive scheduler invocations...
Disable preemption and invoke __schedule ()
e Use spinlocks, not mutexes!

e __schedule (): selects anew current

e prev=rg->curr/current
e next =task to be scheduled
e next == prev = NO context switch
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__schedule(): Some Details

e First, check if prev Is going to block

e prev-—>state different from 0 (TASK_RUNNING)
e Notice: only if no signal pending!!!
e Then, select new task:

e next = pick_next_task /()

e C(Check all the scheduling classes (in priority

order)
e Some optimizations for common cases

If next # prev, context switch!!!
Notice: the runqueue is locked, but can be unlocked
for migrations
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Implementation of Fixed Priorities

Fixed priority schedulers can be implemented with
an array of queues (one per priority level)

Insertion into the queue (task wake-up) — O(1)
operation

Extraction of the highest priority task from the queue
(scheduling decision)

e Find the highest priority non-empty queue
e (O(n) search!!l Too much overhead!!!

Overhead due to naive implementation, not to an
iInherent problem
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More Efficient Implementation

e The scheduler scalability can be improved by using a
bitmap

e Array of bits to mark the queues that are
non-empty

e The highest priority queue can be found by finding
the most significant bit in a word

e Exiraction becomes O(1) if there is an Assembly
Instruction that returns the first 1 bit in a word
(CLZ)

e |If not, table to implement the operation |[log w |
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