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Abstract—WebAssembly has emerged as a high-performance,
cross-platform, and polyglot software sandbox, not only for Web
applications but also for cloud-native software components. In
this paper, we position WebAssembly (or Wasm for short) as an
important enabling technology for designing distributed applica-
tions across the Edge-Cloud continuum that are characterized
by specific concerns like safety, timeliness, and reliability. We
provide insights into its monitoring capabilities and propose that
lightweight virtualization is a promising tool to address different
challenges in designing, deploying, and managing distributed
Edge-Cloud applications and enable Edge-Cloud orchestration.

Index Terms—WebAssembly, Edge computing, Reliable Dis-
tributed Systems, Cloud Native Applications

I. INTRODUCTION

We are entering a new era in which Edge devices are
more capable, with advanced compute, networking, sensing
and learning capabilities, enabling the emergence of exciting
applications. Examples include autonomous vehicles that can
offload functionality to the roadside infrastructure, flexible
production lines with software-defined manufacturing and ad-
vanced robotics, or augmented reality systems in continuous
interactions with the physical environment [1]. There are
good reasons to anticipate a paradigm shift in designing and
deploying distributed systems at the Edge. In these systems,
applications are deployed across an Edge-Cloud continuum
(sometimes we simply refer these as Edge-Cloud applications)
spanning constrained devices distributed in the physical world,
smart devices for end-users, edge devices for network ac-
cess, edge servers for computation in on-premise or regional
locations, and Cloud data centers across the globe. As a
result, applications often include various devices, hardware
architectures, and operating systems. They also have an ex-
tensive collection of distributed software architectures (like
n-tier, publish-subscribe, microservices), and are developed,
managed and operated using various programming languages
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and tools. There is a pressing need for methods and tools that
address the resulting complexity and achieve a vision of a truly
distributed application deployment and management across the
Edge-Cloud continuum to realize a given functionality.
WebAssembly (or Wasm for short) has emerged as a high-
performance, cross-platform, and polyglot software sandbox,
not only for Web applications but also for cloud-native soft-
ware components. The number of popular tools adopting
Wasm is already increasing. In recent years, we saw key
products like Zoom, Google Meet, Google Earth, and of
course all modern web browsers adopting Wasm. Similarly,
Cloudflare Workers for serverless computing, AutoCAD’s web
application, eBays barcode scanner, and the Unity gaming
engine are examples of the growing popularity and adoption
of Wasm. However, in this paper, we position Wasm as an
essential enabling technology to design distributed applications
across the Edge-Cloud continuum with a focus on concerns
like safety, timeliness, and reliability. These concerns are tech-
nically challenging to address when one operates outside the
purview of a controlled data centre-like environment, which is
a characteristic of Cloud frameworks. Edge frameworks also
must consider heterogeneous infrastructure components as a
first-order concern to support effective application/workload
deployment over diverse platforms. We propose that Wasm
can help address many difficulties in designing, deploying,
and managing reliable distributed Edge-Cloud applications,
coupled with Edge-first resource monitoring and management.

II. WHAT 1S WEBASSEMBLY AKA WASM?

Wasm is a binary instruction format for a stack-based virtual
machine. It is a safe, fast, and portable low-level bytecode
format that is designed for efficient validation and compilation,
and safe execution with low to no overhead. Wasm is an
abstraction over modern hardware, making it independent of
language, hardware, and platform and applicable far beyond
just the Web. It has been designed as a portable compilation
target for programming languages, enabling deployment on



the web for client and server applications. Wasm is the first
industrial language that has been designed with a formal
semantics from the start, utilizing formal methods that have

Wasm sandbox:

No access to the system by
default; runs isolated from
other modules

matured in programming language research over the last four
decades.

Wasm development started with low-level languages like
C, C++, Rust and Go but has now rapidly expanded in
scope. Currently, backends for high-level languages like Java,
CSharp, or Kotlin and functional languages follow. The long-
term goal is to also compile dynamic languages like Python or
Ruby directly to Wasm. Currently they remain interpreted by
their runtimes compiled to Wasm. Wasm execution started with
support by all major browser engines that enable JavaScript
to run Wasm programs, which in turn interact with their
environment via the browser.

Another way of executing Wasm are host runtimes as shown
in Figure 1, that either interpret or compile just-in -time or
ahead-of -time and run Wasm programs. The host runtime
acts as an interface between the Wasm programs (called Wasm
modules) and the rest of the system. Because Wasm programs
execute completely sandboxed, programs need to be given the
capabilities to access their environment via suitable functions
and global data supplied by their host. With the introduction
of the portable Wasm System Interface (WASI) that provides
platform-independent, non-Web, and system-oriented APIs,
the use of operating-system-like features is simplified and
standardized.

To realize reliable distributed applications in the Edge-
Cloud context, the underlying ecosystem needs to meet cer-
tain requirements: The components constituting a distributed
application need to be fast to ensure scalability and real-
time requirements. They must be portable across operating
systems and hardware architectures, open to be embeddable
and have customizable interfaces to external environments,
safe to use libraries from different, sometimes untrusted
sources, and polyglot to combine components implemented in
different, appropriate programming languages. We now enlist
the properties of Wasm and compare it against these basic
requirements.

Wasm is fast: In all evaluations, compiled Wasm is shown
to execute within the range of factor 1 to 2 compared to
natively compiled code [10]. More important, its performance
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is consistently fast and predictable. Wasm is close enough to
machine code, performant code compiles into Wasm as ex-
pected, compilation and optimization happen before execution,
and garbage collection is not necessary. This makes even just-
in-time compiled or interpreted Wasm suitable for applications
with real-time requirements.

Wasm is safe: Sandboxing provides software-based fault
isolation in terms of memory safety and control-flow integrity.
Wasm prevents accesses to memory outside its sandbox by
restricting loads and stores to linear memory and ensures that
branches/jumps in the code only go to intended addresses.
It prevents buffer overflows with the help of a separate data
stack and overriding of function pointers by calling function
references only from a table of checked functions. WASI’s
capability-based security extends Wasm’s sandboxing to in-
clude I/O. For example if a user invokes a function that needs
to access a file, you have to pass in a file descriptor, which has
permissions attached to it. By default access is denied [12].
So unlike user-based access control, the program must request
access to a particular resource to the runtime. This could be
for the file itself, or for a directory that contains the file. In
this way, Wasm isolates the system from buggy or malicious
effects of untrusted code and untrusted inputs.

Wasm is deterministic: Inspite of the portability claimed
by different languages, the effects of hardware variance seep
in during execution in different corner cases such as out-of-
range shifts, integer divide by zero, overflow or underflow
in floating point conversion, and alignment. Wasm provides
deterministic semantics to all of these across all hardware
with only minimal execution overhead [4]. Thus, a program
executes identically on any platform and leaves the sandbox in
a (functional) deterministic state after every instruction. Only
the float representation for Not a Number (NaN) is hardware-
specific which requires normalization when migrating the
code and state of a sandbox from one platform to another.
Regression tests and redundant safety computations can be
run on any platform with identical results.

Wasm is lightweight: It has a compact representation,
designed for fast decoding, validation, and compilation. Its
safety features allow applications to be run as so-called nano-
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processes, which combine the isolation of processes with the
isolation of containers. Nano-processes allow a very fast cold
start and are promising for online migration also on resource-
constrained nodes.

Wasm is polyglot: A Wasm binary is called a module.
Modules could be compiled from various languages and linked
via imports and exports. This allows to combine existing
applications, e.g. written in C, with functions written in a
different language, like Rust. It opens up several avenues
including the compilation of safety-critical real-time appli-
cations from low-level languages, or best-effort applications
from high-level languages. It also provides the abilitiy to run
prototyped applications from dynamic languages and to link
applications from components written in different languages.
Figure 3 depicts the polyglot nature of Wasm.

Wasm is open: It can be used in different host environ-
ments. Several proposals are in progress, which extend WASI
with APIs for neural networks, crypto, the filesystem, clocks,
entropy sources, and more. Wasm already supports reference
types, multi-value returns, bulk data operations, and vector
instructions. Soon it will get additional features like tail calls,
exceptions, stack switching, multi-threading, and garbage-
collection. Compiling domain-specific languages or real-time
runtimes directly to Wasm will be easier and efficient.

Wasm is provably correct: Wasm is the first industrial-
strength language or Virtual Machine (VM) that has been
designed with a formal semantics from the start [4]. It has
a complete formalization of static and dynamic semantics,
that is machine verified. Furthermore, it does not expose
any undefined behavior, preventing bugs that too easily turn
into security and safety incidents. To prevent airy wishes for
language extensions, Wasm has a rigid proposal process that
requires a textual and a formal specification, a test suite,
and implementations for the reference interpreter and two
production engines. These properties facilitate provably correct
compilers and raise the bar for future industrial programming
language design, especially important for the safety-critical

domain.

III. EDGE-CLOUD WASM FRAMEWORK

Given the properties above, Wasm is a potential technology
for building safety-critical, real-time applications. Table I
presents a comparison of support technology for Edge-Cloud
applications and Figure 4 shows how Wasm as a Virtualization
technology, can be used to further ease the development of
Edge-Cloud applications. Wasm runtimes can provide isolation
comparable to other technologies, while allowing for much
smaller system call times, memory footprint and cold startup
times. As discussed later in this section, Wasm modules are
easy to snapshot and migrate, and do not require to copy the
state of an entire VM. While lightweight VM implementations
exist [7], these still do not run on smaller resource-constrained
devices. Wasm is one of the few well supported technologies
that spans Cloud, Edge and Device. With adequate resource
management and orchestration, distributed applications can be
designed and managed across a network that spans the Edge-
Cloud continuum.
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A. Wasm Orchestration

Orchestration is an essential component to help manage
distributed applications. In the Cloud, frameworks such as
Kubernetes are becoming extremely popular. It is natural to
think it can be extended to the Edge, and there are efforts
in that direction [11]. However, Cloud frameworks tend not
to translate well because many assumptions do not hold at
the Edge, where systems often interact with the surrounding
environment via sensors and actuators. Other efforts extend
ideas from the Cloud, particularly serverless computing, to
the Edge [3]. These can be appealing when applications are a
good fit for this model. Nevertheless, many Edge applications
are composed of stateful components that progress through
different modes and keep track of the surrounding environ-
ment. In both cases, safety, timeliness, and reliability are a
concern. Management frameworks for such systems are still
immature.

We believe Wasm will play a major role in the future of
Edge-Cloud systems and complement Containers in the same
way Containers complemented the erstwhile VMs. We imagine
distributed applications to be composed of several (single



WASM Containers Virtual Machines (VMs)
Isolation Good Good Good
System Call Overhead Good (function call) Poor (int / kernel) | Poor (int / kernel / HAL)
Portability Good Good Good
Memory Efficiency Good (KB) Medium (MB) Poor (GB)

Cold Startup Time Good (10us)

Medium (100ms) Poor (1sec)

Live Migration Good (seconds) Poor (n/a) Medium (minutes)
Legacy Support Medium Medium Good
Targets (Server, PC/Mobile, Embedded) | Cloud, Edge, Device | Cloud, Edge Cloud, Edge

TABLE I
EDGE-CLOUD SUPPORT TECHNOLOGY.

threaded) modules as shown in Figure 5 that communicate
over well-defined channels. Wasm modules run in isolation, in
their own separate memory, and are given access only to the
specific resources, controlled and monitored by the runtime.
In this section, we discuss the characteristics of Wasm that
make it a critical enabler of Edge-Cloud orchestration.

Platform Neutrality: As opposed to the very popular
Containers, which need to be built for a specific operat-
ing system and a specific architecture, Wasm modules are
platform-independent. They only need a runtime compiled for
the particular architecture. Wasm bytecode format is platform-
neutral, and therefore one can compile a web assembly module
(from different languages) and then execute it on any operating
system and architecture with a Wasm runtime. Since the
runtime is responsible for handling how to interact with the
platform (file, network interfaces, etc.,), this decoupling makes
the module portable, and the module itself does not need to
adhere to or handle any specific platform-specific information.

In the bigger picture, this will further ease and accelerate
the DevOps process since the developer does not need to build
different “containers” for different environments. A case in
point is that Amazon Prime Video [9], a major content delivery
service, needs to stream content and push updates to more than
8,000 device types, such as gaming consoles, TVs, set-top
boxes, and USB-powered streaming sticks. To avoid needing
to develop a separate native release for each of the devices,
Amazon uses Wasm (instead of JavaScript) to enable efficient
updates while still maintaining performance.

Unlike Cloud computing data centers, characterized by huge
clusters consisting of uniform nodes, many heterogeneous
devices ranging from small microcontrollers and smartphones
to huge servers can act as Edge devices (think of a factory floor
in the industrial production use case) and in such a scenario, a
platform-independent sandboxing mechanism like Wasm can
be highly valuable, in order to deal with the heterogeneity
across devices.

Resource-constrained Devices: Edge devices are often
resource-constrained and incapable of hosting heavy-weight
container environments and yet, we need a sandboxing solu-
tion to isolate different applications - even in these scenarios,
Wasm is considered as a potential solution as a lightweight
sandboxing solution. Wasm runtimes like the Web Assembly
MicroRuntime (WAMR) [2] have been specifically designed
for resource-constrained devices. WAMR features an Ahead-

of-Time (AoT) compiler for near-native speeds, and to enable
a smaller runtime footprint. AoT compilation of Wasm is
an important feature to support resource-constrained devices,
which requires that an external node, such as a gateway, is
capable of performing this transformation before sending the
program to the end device.

Fine-grained Monitoring: Wasm can enable cross-
platform fine-grained monitoring of resource usage both by
code instrumentation and by the runtime as it can monitor
module access to external resources such as network. This is
a particular relevant featire to enable better resource allocation
and real-time properties as we discuss later in Section III-B2

Live Migration: While VMs can perform snap-
shots/restore across a network, and these are limited to similar
architectures. Due to Wasm’s memory model, performing a
snapshot of the program state becomes easy across heteroge-
neous devices. With well-defined access to external resources
(also facilitated by Wasm), we can ensure that the program
can safely resume on a different node.

The capability to perform live migration across the network
enables a significantly more agile runtime orchestration that
adapts to changing resource usage and mobility. Coupled
with their compact size, live migration enables deployment
and distribution scenarios without paying an extra price for
bandwidth or speed.

Enabling High Density and Multi-Tenancy: Wasm mod-
ules are very compact, as opposed to Containers. Containers
present a self-contained filesystem to the application by pack-
aging together with the operating system, the required libraries
and dependencies for running the application, and so on —This
can really bloat the size of the image, and especially for simple
applications, this overhead can be really high. In comparison,
the idea behind Wasm is not to virtualize the operating system
but only the application (process). As a result, the resulting
size of Wasm modules is much smaller (in MBs) as compared
to Docker containers (in GBs).

Furthermore, many applications deployed on the Edge-
Cloud are event-driven and short-lived and therefore, the cost
of tearing down and bringing up containers can be very high.
In comparison, Wasm with its faster startup times can thus
enable dense deployments [3].
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B. Wasm to Deploy Real-time Applications?

One of the key questions is whether Wasm can be used
to deploy real-time applications. This needs that applications
must have predictable behaviour and bounded execution time.
Another related aspect is can mixed criticality applications
be realized using Wasm on the same platform. For this
the underlying Wasm runtime must be capable of providing
differentiated services to different applications. This in turn
translates to the ability to enforce resource consumption limits
to applications deployed as Wasm modules.

Wasm sandboxing allows tight control over the external
resources used by the application, such as network or acceler-
ators. A runtime can monitor such usage to enforce policies,
and optimize resource usage. When multiple WASM runtimes
co-exist an additional resource manager can be used to monitor
and manage resource consumption across different runtimes as
depicted in Figure 6.

1) Using OS supplied Process-Level Resource Mechanisms:
As mentioned earlier, a Wasm runtime is essentially a process
that can host multiple Wasm modules where each module is
a thread. Different modules may therefore communicate with
each other over the runtime. Resource enforcements at the
process level are offered by some operating system primitives.
For example, the Linux OS offers scheduling primitives like
SCHED_DEADLINE to limit the processor consumption to a
given process, or SCHED_FIFO which works in conjunction
with Linux priorities. Another such mechanism is control
groups which allows to control resource allocation to a group
of processes.

Then, one possible way to realize deploying applications of
different criticalities on the same platform, is to assign each
application (best-effort, or real-time) to a seperate runtime, as
seen in Figure 6 and have multiple runtimes on each node, and
enforce resource limits on the runtime level using available
process-level resource enforcement mechanisms offered by
the operating system. While such a possibility is feasible for
single board-computers and Edge servers, smaller resource-
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Fig. 6. Resource Monitoring and Enforcement to provide differentiated QoS
to different applications

constrained devices, that are for example hosted on microcon-
trollers may not have the capability to host multiple runtimes.
For such platforms best-effort and real-time modules will be
hosted on the same runtime and therefore we need finer grain
control at the module level.

2) Using WASM Monitoring Mechanisms: Many Wasm
runtimes (like WasmEdge, Wasmer) provide mechanisms to
instrument a Wasm module and also enforce certain resource
limits, termed “Metering” in the Wasm terminology. Instru-
mentation code is injected into Wasm modules by enabling
different metering options (for example to monitor instruction
count, or execution time, memory consumption and so on).
The metering measures the computation (bytecode instructions
executed) for a given module in units of “Gas” and serves
as a representation of the computational time. Given a set
of operations (branch, memory or computation, etc.) and a
corresponding set of costs for each operation Wasm allows
to deterministically run computation for any number of cost
units by summing up the costs on the execution of each op-
eration [5]. Furthermore limits can be set to control how long
the Wasm code runs. This is also known as “’gas metering”.

With Wasm-Instrument [13], for example, the body of each
function is divided into metered blocks, and the calls to charge
gas are inserted at the beginning of every such block of code.
A metered block is defined so that, unless there is a exception,
either all or none of the instructions are executed.

A practical use-case is when Wasm is used for block-
chains and smart contracts, which are executed in virtual
environments. For example, Ethereum, Gas is the measurement
unit for executing operations in the virtual environment, that
is called Ethereum Virtual Machine (EVM). Wood et al. [23]
present a table with the gas requirements per operation. The
amount of gas increases as the complexity of operations in
a smart contract increases. For example, an ethereum (ETH)
transaction to another agent costs 21000 gas, whereas the
deployment of a new contract costs at least 32000 gas to create
a contract account.

Metering Memory: The linear memory of Wasm is anal-
ogous to the virtual memory provided to processes running
on traditional operating systems. It represents a sandboxed
region of memory on which the Wasm module may operate
on. The runtime stores the static data accessed by the module
in an indexed region and manages the stack memory and the
dynamic memory required by the application during execution.



Each linear memory section declares an initial memory size
(which may be subsequently increased (using the operation
grow_memory) and an optional maximum memory size. In
order to monitor the memory consumed by the module, the
cost of pre-allocated memory is accounted for before instan-
tiating the module. Similarly metering code accounts for the
dynamic memory requested by monitoring the grow_memory
calls.

To summarize, a combination of traditional resource man-
agement mechanisms provided by the OS and fine grain
module level monitoring by the Wasm runtime, effective
resource management can be realized, which paves the way
for differential QoS provisions and allowed applications with
different criticalities to co-exist together.

IV. DISCUSSIONS AND CONCLUSIONS

Taking into account the promises that Wasm offers in the
Edge-Cloud front, the Cloud Native Computing Foundation
(CNCF) is a proponent of Wasm in cloud-native infrastructure
and therefore hosts several Wasm related projects and initia-
tives. In the future, we envision a co-existence of different
runtime environments (Dockers, Wasm, VMs) to serve a wide
range of application requirements. Wasm is still in its de-
velopment stages (adding support for multithreading, garbage
collection, etc.,), however the ecosystem around Wasm is
flourishing. We believe that Wasm with its properties of
platform and language independence, safe sandboxing and
functional determinism will pave the way towards designing
reliable real-time distributed applications.

In this work, we presented the key characteristics of Wasm
which make it particularly suited for hosting Edge-Cloud ap-
plications and as building blocks of orchestration frameworks.
We also discussed some inbuilt monitoring and resource
enforcement mechanisms which enable the Wasm runtime to
provide differentiated QoS to different modules.
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