
Policy Synthesis for Resource Allocation in Clouds
Sathish Gopalakrishnan

Abstract—Most resource allocation and job scheduling prob-
lems are NP-hard. The standard approach to addressing such
problems is to propose approximation algorithms or heuristics
and, in some situations, derive bounds on the performance of
these approaches. Depending on the complexity of the optimiza-
tion objective, we may not be able to easily infer good heuristics.
One example of such an objective is when we have to provide
percentile guarantees: p% of jobs in a job set must complete
within some deadline. We present an approach to synthesizing
resource allocation policies using optimal solutions to a small
number of problem instances as examples. Our approach relies
on supervised learning via decision trees. We use this approach
as part of a framework we call Pennyworth and apply this
framework to some realistic workloads. Our results also suggest
that we may be able to obtain policies that have good statistical
behaviour and worst-case bounds. More generally, we make
connections to work on program synthesis using input-output
examples.

I. INTRODUCTION

Resource allocation and scheduling problems are concerned
with assigning jobs to processors and with imposing an order
for the execution of these jobs. A resource allocation policy
helps us determine where and in what order jobs should be
scheduled. In developing such policies, we seek to minimize
the use of resources while satisfying certain constraints such
as job deadlines. We consider such problems in the context
of cloud computing and present a framework for synthesizing
resource allocation policies.

Cloud computing has commoditized computation but users
need to solve other problems to make optimal use of these
resources. We list three related problems that users of cloud
computing platforms need to solve from this perspective:

• Resource provisioning. Cloud computing requires the
instantiation of virtual machines, and virtual machines
(VMs) may be of different “sizes” or capacities. How
many VMs are needed for an application? What should
the sizes of these VMs be?

• Job placement. How should we assign work to the VMs?
• Scheduling. In what order should jobs be executed on a

VM?
We answer these three questions so as to manage a group

of related jobs with performance (timeliness) requirements and
with the objective of minimizing the cost of cloud computing
resources. We use the term resource allocation policy to
capture the answers to the three questions enumerated above
for a particular application (set of jobs).

The innovation in our work is the application of statistical
learning and the ability to accommodate a variety of perfor-
mance objectives. We have developed cost-aware techniques to
answer these resource allocation problems. We evaluate these

techniques in detail, and these techniques have been embedded
in a tool, called Pennyworth, that can generate resource
allocation policies. Our work addresses systems where jobs
are expected to meet certain timeliness requirements and
violations of these requirements result in a (monetary) penalty.

As an example, let us consider a user who is collecting
data, at a data center, from a variety of sensors that are part
of the Internet of Things. This user may want to process the
data gathered every half-hour, and the data processing can
be represented as a set of jobs/programs that needed to be
executed. The performance requirement could be that 95% of
such jobs be completed within a deadline or latency bound
after the data has reached the data center. The user may not
want to be directly concerned with the choice of VMs and
scheduling decisions (i.e., the resource allocation policy) but
the user is interested in achieving the latency goal at a low
cost. We develop a suite of techniques for helping such a user.

Identifying policies to meet deadlines requires some knowl-
edge of the execution times of jobs. Job execution times may
be obtained using worst-case execution time analysis, which is
specific to a physical/virtual machine, and is useful for worst-
case guarantees. Statistical guarantees require job execution
time distributions, and we propose sampling for obtaining
some execution time information when the performance needs
are expressed as statistical guarantees.

Given a certain workload or application and a particu-
lar performance objective, such as minimize mean latency,
the problem we tackle can reduce to the classic discrete
optimization problem of bin packing. On the other hand,
for a requirement such as percentile metrics on latency or
response times, we may need another tactic. Our approach,
as embodied in Pennyworth, is to identify effective resource
allocation policies by learning heuristics that are suited to an
application’s requirements. We use supervised learning, and
the training phase uses templates (programs + representative
inputs) as training data to construct decision trees.

For the rest of this discussion, we will refer to the techniques
we have developed as Pennyworth although that is the name
for the tool that represents an implementation of the ideas.
We will outline some of the design objectives that inform
Pennyworth and then we enumerate our contributions before
we elaborate on our work. The work we present is preliminary
and is restricted to scheduling batches of jobs. Similarly, we
sketch key ideas for brevity of exposition.

A. Design Principles

Pennyworth is a resource provisioning tool, and we artic-
ulate some of the design objectives that are reflected in our
work.

Fig. 1: The Pennyworth Framework

1) Comprehensive. We have designed Pennyworth to pro-
vide answers to many of key questions related to re-
source allocation on a cloud computing platform. A
cloud computing platform may offer a variety of VM
types so Pennyworth should be able to indicate what
types of VMs are needed, how many VMs of each type
are needed, and how jobs are assigned to these VMs.

2) Cost-informed. Cloud computing platforms offer differ-
ent VM types at different price points (often, cost/hour
of using a VM). Pennyworth uses this information in
identifying resource allocation policies. Further, if a
Pennyworth user deploys a particular application on a
cloud computing platform and then sells that application
as service to others, we consider the cost implications
of missing performance requirements (as captured in a
service-level agreement between the Pennyworth user
and her customers).

3) Handle varied applications. Different applications will
have different performance needs. Pennyworth supports
a variety of performance metrics. A performance metric
may pertain to a specific job (such as response time)
or be defined over a batch of jobs (such as maximum
response time). The techniques used in Pennyworth
intentionally rely on generic application features so that
we can handle a range of applications and different
performance metrics.

B. Pennyworth Workflow

To better understand our contributions (Section I-C), it is
useful to consider the workflow involved in using Pennyworth.

Pennyworth’s users will provide the tool with a task set,
performance requirements and some representative inputs for
the tasks. We can think of a task as being a program binary
and a job as a combination of the program and program
inputs; in other words, a job is a particular instance of a
task. This information is used to train Pennyworth and develop
a resource allocation policy. These inputs are also used to
generate policies for alternative performance requirements.

To help a user decide on a suitable strategy, Pennyworth can
also produce a tradeoff function that can be used to estimate
the cost associated with each strategy. We use the term
workload to refer to the set of jobs that need to be executed. A
concrete set of jobs may include multiple instances of the same
task (instantiations of the same program but with different
inputs).

At runtime, Pennyworth can also use the synthesized poli-
cies to determine the resources needed as work arrives. A
policy explicitly indicates the number and the types of VMs
that need to be started on the cloud computing platform, the
allocation of jobs to VMs, and the execution schedule.

C. Contributions

The principal contribution of our work is to demonstrate
that it is possible to synthesize resource allocation strategies
from examples and that this approach can yield solutions that
are near-optimal from a cost perspective.

We have built Pennyworth to learn good strategies using
features of optimal allocations for sample workload (Sec-
tion III). The optimal allocations for some representative
workload essentially provides examples of good decisions. We
rely on cost and performance metrics that are easily observed
in optimal allocations, and these observations/features allow
for learning near-optimal allocations when the workload and
the performance goals change (Section ??). The approach we
propose can handle batch workload, where all jobs are known
in advance, and online job arrivals (Section IV).

Using database workload as well as synthetic workload,
and working with Amazon’s EC2 cloud computing service,
we demonstrate the effectiveness of our ideas (Section V).

Our primary contribution can be broken down into several
important sub-aspects:

1) We have identified key features of optimal resource allo-
cations (Section III-D) that can be used by Pennyworth
to synthesize resource allocation policies for job batches.
These policies result in costs that are no more than 10%
in excess of optimal costs, when we can find optimal
policies (Section V-B). An insight that is noteworthy is
that the best path found using A* search can be used
to inform the construction of decision trees. The use of
decision trees results in policies that can be understood
and also analyzed for their worst-case behaviour. The
critical insight is that the use of A* search allows us
to determine decision paths that can be translated to a
comprehensible policy. The use of graph-based search
allows us to extract features that can be used to train a
decision tree.

2) Pennyworth can generate new policies for job batches
within one minute for a variety of workload and perfor-
mance goals (Section V-C).

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Our goal is to enable simple resource provisioning for appli-
cation that rely on cloud computing infrastructure. We assume
that a Pennyworth user relies on a cloud service provider who
can rent virtual machines (VMs) of different types. VM types
correspond to the resources associated with a VM and these
resources include the main processing unit (CPU), memory
and disk capacities, and possibly computational accelerators
(such as graphics processing units and specialized processors
for applications such as machine learning).

In our model of the system, we assume that a job can be
executed on any VM. This system property can be attained
by using replicated storage or a separate storage service that
is globally visible (such as Amazon S3). We also focus on
non-preemptive scheduling of jobs on a VM.

B. Formal Definitions and Problem Statement

JOBS, TASKS AND WORKLOAD We are primarily interested
in allocating resources for, and scheduling, a set of jobs. A
job is an instance of a task. As an example, face recognition
is a task that may be implemented using a specific algorithm.
A job of this task will involve recognizing faces in a specific
image. A task T , therefore, represents a computational activity
or program. τ = {T1, T2, . . . , Tn} represents a set of tasks. A
job, Jj , is a particular instance of a task (a specific invocation
of a program). To indicate that Jj is an instance of Ti, we
will use the notation (Ti)Jj when necessary. We will use the
term workload to refer to a set of jobs {J1, . . . , J ′

n}.
MACHINES The user also provides a set of (virtual) machines
types, Π = {M1,M2, . . . ,Mm}, that can be used to schedule
the tasks. Mk is associated with a monetary startup cost $sk,
which is incurred when the VM instance is launched. There
is monetary cost of operation, $ok, which is incurred per time
unit.
EXECUTION TIMES For each task, Ti, and each machine type,
Mk, we obtain an execution time estimate for the task on that
machine type, and denote this estimate as êi,k. We will use
the notation ej,k to denote the actual execution time of (Ti)Jj
on Mk.
ALLOCATION An allocation A for a job set
J = {J1, . . . , Jn′} is represented by a set of tuples
{(M1,L1), (M2,L2), . . .} where Mk represents
a machine of a type in Π and Lk is a list that
contains jobs to be executed in order on an instance
of Mk. For A to be an allocation, we need:
(i)

⋃
k Lk = J , and (ii) Lk1

⋂
Lk2

= ∅ ∀(k1, k2), k1 ̸= k2.
PERFORMANCE GOALS AND COSTS We can express a variety
of performance goals with Pennyworth:

• Per-task guarantee. Each job/instance of a task is asso-
ciated with a specific response time guarantee;

• Maximum response time guarantee. No job (across all
tasks) can exceed a maximum permitted response time;

• Mean response time guarantee. The mean response time
for a set of jobs is bounded by a given d;

• Percentile guarantee. At least p% of tasks in a task-set
must be completed within a given deadline d.

Such performance criteria are specified in the service level
agreement (SLA) that a service provider and the user deploy-
ing applications enter into. An SLA would include specifica-
tions for the workload, the performance goals and penalties
incurred by the service provider when an application’s goals
are not met. We will use notation G to refer to a specific
performance goal that is selected. A performance goal is also
referred to as a service level objective (SLO).

We use a monetary cost model that accounts for starting up
(virtual) machines, for the operational cost incurred, as well

as penalties when a service level objective is not met. We will
use the notation l(A,G) to refer to the loss incurred when an
allocation A violates performance goal G.

The cost of an allocation can be expressed as the sum of
start-up costs and operational costs for each machine instance
as well as the cost of SLO violations:

cost(A,G) =
∑

(Mk,Lk)∈A

$sk +
∑

Jj∈Lk

{$ok×ej,k}

+ l(A,G).

(1)
PROBLEM STATEMENT Using the notation that we have set
up, our goal is to take as input a task set τ , a performance
goal P , a set of machine types Π, and synthesize an
allocation policy π that minimizes the allocation cost for
any workload generated from τ . The policy π, in turn,
takes a job set J = {J1, . . . , Jn′} as input, where every
Jj ∈ J is an instance of some task Ti ∈ τ . The output of
the policy is a resource allocation A that minimizes the total
cost (Equation 1).

C. Computational Complexity

The general problem includes the case when the loss
function is such that l(A,G) = ∞ and $si = $sj ,∀(i, j).
Consequently, the problem reduces to the bin packing problem,
which is NP-Hard problems [1]. In some situations we may
be able to leverage well-known approximation algorithms or
heuristics with acceptable guarantees. But, we do not have
any approximation guarantees currently for performance goals
such as the tail latency guarantee (or other percentile-based
metrics).

III. SYNTHESIZING RESOURCE ALLOCATION POLICIES

The central functionality that Pennyworth provides is pol-
icy synthesis for resource allocation. The resource allocation
policies are synthesized from examples and we use supervised
learning to extract a policy from the examples.

We now detail the steps involved in policy synthesis.

A. Sketch of Policy Synthesis

From a given application definition, which in our case is a
set of tasks and a service-level objective (SLO), Pennyworth
generates a set of resource allocation policies that can be
utilized to achieve the SLO at a low cost.

Our objective is to minimize the total cost of operation
(Equation 1). To achieve this, our approach involves the
following main steps (Figure 1):

1) Generating workload samples. We create a large set
of workloads by sampling from the task-input pairs that
are user-provided.

2) Optimal allocation solutions. We identify optimal re-
source allocations for the workload samples, and these
optimal allocations become examples. This step can be
computationally expensive. We use a search algorithm to
identify optimal allocations for each sample workload.
To gain some efficiency, we model this search using

a graph with the vertices representing specific alloca-
tions, edges representing incremental allocations, and
edge weights corresponding to the cost involved with
corresponding allocation decision.

3) Feature extraction and model generation. We charac-
terize the example solutions using specific features of the
allocation. We then use these features to train a decision
tree that represents the synthesized policy.

In the subsequent subsections, we will discuss each of the
steps in greater detail.

B. Generating Sample Workload

An input to Pennyworth is the set τ = {T1, . . . , Tn} that
represents the tasks that may need to be executed. A task may
be thought of as a program and a task instance, or job, would
then be the program coupled with external inputs. A sample
workload would then be a set of jobs, where each job is an
instance of a task in τ .

We generate Ms sample workloads using τ . In each work-
load, we set the number of jobs to ns. The choice of Ms

and ns affect the quality of policy synthesis; they must both
be sufficiently large so that we can understand task-level
interactions. On the other hand, for all sample workloads
we will identify optimal solutions (by searching the space of
solutions). ns has to be suitably small to keep this step of
the process time-efficient. We use uniform sampling from the
space of tasks to generate workloads. This decision around
how we sample is significant. If we do not sample uniformly
then the decision tree model that we construct may not offer
good decisions because it has little information about certain
tasks or certain task combinations. We generate a large number
of workload samples so that the examples will include cases
where the number of unique tasks is small and this allows
the model to deal with imbalance in a workload (“workload
skew”).

Different jobs of a task may have different execution times.
When generating the sample workload we use information
about the specific jobs to obtain execution time estimates for
these jobs on different VM types. These estimates are based
on prior profiling of the jobs. We then use these execution
time estimates to obtain an optimal resource allocation for the
sample workload.

We consider sample workloads where more than one
workload involves the same mix of tasks as long as these
workloads differ in the execution times of specific jobs. If
τ = {T1, T2, T3}, sample workloads W1 and W2, with 6 jobs,
could both contain three jobs of T1, two jobs of T2, and one job
of T3 as long as the job of T3, for example, has a different
execution time in the two samples. Doing so allows us to
capture the impact of execution time variations across jobs.

C. Constructing Optimal Allocations

Having generated sample workloads, Pennyworth needs to
find optimal resource allocations for these problem instances.
The general problem is NP-Hard. This step uses a search-based
strategy.

unallocated: {(T1)J1, (T1)J2, (T2)J3}

unallocated: { }
VM1: [(T1)J1, (T2)J3,, (T1)J2]

unallocated: {(T1)J2}
VM1: [(T1)J1, (T2)J3]

unallocated: {(T1)J1, (T1)J2}
VM1: [(T2)J3]

unallocated: {(T1)J2, (T2)J3}
VM1: [(T1)J1]

unallocated: {(T1)J1, (T1)J2, (T2)J3}
VM1: []

S

A

B C

D E

F G

new-bin; w = 2

add T1; w = 6 add T2; w = 10

new-bin; w = 2

unallocated: {(T1)J2, (T2)J3}
VM1: [(T1)J1]

VM2: []

add T2; w = 10

add T1; w = 8

Fig. 2: Example of an Allocation Graph. The initial job set has
three jobs; two jobs correspond to instances of T1 and one job
corresponds to an instance of T2. S is the initial vertex and G
represents a final vertex.

We use a weighted directed graph representation of allo-
cations because this representation captures the search-based
strategy. A sequence of decisions is represented by a path in
the graph we construct, and an optimal allocation is found
through a best path search. The path captures both the allo-
cation and the decisions leading to the allocation.
CONSTRUCTING AN ALLOCATION GRAPH A sample work-
load is a set of jobs J = {J1, . . . , Jns

}. To find the optimal
resource allocation for this job set, we construct an allocation
graph (see Figure 2 for an example) with a vertex set and an
edge set as follows: a vertex captures a partial allocation and a
list of jobs that need to be processed, and an edge represents a
decision such as assigning a job to a virtual machine or adding
a new virtual machine. With each edge we can associate a cost
(such as the cost of starting up a new VM or the expected cost
of adding a job to a VM because of how that decision may
affect response times).

Each vertex v captures allocation decisions made: a list of
VMs that have been rented as well as their types, the placement
of jobs on VMs and the order in which jobs have to be
scheduled, and the set of jobs that need to be processed. The
initial vertex v0 ∈ V maps to the state when none of the jobs
have been allocated a VM and the set of unprocessed jobs is
J . If the set of unprocessed jobs is not empty at some vertex v
then that vertex represents an incomplete allocation. A vertex
vf ∈ V that has an empty set of unprocessed jobs would
be a final vertex and the allocation it represents would be a
complete allocation. Suppose vertex v represents the allocation
A with performance goal G, we can use the notation cost(v,G)
in place of cost(A,G).

Every edge of an allocation graph corresponds to an
allocation-related decision:

1) A new-bin decision edge (u, v,Mk) that connects vertex
u to v by adding a VM of type Mk to the available
VMs (or bins) to use. Such an edge will have weight
w(u, v,Mk) = $sk, which is the cost of purchasing a
type-Mk bin.

2) An add-item-to-bin decision edge (u, v, Ti) that con-

nects u to v by adding a job of Ti to a bin that
was available in the allocation represented by u. An
edge of this type will have weight that corresponds to
cost incurred by adding a job to type-Mk bin. The
[expected] cost of the decision includes the operational
cost and any losses that may arise from violating SLO
P : w(u, v, Ti) = ($ok × êi,k) + [l(v,G)− l(u,G)] . The
difference between the allocations at u and v [uniquely]
identify the bin that was chosen for the item.

The weight of a path in an allocation graph from v0 to
some vf (in the example shown in Figure 2 this is the
weight of, say, the path from S to G) corresponds to the cost
of a complete allocation for a given SLO P . All complete
schedules terminate at some final vertex; we are, therefore,
interested in the least expensive path from the start vertex v0
to any of the final vertices in the graph.

In our example, the path S → A → B → E → G
represents the resource allocation decision wherein jobs J1, J3
and J2 are assigned to the same VM and are to be executed
in that order.
GRAPH PRUNING One can easily envision a very large graph
of allocation decisions, and processing such a graph will be
time consuming. We can perform some pruning to reduce the
time required to find an optimal path.

First, we consider the option of adding a new VM only if the
VM that was added most recently has at least one job allocated
to it. This restriction eliminates the sub-optimal decisions that
may involve provisioning but not using a VM.

Second, in our allocation approach, tasks are added to the
VM that was most recently provisioned. This constraint elim-
inates some redundancy in the allocation graph; a particular
combination of virtual machine types and job schedules can
be traversed by exactly one path in the graph and not multiple
paths. This constraint does not result in sub-optimality.
SEARCH ROUTINE The optimal allocation corresponds to
a path of minimum weight that begins with the start vertex
and ends with any final vertex. In Pennyworth, we use A*
search [2]. A* search is complete: it is guaranteed to find a
minimum weight path, if such a path exists. A* search can
also utilize a given heuristic to find the minimum weight path
efficiently. Heuristics that A* uses must be admissible: in other
words, we can use h(v) as a heuristic if this function represents
an estimate of the path weight from the initial vertex to a final
vertex that is no larger than the true weight. A* search is
optimal from a time efficiency perspective in the sense that
no other complete search routine will explore fewer vertices
than A* search given the same heuristic.

The heuristic that the A* search routine uses is problem
specific. In Pennyworth, the heuristic function would be
cost(v,G). The heuristic is, as one would expect, different
for different SLOs.

We further have to distinguish between performance ob-
jectives or SLOs that are non-decreasing with respect to
subsequent allocation decisions and those that are not. A
performance objective is non-decreasing if adding a new job
will not reduce the value of the objective. Maximum response

time, for example, is non-decreasing with new jobs because
additional jobs may increase the maximum response time but
not decrease this metric. On the other hand, average response
time is not non-decreasing because a new job with a short
execution time may reduce the metric.

In the case of performance metrics that are non-decreasing
the loss function is also non-decreasing. If there is a directed
edge vi → vj in the allocation graph, then l(vj ,G) ≥
l(vi,G). We can then use the heuristic function h(v) =∑

(Ti)Jj is unassigned minMk
[$ok × êi,k] .

The heuristic function we have defined ignores the cost
of starting new VMs and accounts for minimizing only the
operational cost involved in scheduling the remaining jobs.
We can show that this function is admissible for A* search.

For performance metrics without a suitable heuristic func-
tion, we can still use A* search without the use of the heuristic;
the search will need to explore more states but will find a
suitable solution if one exists.

D. Characterizing Optimal Solutions

Using A* search, we can obtain optimal allocations for
each of the workload samples. These examples of optimal
allocations are hard to work with directly, so we need to
process them and identify specific characteristics or features
that are representative of the optimal allocations.

We can think of the A* search as making decisions at each
vertex of the allocation graph. The decision being made is the
edge to follow from one vertex to the next until a final vertex
is reached. More importantly, at each vertex the decision is
made based on the allocation at that vertex and the set of
jobs that are un-allocated. Thus the decisions made by the A*
search are independent of parent vertices and child vertices
but are dependent on the state that is captured by each vertex.
We can, therefore, select key features at each vertex along the
optimal path identified by A* search.
WHAT ARE GOOD FEATURES OF OPTIMAL ALLOCATIONS?
One can enumerate numerous features that affect resource
allocation decisions. There are task specific features such as
execution times, program/code and program inputs as well
as features of the chosen VMs such as processing power,
available memory, and non-volatile storage capacity. More-
over, some combination of task- and VM-specific features may
have a significant impact on the allocation decisions. Given
this extremely large space of features, we sought features that
can be extracted efficiently and are sufficient to capture the
performance metrics that influence allocation decisions.

We used a few high-level principles in seeking features of
optimal allocations:

1) The features should be independent of the specifics of
tasks – such as source code or binary code – and should
be independent of the performance objectives. This prin-
ciple allow the policy synthesis aspect of Pennyworth to
be separable from details of specific applications.

2) Good features should not depend on the number of jobs
in the workload. This principle allows the synthesizer

to generalize from the examples, which may have fewer
jobs relative to actual workload.

3) Features that we utilize should be orthogonal to each
other to avoid redundancies. For example, the response
time of a job on a particular VM depends on the jobs
that are already scheduled on that VM. We do not need
to capture the estimated response time and how many
jobs are allocted to a VM. (Empirically, we did observe
that using any one of these metrics is sufficient to obtain
good allocations.)

Using the principles outlined above, we selected the follow-
ing metrics or features for every vertex along an optimal path
in the example allocation graphs:

• Expected wait time. The response time of a job is the
sum of the wait time and the execution time of the job.
Thus, for each bin or VM, the wait time is simply the
sum of the execution times of the jobs that have already
been scheduled on that VM. If there is a long wait time
at a VM then it may make sense to assign only short
jobs to that VM or to assign jobs with relaxed latency
requirements.

• Proportion of tasks. For the bin that was most recently
opened, or equivalently the VM that was started most
recently, we extract a vector that represents the fraction
of jobs of each task assigned to that bin. As an example,
suppose the current bin has been assigned 12 jobs and 3
of these jobs are instances of task T1 then the fraction
of jobs of T1 would be 3/12 = 0.25. We only need to
maintain this information for the bin that was opened
most recently because that is the bin that would see new
items being added (or a new bin will be opened).

• Task instance cost. This metric represents that cost that
we expect to incur by adding an instance of a task to the
most recently opened bin. If we were to add, for instance,
job J that is an instance of task T2 then this metric would
correspond to the weight of the edge that represents that
decision in the allocation graph. Maintaining this vector
of costs allows any policy to decide whether it is better
to allocate a job to the open bin or whether a new bin
should be opened (equivalently, a new VM rented).

• Unassigned tasks. This feature is a bit vector that
indicates if an instance (job) of a particular task is yet
to be allocated. This information is relevant to optimal
allocations: if an instance of, say, task T3 is still un-
allocated then it may be better to allocate it next and
only if such a job is not pending should we allocate a
different job.

These features allow us to construct a decision tree model for
resource allocation (Figure 3 illustrates an example).

We acknowledge that the features that we have just dis-
cussed do not allow us to identify, unambiguously, a vertex
in an allocation graph. Consequently, we cannot learn or
synthesize a policy that is based on the exact conditions
in an example. Nevertheless, these features are [empirically]
sufficient to illuminate the trade-offs that are made along

wait time

new bin unassigned T2?

cost of adding T2 add T1 to bin

add T2 to bin unassigned T1?

new binadd T1 to bin

>= 3 < 3

Y N

< 75 >= 75

Y N

STEP 0
unassigned: {(T1)J1, (T2)J2, (T2)J3}
bin1: []

STEP 1
unassigned: { T1(J1), (T2)J3}
bin1: [(T2)J2]

STEP 2
unassigned: { (T2)J3}
bin1: [(T2)J2 , T1(J1)]

STEP 3
unassigned: { (T2)J3}
bin1: [(T2)J2 , T1(J1)]; bin2: []

STEP 4
unassigned: { }
bin1: [(T2)J2 , T1(J1)]; bin2: [(T2)J3]

Fig. 3: Example of a Resource Allocation Decision (RAD)
Tree

optimal paths in the allocation graphs.
We do not claim that the features we have identified are

always sufficient but we find, based on our experiments, that
they do help Pennyworth synthesize policies for a reasonable
range of workloads and provide expressive power to accom-
modate several common performance objectives.

E. Resource Allocation Policy

From a set of examples that are transformed into a training
set using the features we discussed (Section III-D), Penny-
worth relies on decision trees to generate a policy for resource
allocation. We call the decision tree constructed a Resource
Allocation Decision Tree or RAD-tree.

We can discuss how a decision tree is used with an example
(illustrated in Figure 3). Consider a simple job set with three
jobs: {J1, J2, J3} where J1 is an instance of T1 and jobs J2
and J3 are instances of T2. An instance of T1 has an expected
execution time of 3 seconds and a latency requirement of 4.5
seconds. An instance of T2 has an expected execution time
of 1.5 seconds and a latency requirement of 1.5 seconds. For
simplicity, we only consider a single type of virtual machine,
and that jobs are executed in sequence and with isolation.

In the corresponding RAD-tree, the initial vertex indicates
that no job has been scheduled. A RAD-tree may be parsed
as follows: initially a bin/VM is created because none are
available at the start. After a bin is opened, one would check
what the wait time is for a job in that bin; this would be zero
for a new bin. We would then check if some job (an instance
of T2 in the example) is unassigned, and then compute the
cost of adding the job to the open bin. If the cost is less than
a threshold (75 units), then an instance of T2 is assigned to
the open bin/VM. As there are two jobs still to be mapped to
virtual machines, we process the RAD-tree again. After having
allocated an instance of T2 to the open bin, the (expected)
wait time is now 1.5 seconds. We still have an instance of T2

that is unassigned but now the cost of adding this instance
to the open bin may be more than the threshold to satisfy
performance goals so the decision is to check if there is an
unassigned instance of T1 and add it to the open bin. For the

last job, we follow the same RAD-tree and add this job to a
new virtual machine.

Every RAD-tree represents a resource allocation policy.
For a set of jobs in our example, our RAD-tree policy will
start with adding a job of T2 and then a job of T1 to a
virtual machine; this policy will create new virtual machines,
as needed, for subsequent jobs and repeat the process until all
jobs have been assigned to virtual machines.

IV. USING SYNTHESIZED POLICIES

Pennyworth’s policy synthesis is largely an offline activity.
If one were to use the exploratory analysis then one would
obtain a set of policies, with each policy representing a
different trade-off between cost and service-level objectives.
A Pennyworth user would then select one these policies for
job scheduling.1 A selected policy can be used for scheduling
when the jobs are batched or for online scheduling when jobs
arrive one by one. During the policy synthesis phase, we used
execution time estimates for each based on prior profiling.
At run-time, we would not have precise information about
the jobs – although we would know the task that a job is an
instance of – so we have to use generic estimates for execution
time. When we apply a policy, we will need an execution
time estimate for each job on the available VM types, and
we use the mean execution time for jobs of the corresponding
task as the execution time estimate.For now, we consider non-
preemptive job execution (no parallelism between jobs on the
same VM) and so we ignore interference between jobs.

After a user has a chosen a policy, Pennyworth suggests
a resource allocation for a set of jobs. A user can then rent
the VMs, and deploy jobs to VMs in the order prescribed by
Pennyworth. This process was discussed earlier in more detail
(Section III-E). Occasionally, we may encounter instances
of tasks that were not part of the synthesis phase. In these
situations, as long as the new tasks can be approximated –
in terms of execution times – by a task that was part of
the synthesis phase, Pennyworth can still produce resource
allocation recommendations. In our approach, two tasks with
similar execution time distributions – characterized by the
Wasserstein distance – can be considered identical.

V. EVALUATION

In evaluating Pennyworth, we seek to understand the cost
of the allocations that are suggested (how close to optimal are
they?) and the overhead of finding the allocations (how much
time does it take?).

A. Setup

We implemented Pennyworth in Java, and we ran it on an
Amazon Web Services (AWS) [3] t2.xlarge EC2 instances.
AWS EC2’s t2 instances are general-purpose computing virtual
machine instances, and the t2.xlarge instances are provisioned
with 16 GiB memory and have four virtual CPUs (vCPUs).

1In certain situations, a user may desire a policy suite with policies that
offer different performance trade-offs. The process of producing a policy suite
is discussed in Section ??.

The principal step in the policy synthesis phase is the use of
A* search for different example job sets. To speedup this step,
we use 20 of these EC2 instances in parallel, each performing
A* search for a different job set.
VM TYPES AND COSTS We used Pennyworth to allocate and
schedule work on AWS EC2’s t2.small (2 GiB memory, 1
vCPU), t2.medium (4 GiB memory, 2 vCPUs) and t2.large
(8 GiB memory, 8 vCPUs) instances. The cost of operation,
co, for these VM types was $0.023/hour, $0.0464/hour and
$0.0928/hour, respectively. We estimated the startup cost as
$0.00076, $0.0015, and $0.0031, respectively. These estimates
were based on repeated measurements of startup time for EC2
instances, where we found an instance being available for
connections and initiating jobs at most 2 minutes after its status
changed to running.
GENERATING TASKS AND JOBS

We used database queries from the TPC-H decision support
benchmark [4]. For these experiments, we used a 10GB setup
of the benchmark running over PostgreSQL [5]. The TPC-H
benchmark uses a query generator, QGEN, to generate queries
using query templates. From our perspective, a query template
is a task and a specific query generated for a template becomes
a task instance or job. We used the first 10 templates from the
TPC-H benchmark. These templates had average computation
times between 90 seconds and 6 minutes.
POLICY GENERATION To generate the RAD-trees that repre-
sent policies, we used the J48 decision tree algorithm that
is implemented as part of the Weka3 workbench [6]. The
sample workload that we used to produce RAD-trees used
15,000 example job sets with 20 jobs per job set. We varied
the number of tasks (TPC-H query templates) from 1 to 20 to
generate different workload mixes. In our evaluation, we found
that using a larger number of job sets or a larger number of
jobs per job set did not lead to better RAD-trees; we therefore
limited these parameters to obtain effective RAD-trees without
increasing the policy synthesis time more significantly.
SERVICE-LEVEL OBJECTIVES We used several SLOs to
evaluate Pennyworth:

1) Maximum Response Time (Max): This SLO provides
an upper-bound on the response time for each job. We
set the response time requirement for each job to 12
minutes, which is 2× the maximum computation time of
any single job. The penalty for violating this bound was
1¢ per second beyond the response time requirement.

2) Response Time Per Task (RTPT): This SLO requires
that each job of a task not exceed a set response time
requirement for that task. We set the response times for
each task to be 3× the mean response time of an instance
of that task. The penalty for violating the response time
requirement or deadline was 1¢ per second of tardiness.

3) Average Response Time (Avg): This SLO provides an
average response time for a given workload of r. In our
experiments with the TPC-H benchmark, we set r =
10 minutes, which is 2.5× the mean computation time
of a job. We set the penalty for violating this SLO as

C
os

t (
ce

nt
s)

0.00

20.00

40.00

60.00

RTPT Avg Max Percentile

Pennyworth Optimal

(a) vs. Optimal Policies

P
ol

ic
y

C
os

t (
ce

nt
s)

(b) Impact of VM Types

2(rave − r)¢, where rave is the actual average response
time after jobs are allocated and scheduled on VMs.

4) Percentile Guarantee (Percentile): This SLO mandates
that an α fraction of jobs complete within r time units. In
our evaluations, we used α = 0.95 and r = 10 minutes.
The penalty for violating the requirement was 2¢ for
every second beyond the response time guarantee.

B. Policy Costs

To determine the effectiveness of policy synthesis, we
compared the resource allocations produced by Pennyworth
with optimal solutions and heuristics that have been shown to
be good policies.
WHAT IS PENNYWORTH’S OPTIMALITY GAP? The resource
allocation problem is NP-Hard so we cannot compute optimal
solutions for all problem instances. Nevertheless, we can use
exhaustive search to identify optimal allocations for small
problem instances. To find optimal solutions, we assumed
“perfect” knowledge of job execution times although we
did not make this assumption when applying Pennyworth’s
policies (where we used estimates). We used problem instances
with 32 jobs (queries) distributed over 10 tasks (TPC-H query
templates). We compared the cost of the optimal resource
allocation with the cost of Pennyworth’s policies (Figure 4a)
and found that Pennyworth was within 9% of the optimal cost
for all SLOs. The results were similar for smaller job sets,
even with more restrictive or relaxed SLOs.
HOW DOES PENNYWORTH ADAPT TO A MULTIPLICITY OF
VM TYPES? To assess Pennyworth’s synthesis, we provided it
with the option of using multiple virtual machine types. In our
experiments, we used three types of AWS EC2 instances [7]:
t2.small, t2.medium and t2.large. The VM types correspond to
different amounts of memory and compute power, and these
differences result in variations in job execution time depending
on the type of instance a job is scheduled on. For instance,
jobs that use less memory may perform similarly on all VM
instances but a job that needs more memory will perform better
on a t2.large instance. The use of different VM types increases
the number of edges in the allocation graph, nevertheless
Pennyworth was able to identify good allocations. We found
that the cost of an allocation was, on average, no more than 7%
more than the optimal allocation (Figure 4b). Further, allowing
more VM types strictly improved the costs. The experiments

using multiple types of VMs indicates that Pennyworth can
exploit the choices available and generate policies that lead to
good (“low cost”) job allocations.

C. Overheads

POLICY SYNTHESIS Pennyworth’s policy synthesis phase is
largely offline. The policy synthesis involves: (i) generating
examples and (ii) constructing RAD trees. The time overhead
associated with policy synthesis depends on the number of
tasks that may need to be allocated and the number of VM
types (bin types) we are allowed to choose from.

When we kept the number of VM types to 1 and varied the
number of tasks, we found that Pennyworth could synthesize
policies in no more than 1 minute with 20 different tasks, with
much of the time being spent in generating example problems
and solutions to the example problems. When the number of
possible tasks is small (5 tasks), Pennyworth could synthesize
polices in a few seconds. Recall that the number of tasks is
not directly related to the number of jobs that Pennyworth can
handle; jobs are instances of tasks and we could have many
instances of the same task to allocate. The results we report
here (Figure 5a) are based on the TPC-H benchmark, and for
these experiments we used more than the first ten TPC-H query
templates as tasks.

We also evaluated Pennyworth by varying the VM types
and holding the number of tasks at 10 (Figure 5b). In this
experiment too, we found that policy synthesis times ranged
from a few seconds to a minute. (For this experiment, we used
additional AWS EC2 instances as possible VM types: t2.micro,
t2.xlarge, t3.micro, t3.small, t3.medium, t3.large, m5.large.)
Our conclusion is that, because policy synthesis is performed
offline, Pennyworth can generate resource allocation policies
within usable time frames. From a cost perspective, the most
expensive policy to synthesize cost no more than 20 cents.

D. Efficiency of Bulk Allocation

When used for scheduling a batch of jobs, Pennyworth’s
policies lead to good outcomes (Section V-B) and our eval-
uation also found that the policies generated are runtime-
efficient: for a batch of up to 30,000 jobs, Pennyworth’s
policies can complete the resource allocation within 2 seconds.
The RAD trees are not very deep (the tree height is typically
less than 20) so decisions per job can be made quickly. If h is
the height of the RAD tree and a job set contains N jobs, the

(a) Impact of Number of Tasks (b) Impact of VM Types

Fig. 5: Pennyworth’s Time Overheads

runtime complexity of allocating jobs is O(Nh). After a policy
has been synthesized, the allocation times do not depend on
the number of tasks or VM types.

VI. RELATED WORK

Much of the work in the area of resource allocation and
scheduling takes the form of analysis. For a specific problem,
an optimal policy is presented with proofs of correctness
and runtime analysis. When optimal policies are impractical
(because the underlying problem is NP-Hard), approximation
algorithms are derived, or heuristics are presented (with some
analysis or empirical evidence). The process of arriving at
suitable policies, whether they be optimal or whether they
be heuristics, is usually a combination of insight, experience
and trial-and-error. As examples from a specific domain, work
by Liu et al. [8] and Lang et al. [9] present approximation
algorithms or frameworks for policy exploration to maximize
profit (for a service provider) while meeting service-level
agreements in the database-as-a-service model. In the area of
job scheduling for large clusters, Tetris [10] is a framework
that balances resource consumption along multiple dimensions
to place and schedule jobs on a fixed cluster. Tetris aggregates
a set of heuristics to improve cluster scheduling but does not
explicitly address server provisioning or cost functions of the
nature that we consider. Tetris is primarily focused on reducing
makespan or maximizing throughput.

What we have sought to do is synthesize policies from
examples of solutions to specific problem instances, which is
a systematic computational approach. In this regard, our work
is related to the work on program synthesis. Program synthesis
is concerned with deriving computer programs automatically
given a specification for the program, and there is a significant
body of work that relates to this topic [11]. One approach to
synthesis is through the use of input-output examples where
a program’s behaviour is specified by a set of input-output
pairs and then the program is synthesized. This approach
is exemplified by the FlashFill feature in Microsoft Excel
where a formula is derived given the inputs and outputs [12].
Following the success of work on formula synthesis, the
idea of program synthesis from examples has been extended
to more sophisticated problems such as the generation of a
context-free parser from input-output examples using deep

learning as the underlying method [13]. Our view is that a
resource allocator is a particular type of program, and that we
can synthesize such programs from examples of allocations.
Work by Mok, Tsou and de Rooij [14] as well as Altisen
et al. [15] has explored scheduler synthesis for jobs with
timing constraints. Such work uses techniques like constraint
satisfaction (Mok et al.) or Petri Nets (Altisen et al.), which
run into scalability bottlenecks. Moreover, such prior work,
is better suited to deriving policies when constraints are hard
(deadlines have to be met) but not when constraints are related
to mean response times or tail latency guarantees.

Other work, such as such as work by Nguyen and Pingali
in the context of parallel programs [16], does not explicitly
synthesize new scheduling policies but involves selecting good
policies from a portfolio or performing a composition over pre-
defined polices. Carastan-Santos and de Camargo use machine
learning to assign priorities to jobs in a high-performance
computing setting [17]. Their work is similar to ours because
it brings together statistical learning and scheduling. Their
problem formulation is limited to priority assignment in HPC
applications but there may be opportunities to integrate that
insight with our work. Decima [18] uses deep learning to learn
scheduling policies for data processing clusters and may be a
promising approach to achieve goals similar to Pennyworth
but Decima’s design goals are very similar to Tetris’s [10],
and therefore server provisioning and alternative objectives are
not addressed. A survey by Goodarzy et al. discusses resource
management techniques for cloud computing that use machine
learning and provides a snapshot of the ideas that have been
explored so far [19]. Pennyworth fills a gap in the problem
space. The work we have presented builds on the insights
from program synthesis and seeks to extend the capabilities
of scheduler synthesis to more general settings.

VII. CONCLUSIONS

Thinking about a resource allocator or scheduler as a
program allows us to use ideas related to program synthesis.
We have shown that it is possible to synthesize resource
allocation policies using examples of optimal allocations. To
obtain optimal allocations we, generally, have to solve NP-
hard problems but we can obtain policies that are good enough
using a relatively small number of examples. Our evaluation

of this approach indicates that we obtain policies that are
both effective (solutions are near optimal) and efficient (the
cost of synthesis and policy use is practical). We reiterate
that although the TPC-H queries, used for a majority of
our evaluations, have execution times that are of the order
of minutes, Pennyworth is not sensitive to the scale of the
execution times (offline A* search would have the same
running time whether the jobs have execution times in the
order of minutes or in the order of milliseconds) except when
performing online re-synthesis.

We use decision trees in our policy synthesis step and
we find that this model is sufficient for our purposes. The
advantage of this choice is that we can explain the policies
that we obtain. For other workload models, such as those that
involve recurrent tasks, we can synthesize policies for different
task combinations up-front, thereby limiting the need for re-
synthesis at run-time.

A challenge for program synthesis using input-output exam-
ples, and generally for the use of supervised learning, is the
need for suitable training data. For policy synthesis such as
what we have described, one can generate a suitable training
data set by expending computation power; this method is usu-
ally less expensive compared to requiring human intervention
in curating a training data set.

We have only scratched the surface of the research subfield
of using statistical learning for synthesizing resource allocation
policies. We intend to extend our work to handle online job
arrivals and we will analyze the impact of errors in execution
time measurements. We will also study the effectiveness of
Pennyworth when applied to other scheduling problems. Our
approach works well with “soft” constraints coupled with
the type of [continuous] optimization objectives that we have
considered. To synthesize policies when the objective function
has discontinuities, we will need additional machinery. One
possible argument against such policy synthesis is that we
cannot derive performance bounds. This is not completely true:
given the use of decision trees, if worst-case execution time
estimates are available then we should be able to identify the
worst-case behaviour of these policies because such bounds
can be obtained by simple analysis of the decision tree. We
see this as work for the near future (along with extensions
to handle preemptive scheduling). Pennyworth’s policies have
good statistical properties; combining those guarantees with
worst-case bounds would improve decision making.

Pennyworth does need example workload to synthesize
policies. Obtaining example workload may be a challenge
on occasion but traces are often available and the success of
techniques such as Decima [18] suggests that this is a viable
direction. Our analysis of robustness also indicates that varia-
tions between the examples used for synthesis and workload
encountered during deployment can be tolerated. The ability
to automatically identify good policies for a few cents allows
for better use of (more expensive) human engineering time.

REFERENCES

[1] M. R. Garey and D. S. Johnson, Computers and intractability: a guide
to the theory of NP-completeness. W. H. Freeman, 1979.

[2] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on System
Science and Cybernetics, vol. 4, July 1968.

[3] Amazon.com, “Amazon Web Services.” http://aws.amazon.com/.
[4] Transaction Processing Performance Council, “TPC-H Decision Support

Benchmark.” http://www.tpc.org/tpch/.
[5] PostgreSQL Global Development Group, “PostgreSQL.” https://www.

postgresql.org/.
[6] E. Frank, M. A. Hall, , and I. H. Witten, “The WEKA Workbench.”

https://www.cs.waikato.ac.nz/ml/weka/.
[7] Amazon.com, “AWS EC2 Instance Types.” https://aws.amazon.com/ec2/

instance-types/.
[8] Z. Liu, H. Hacundefinedgümüş, H. J. Moon, Y. Chi, and W.-P. Hsiung,

“PMAX: Tenant placement in multitenant databases for profit maximiza-
tion,” in International Conference on Extending Database Technology
(EDBT), pp. 442–453, 2013.

[9] W. Lang, S. Shankar, J. M. Patel, and A. Kalhan, “Towards multi-
tenant performance SLOs,” IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 6, pp. 1447–1463, 2014.

[10] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” in Proceedings of ACM
SIGCOMM (SIGCOMM), August 2014.

[11] S. Gulwani, O. Polozov, and R. Singh, Program Synthesis. Now
Publishers, 2017.

[12] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), Jan 2011.

[13] X. Chen, C. Liu, and D. Song, “Towards synthesizing complex programs
from input-output examples,” in International Conference on Learning
Representations (ICLR), May 2018.

[14] A. K. Mok, D.-C. Tsou, and R. C. M. de Rooij, “The msp.rtl real-
time scheduler synthesis tool,” in IEEE Real-Time Systems Symposium
(RTSS), p. 118, 1996.

[15] K. Altisen, G. Gossler, A. Pnueli, J. Sifakis, S. Tripakis, and S. Yovine,
“A framework for scheduler synthesis,” in IEEE Real-Time Systems
Symposium (RTSS), pp. 154–163, Dec 1999.

[16] D. Nguyen and K. Pingali, “Synthesizing concurrent schedulers for
irregular algorithms,” in International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS),
ASPLOS XVI, pp. 333–344, 2011.

[17] D. Carastan-Santos and R. Y. de Camargo, “Obtaining dynamic schedul-
ing policies with simulation and machine learning,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2017.

[18] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,”
in Proceedings of ACM SIGCOMM (SIGCOMM), August 2019.

[19] S. Goodarzy, M. Nazari, R. Han, E. Keller, and E. Rozner, “Resource
management in cloud computing using machine learning: A survey,” in
Proceedings of the International Conference on Machine Learning and
Applications (ICMLA), 2020.

http://aws.amazon.com/
http://www.tpc.org/tpch/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.cs.waikato.ac.nz/ml/weka/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

	Introduction
	Design Principles
	Pennyworth Workflow
	Contributions

	System Model and Problem Formulation
	System Model
	Formal Definitions and Problem Statement
	Computational Complexity

	Synthesizing Resource Allocation Policies
	Sketch of Policy Synthesis
	Generating Sample Workload
	Constructing Optimal Allocations
	Characterizing Optimal Solutions
	Resource Allocation Policy

	Using Synthesized Policies
	Evaluation
	Setup
	Policy Costs
	Overheads
	Efficiency of Bulk Allocation

	Related Work
	Conclusions
	References

