
Safe Programming Concepts

Luca Abeni

luca.abeni@santannapisa.it

February 24, 2020



Enforcing Type/Memory Safety

Safe System Programming Safe Programming Concepts

• Focus on static checks

• When possible...

• Need for a “strong type system”
• No NULL pointers/references

• Option types might help, here
• Some languages already provide them

• No “arbitrary assignments” to pointers / no pointer
arithmetic

• No free(), but no garbage collection!

• How to do this?



Strong Type Systems

Safe System Programming Safe Programming Concepts

• So, what is a “strong type system”?

• And, what is a type system after all?

• Many different definitions (once again...)

• Purpose of a type system: defining, detecting,
and preventing illegal program states

• Done by applying constraints on the usage of
variables, values, functions, ...

• Pretty theoretical stuff, we need a more pragmatic
definition

• Strong type system: imposes more constraints and
restrictions



Type Systems: Pragmatic Definition

Safe System Programming Safe Programming Concepts

• Less theoretical definition... A type system is
composed by:

• A set of predefined types
• A set of mechanisms for building new types

(based on existing ones)
• A set of rules for working with types

• Equivalence, compatibility (automatic
conversion), inference, ...

• Rules for type checking (static or dynamic)

• Let’s see a pragmatic definition of “strong” too...



Things to Avoid — 1

Safe System Programming Safe Programming Concepts

• No Python-like dynamic typing

v = 10
print(v)

v = "Hi There!"
print(v)

v = None
print(v)

v = 3.14
print(v)

• Even if the language allows it, avoid this (ab)use of
dynamic typing



Things to Avoid — 2

Safe System Programming Safe Programming Concepts

• No C-style automatic promotion

#include <stdio.h>

int main()
{

double v = 6.66; int v2 = v * 2;
int i = 6.6 / 2.2; double d = 6.6 / 2.2;

printf("V=%f V2=%d I=%d D=%f\n", v, v2, i, d);

return 0;
}

• Even with well-defined rules, static checks are
weaker

• Difficult to understand if “int i = 6.6 / 2.2”
is a typo or a wanted conversion



Type Checking and Inference

Safe System Programming Safe Programming Concepts

• Strong type system → more constraints/restrictions

• Strict rules for assignments/bindings

• The compiler can algorithmically check if a variable
has the right type

• So, why forcing the programmer/user to specify
types?

• Instead of checking the correctness of type
annotations, the compiler can directly infer the
type of each variable!

• Few exceptions due to polymorfism or similar...



Examples of Type Inference

Safe System Programming Safe Programming Concepts

• C++ with the “auto” keyword

auto i = 5;

• But “auto” is more useful for things like this:

auto f = [](int a , int b) {
return a + b;

};

• Standard ML
> val a=5;
val a = 5: int
> val f = fn x => x / 2.0;
val f = fn: real -> real
> fun fact n = n * fact (n - 1);
val fact = fn: int -> int



References, with No NULL

Safe System Programming Safe Programming Concepts

• Things like “int *p = 0x666;” must be forbidden

• Pointer/reference initialization/assignment only:

• From dynamic allocation (either automatic or
new, but not malloc())

• From existing variables

• Pointers/references are always valid

• NULL/invalid pointers/references do not exist
• Can be handled by using option types



Garbage Collectors

Safe System Programming Safe Programming Concepts

• Traditional way to avoid explicit memory deallocation
• Periodically check the heap

• Scan for unused (non-reachable) memory
• Re-compact referenced memory in the heap, and

free then one not recompacted
• ...

• In general, non-trivial actions at runtime

• Might need a non-negligible amount time
• Need a complex runtime

• Can this complexity/overhead be reduced?

• Is it possible for the compiler to automatically
insert the needed memory deallocations in the
generated code?



Some Ideas (from C++!)

Safe System Programming Safe Programming Concepts

• Resource Acquisition Is Initialization (RAII)

• Some kind of resource is allocated in the
constructor of a class → instantiating an object
allocates the resouce

• Resource de-allocated in the destructor → when
the object goes out of scope, the resource is
deallocated

• Useful, for example, for mutexes
(“std::lock guard”)...

• ...But think about memory (dynamically allocated
from the heap) as a “resource”

• Memory allocated when a “pointer” is
instantiated, and freed when it goes out of scope!



Reference Counting

Safe System Programming Safe Programming Concepts

• How to implement the RAII approach on dynamically
allocated memory?

• First idea: reference counting

• Counter associated to each chunk of dynamically
allocated memory

• New reference to the memory → increase the
counter

• Reference destroyed (out of scope) → decrease
the counter; if counter == 0, free the memory

• Low overhead, but something is still needed at
runtime

• Fails miserably with circular references (including
doubly-linked lists)



Special Case: Single Reference

Safe System Programming Safe Programming Concepts

• If we remove the possibility to have multiple
references to the same data structure, things
become simpler

• Dynamically allocated memory with only one
reference to it → when the reference is destroyed
(goes out of scope), deallocate the memory

• No need for complex runtime support
• The compiler can add what is needed in the

generated code

• Problem: how to enforce the “only one reference to
the allocated memory” property?



Smart Pointers

Safe System Programming Safe Programming Concepts

• Smart Pointer: data structure encapsulating a
pointer (and eventually a reference counter)

• Allows to control how the pointer is used

• Can implement reference counting
• Can easily enforce the “only one reference”

property (and free the memory when the data
structure is destroyed)

• Example: C++ “std::shared ptr”,
“std::weak ptr” and “std::unique ptr”

• Allow to implement RAII with different constraints
(multiple references to single “resource”, some
forms of circular references, single reference to
“resource”)



Smart Pointers — 2

Safe System Programming Safe Programming Concepts

• Shared pointers: implement reference counting
• Weak pointers: to be used with shared pointers (get

a reference without increasing the counter)

• Allow to implement doubly-linked lists, but risk to
open another can of worms

• Unique pointers: only one valid reference to the
pointer memory

• Copy between unique pointers (or direct
assignment) is not possible

• “std::move()” must be used instead (see
“move semantic”)

• Destructor/reset → delete the pointed object



Programming Style and Programming Languages

Safe System Programming Safe Programming Concepts

• All of this can be done with many different
programming languages...

• ...But most of the existing languages do not actually
enforce the usage of safe programming techniques

• Example: Some PLs have option types...
• ...But also provide “forced unwrapping” (or

similar) things!

• Some languages even allow to break the safety
provided by some constructs!

• C++ provides smart pointers...
• ..But does not forbid “traditional” pointers, that

can easily compromise the usage of smart
pointers!


	Enforcing Type/Memory Safety
	Strong Type Systems
	Type Systems: Pragmatic Definition
	Things to Avoid — 1
	Things to Avoid — 2
	Type Checking and Inference
	Examples of Type Inference
	References, with No NULL
	Garbage Collectors
	Some Ideas (from C++!)
	Reference Counting
	Special Case: Single Reference
	Smart Pointers
	Smart Pointers — 2
	Programming Style and Programming Languages

