
Rust Smart Pointers

Luca Abeni

luca.abeni@santannapisa.it

March 20, 2020

References and (Smart) Pointers

Safe System Programming Introduction to Rust

• Reference: additional name for a value/variable
• A rust reference always points to values/variables on

the stack
• A rust reference can only borrow vaules (and never

own them!)
• What about memory allocated from the heap?

• Some other form of pointers is needed!
• In rust, smart pointers: data structures

embedding a pointer, and adding some features
to it

• Remember C++ smart pointers?

Smart Pointers in Rust

Safe System Programming Introduction to Rust

• Big difference with references: smart pointers can
own data!

• And when the smart pointer owning the data is
destroyed, the data is automagically freed

• From the programmer’s perspective, most smart
pointers can be used as references

• Most important smart pointers: only pointer to
memory allocated from the heap (new replacement),
pointer with referene counting, and pointer with
atomic reference counting (for multi-threaded
applications)

• Smart pointers are also hidden in vectors and strings

Allocating Data from the Heap

Safe System Programming Introduction to Rust

• Dynamic memory allocation (from heap): new
method of the Box<T> data type

• Generic data type
• Parametric respect to the type of the data to be

allocated

• Of course, it uses RAII!!!

• The data is freed when the smart pointer is
destroyed

• Exercize: try to implement a recursive data type

• Remember, for example natural numbers as a
sum type?

• Rust does not hide dynamic memory allocations,
so...

Remember?

Safe System Programming Introduction to Rust

struct S {

v: i32
}

fn WorkOnS() {
let mut p = Box::new(S{v: 5});

p.v = ...
/* use p ... */
...

}

• Now we know the meaning of “Box::new()”

• Notice: the type parameter “S” is inferred by the
compiler

• Otherwise, we could have used
“Box::<S>::new(S{v:5})”

Reference Counting

Safe System Programming Introduction to Rust

• Data allocated with “Box::new()” has one single
owner

• Property needed for RAII
• Assignment has a move semantic
• Alternative to move: explicitly duplicating the data

(“clone()” method)

• Using Rc<T>, “clone” returns a pointer pointing to
the same data... But increases a reference counter!

• Destroying the Rc<T> variable, the counter is
decreased; when it is 0, the data is freed

• Note: “Rc<T>” is similar to a shared reference: it
cannot be mutable

Runtime Borrow Checking

Safe System Programming Introduction to Rust

• For references (and Box<T>, and Rc<T>) borrow
checking is performed at build time

• it is not possible to get mutable data from
“Rc<T>”

• This does not build:
let t = Box::new(S{v: 666});
let s = &t;
let s1 = &mut t;

• RefCell<T> allows to perform the checks at
runtime

• Step in the wrong direction?
• Probably yes, but in some cases it is unavoidable
• Example: reference counting with mutable

references!

Reference Counted Mutable References

Safe System Programming Introduction to Rust

• How to get a mutable reference from “Rc<T>”?

• Simple idea: wrap a “RefCell<T>” inside the
“Rc<T>”

• Then, the “Rc<T>” can be cloned and the
“RefCell<T>” can be mutably borrowed!

let v = std::cell::RefCell::new(S{v:666});
let s = std::rc::Rc::new(v);
let r1 = s.clone();
let r2 = s.clone();

println!("{} {}",
(*r1.borrow()).v, (*r2.borrow()).v);

(*s.borrow_mut()).v = 0;

Smart Pointers as References

Safe System Programming Introduction to Rust

• How to actually use a smart pointer in rust?

• In general, smart pointers are not references
(they cannot “directly replace” a reference)...

• ...But can be dereferenced (using the “*”
operator) to get the wrapped value!

• So, if “p” is a “Box<i32>”, then “&(*p)” is a “&i32”

• Notice: “*” can often be omitted!
• So, we can use “&p”

• Small exception: for “RefCell<T>” we must
explicitly invoke “borrow()” or “borrow mut()

• Getting a value of type implementing “Ref<T>” or
“RefMut<T>”

• It can be dereferenced to apply “&” or “&mut”

How Does this Work?

Safe System Programming Introduction to Rust

• Something like “&(*p)” looks very strange...

• Dereferencing a pointer/reference to get a
reference again???

• In reality, “*” is not just transforming a reference in
the referenced value...

• It can be applied to any type implementing the
“Deref” trait...

• “fn deref(&self) -> &Self::Target” is
the method to be implemented
(“&Self::Target” is the type of the referenced
value)

• So, “&(*p)” “deref()” to get a reference, then
dereferences it, and then gets a reference again!

Using Smart Pointers

Safe System Programming Introduction to Rust

• Box<T> can be used without complications (apply
“*” to it, etc...)

• Rc<T> offers the “clone()” method to increase the
reference counter (creating a copy)

• How to avoid issues with circular references?
Again, weak references!

• “Rc<T>::downgrade()” returns a weak
reference

• Must be upgraded at runtime to be used (if the
referenced vaue has been freed, “upgrade()”
returns “None”

• RefCell<T> must be explicitly borrowed (runtime
checking!) calling borrow() or borrow mut()

	References and (Smart) Pointers
	Smart Pointers in Rust
	Allocating Data from the Heap
	Remember?
	Reference Counting
	Runtime Borrow Checking
	Reference Counted Mutable References
	Smart Pointers as References
	How Does this Work?
	Using Smart Pointers

