
Advanced Data Types in

Rust

Luca Abeni

luca.abeni@santannapisa.it

March 13, 2020



Compound Types and Custom Types

Safe System Programming Introduction to Rust

• Compound types: tuples and arrays

• Products of other types
• Array: all elements have the same type; elements

accessible through an index

• Custom types: structures and enumerations

• Products and sums (disjoint unions) of other
types

• Allow to define new types and give them a name

• A value of a compound or custom type is composed
by multiple elements

• How to access the single elements?
• Destructure the type, or unwrap the contained

values



Arrays

Safe System Programming Introduction to Rust

• Collections of n elements of the same type T: “[T;
n]”

• Random access is possible; out-of-bound
accesses are checked

• The array size n is part of the type: possible
checks at build time and at runtime

• Dynamically sized view of an array: slice

• A slice can be seen as a reference “&[T]”
• The slice size is stored somewhere in a “fat

pointer” data structure

• Slices are initialized from arrays: whole array (let
s = &v[..]) or part of an array (let s =

&v[2..6])



Tuples

Safe System Programming Introduction to Rust

• Products of different types
• Elements can be accessed through pattern matching

• Destructuring the tuple
• No accesses through index variables

• Special “structure-like” syntax

let t = ("Hi!", 2);
let (v1, v2) = t;

println!("{} {}", v1, v2);

println!("{} {}", t.0, t.1);



Structures

Safe System Programming Introduction to Rust

• Product type, with a name
• Difference with tuples: each field has a name
• Fields accessible through their names, using C-like

dot notation
• Can also be quickly destructured using pattern

matching

struct Point {
x: f32,
y: f32,
z: f32

}

let s = Point {x: 1.0, y: 1.0, z: 1.0};

let Point {x: x1, y: y1, z: z1} = s;

println!("{} {} {}", x1, y1, z1);

println!("{} {} {}", s.x, s.y, s.z)



Strange Structures

Safe System Programming Introduction to Rust

• Unit structure: no fields

• Unit-like type (type with a single value) with a
name

• “struct EmptyStruct;”
• Will be useful for building enumerations (variants

with single value)

• Tuple-like structures

• Again, will be useful for building enumerations
• “let s = StrangeStruct(1.0, 2.0,

3.0);”
• Pattern matching will be useful here, too



Enumerations

Safe System Programming Introduction to Rust

• Sum type, with a name
• Comma-separated list of structures

• These structures are the constructors
• Unit structures: constructors with no argument (C

enums)
• Tuple structures: constructors with arguments

(an argument per field); C unions
• C-like structures can be used too, but are less

useful

• Pattern matching is the only way to destructure
them/unwrap the contained values

• For enumerations, there is no other way to
access the type elements



Pattern Matching

Safe System Programming Introduction to Rust

• Rust provides a powerful pattern matching
mechanism, that can be used to:

• Implement “case-like” switches
• Define variables, assigning values to them
• Destructure complex data types
• Unwrap values contained in algebraic data types

• Pattern matching is used in various construcs, such
as:

• match, if let, and similar
• Variables definitions (let statements)
• Parameters passing



Rust Patterns

Safe System Programming Introduction to Rust

• A pattern can be:

• A value (literal, constant)
• A variable
• A compound or custom type (tuple, structure,

enumeration, ...)
• The “wildcard pattern”

• A pattern is “matched” by comparing it with some
value

• A constant/literal obviously matches with its value

• A variable matches with any value of the same
type

• Example: “let pi = 3.14”



More Complex Matching Rules

Safe System Programming Introduction to Rust

• A compound/custom value matches if all the
elements match

• For tuples, it is simple:
let t = ("Hi!", 2);
let (v1, v2) = t;

• Here, “(v1, v2)” matches “("Hi!", 2)”
because “v1” matches “"Hi!"” and because
“v2” matches “2”


	Compound Types and Custom Types
	Arrays
	Tuples
	Structures
	Strange Structures
	Enumerations
	Pattern Matching
	Rust Patterns
	More Complex Matching Rules

