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Compound Types and Custom Types

Safe System Programming Introduction to Rust

• Compound types: tuples and arrays

• Products of other types
• Array: all elements have the same type; elements

accessible through an index

• Custom types: structures and enumerations

• Products and sums (disjoint unions) of other
types

• Allow to define new types and give them a name

• A value of a compound or custom type is composed
by multiple elements

• How to access the single elements?
• Destructure the type, or unwrap the contained

values



Arrays

Safe System Programming Introduction to Rust

• Collections of n elements of the same type T: “[T;
n]”

• Random access is possible; out-of-bound
accesses are checked

• The array size n is part of the type: possible
checks at build time and at runtime

• Dynamically sized view of an array: slice

• A slice can be seen as a reference “&[T]”
• The slice size is stored somewhere in a “fat

pointer” data structure

• Slices are initialized from arrays: whole array (let
s = &v[..]) or part of an array (let s =

&v[2..6])



Tuples

Safe System Programming Introduction to Rust

• Products of different types
• Elements can be accessed through pattern matching

• Destructuring the tuple
• No accesses through index variables

• Special “structure-like” syntax

let t = ("Hi!", 2);
let (v1, v2) = t;

println!("{} {}", v1, v2);

println!("{} {}", t.0, t.1);



Structures
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• Product type, with a name
• Difference with tuples: each field has a name
• Fields accessible through their names, using C-like

dot notation
• Can also be quickly destructured using pattern

matching

struct Point {
x: f32,
y: f32,
z: f32

}

let s = Point {x: 1.0, y: 1.0, z: 1.0};

let Point {x: x1, y: y1, z: z1} = s;

println!("{} {} {}", x1, y1, z1);

println!("{} {} {}", s.x, s.y, s.z)



Strange Structures

Safe System Programming Introduction to Rust

• Unit structure: no fields

• Unit-like type (type with a single value) with a
name

• “struct EmptyStruct;”
• Will be useful for building enumerations (variants

with single value)

• Tuple-like structures

• Again, will be useful for building enumerations
• “let s = StrangeStruct(1.0, 2.0,

3.0);”
• Pattern matching will be useful here, too



Enumerations
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• Sum type, with a name
• Comma-separated list of structures

• These structures are the constructors
• Unit structures: constructors with no argument (C

enums)
• Tuple structures: constructors with arguments

(an argument per field); C unions
• C-like structures can be used too, but are less

useful

• Pattern matching is the only way to destructure
them/unwrap the contained values

• For enumerations, there is no other way to
access the type elements



Pattern Matching
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• Rust provides a powerful pattern matching
mechanism, that can be used to:

• Implement “case-like” switches
• Define variables, assigning values to them
• Destructure complex data types
• Unwrap values contained in algebraic data types

• Pattern matching is used in various construcs, such
as:

• match, if let, and similar
• Variables definitions (let statements)
• Parameters passing



Rust Patterns
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• A pattern can be:

• A value (literal, constant)
• A variable
• A compound or custom type (tuple, structure,

enumeration, ...)
• The “wildcard pattern”

• A pattern is “matched” by comparing it with some
value

• A constant/literal obviously matches with its value

• A variable matches with any value of the same
type

• Example: “let pi = 3.14”



More Complex Matching Rules
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• A compound/custom value matches if all the
elements match

• For tuples, it is simple:
let t = ("Hi!", 2);
let (v1, v2) = t;

• Here, “(v1, v2)” matches “("Hi!", 2)”
because “v1” matches “"Hi!"” and because
“v2” matches “2”
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