Advanced Data Types in
Rust

Luca Abeni
luca.abeni@santannapisa.it

March 13, 2020



Compound Types and Custom Types

e (Compound types: tuples and arrays

e Products of other types
Array: all elements have the same type; elements
accessible through an index

e (Custom types: structures and enumerations

e Products and sums (disjoint unions) of other

types
e Allow to define new types and give them a name

e A value of a compound or custom type is composed
by multiple elements

e How to access the single elements?
Destructure the type, or unwrap the contained
values

Safe System Programming Introduction to Rust



e (ollections of n elements of the same type T: “[T;
n] b b

e Random access is possible; out-of-bound
accesses are checked

e The array size n is part of the type: possible
checks at build time and at runtime

e Dynamically sized view of an array: slice

A slice can be seen as a reference “s [T]”
The slice size Is stored somewhere in a “fat
pointer” data structure

e Slices are initialized from arrays: whole array (1et
s = &v[..])orpartofanarray (let s =
&v[(2..6])

Safe System Programming Introduction to Rust



e Products of different types
Elements can be accessed through pattern matching

e Destructuring the tuple
e No accesses through index variables

e Special “structure-like” syntax

let t = ("Hi!", 2);
let (v1, v2) = t;
println! ("{}_{}", vl, Vv2);

{}_I "
println! ("{}_{}", £t.0, t.1);

Safe System Programming Introduction to Rust



Product type, with a name

Difference with tuples: each field has a name

~ields accessible through their names, using C-like
dot notation

e (Can also be quickly destructured using pattern
matching

struct Point {
x: £32,
v: £32,
z: £32

}

let s = Point {x: 1.0, y: 1.0, z: 1.0};
let Point {x: x1, y: v1l, z: zl} = s;

println! (" {}
{}

oy, x1, yl, zl);
println! (" {}

::{}", S.X, S.Y, S.z)

Safe System Programming Introduction to Rust



Strange Structures

e Unit structure: no fields

e Unit-like type (type with a single value) with a
name
“struct EmptyStruct;”
Will be useful for building enumerations (variants
with single value)

e Juple-like structures

e Again, will be useful for building enumerations
“let s = StrangeStruct (1.0, 2.0,
3.0) ;"

e Pattern matching will be useful here, too

Safe System Programming Introduction to Rust



Enumerations

Sum type, with a name
Comma-separated list of structures

These structures are the constructors
Unit structures: constructors with no argument (C
enums)

e TJuple structures: constructors with arguments
(an argument per field); C unions

e C-like structures can be used too, but are less
useful

e Pattern matching is the only way to destructure
them/unwrap the contained values

e For enumerations, there is no other way to
access the type elements

Safe System Programming Introduction to Rust



Pattern Matching

e Rust provides a powerful pattern matching
mechanism, that can be used to:

mplement “case-like” switches

Define variables, assigning values to them
Destructure complex data types

Unwrap values contained in algebraic data types

e Pattern matching is used in various construcs, such
as:

e match, if let, and similar
Variables definitions (1et statements)
e Parameters passing

Safe System Programming Introduction to Rust



Rust Patterns

e A pattern can be:

A value (literal, constant)
A variable
A compound or custom type (tuple, structure,
enumeration, ...)
e The “wildcard pattern”

e A pattern is “matched” by comparing it with some
value

e A constant/literal obviously matches with its value

e A variable matches with any value of the same
type
e Example: “let pi = 3.147

Safe System Programming Introduction to Rust



More Complex Matching Rules

e A compound/custom value matches if all the
elements match

e Fortuples, it is simple:
let t = ("Hi!", 2);
let (v1, v2) = t;
e Here, “(v1l, v2)”matches “("Hi!", 2)’
because “v1” matches “"Hi ! "” and because
“v2” matches “2”

Safe System Programming Introduction to Rust



	Compound Types and Custom Types
	Arrays
	Tuples
	Structures
	Strange Structures
	Enumerations
	Pattern Matching
	Rust Patterns
	More Complex Matching Rules

