
Advanced Rust Features

Luca Abeni

luca.abeni@santannapisa.it

March 23, 2022

Rust Functions and Closures

Safe System Programming Introduction to Rust

• Rust makes a difference between functions and
closures

• Rust functions: blocks of code associated to
names, formal parameters and return value

• Associated to names: denotable entities
• Can be stored in variables, or returned by

functions
• Cannot capture non-local variables →

equivalent to C function pointers

• Rust closures: functions associated to an
environment for non-local variables

• Again, denotable, can be stored in variables,
and can be returned

Functions as Denotable Entities

Safe System Programming Introduction to Rust

• Functions are denotable: can be bound to a name
• Functions can be stored in a variable

fn main()
{

fn inc(x: i64) -> i64 {
x + 1

}

let f = inc;
let v = 5;

println!("Inc {} = {}", v, f(v))
}

• However, they cannot capture non-local variables!

Functions and Non-Local Variables

Safe System Programming Introduction to Rust

• Something like this will not compile:

fn main()
{

let n = 1;

fn add(x: i64) -> i64 {
x + n

}

let f = inc;
let v = 5;

println!("Inc {} = {}", v, f(v))
}

• The error says “can’t capture dynamic

environment in a fn item”...

• ...And “use the ‘|| ... ‘ closure

form instead”

• What does this mean?

Rust Functions are Function Pointers

Safe System Programming Introduction to Rust

• A function has a type implementing the “fn” trait
• It really is just a function pointer, without additional

data
• No associated environment for non-local symbols!

• This is why the “n” variable cannot be used in
“add”...

• What we need is a real closure (function pointer +
associated environment)...

• ...And the compiler seems to suggest some kind of
“|| ...” syntax!

Closures

Safe System Programming Introduction to Rust

• Closure: parameters between “||”, followed by the
body (between “{}”)

fn main()
{

let n = 1;

let f = |x| {
x + n

};
let v = 5;

println!("Inc {} = {}", v, f(v))
}

• Here, “n” is borrowed
• This is not an issue because “f” and “n” have the

same lifetime...
• ...But what happens if “f” survives to “n”?

Closures and Non-Local Variables

Safe System Programming Introduction to Rust

• This cannot compile, because the closure borrows
“n” but is returned (and “n” does not exist outside of
the function
fn sum(n: i64) -> impl Fn(i64) -> i64
{

|x| {
x + n

}
}

• The relevant error is “borrowed value does not

live long enough”
• Side note: “Fn” is the trait implemented by closures,

and “impl Fn...” means that the function returns
a type implementing the “Fn” trait

• Anyway, how to fix the issue? By moving the value!

Closures Moving Non-Local Variables

Safe System Programming Introduction to Rust

• This compiles and works:
fn sum(n: i64) -> impl Fn(i64) -> i64
{

move |x| {
x + n

}
}

fn main()
{

let n = 1;
let f = sum(n);
let v = 5;

println!("Add {} {} = {}", v, n, f(v))
}

• Other traits for closures: “FnOnce” (move the
environment when the closure is invoked) and
“FnMut” (borrow mutably the environment)

Rust Threads

Safe System Programming Introduction to Rust

• Create a thread with “std::thread::spawn”

• Thread body: closure (warning: can capture
non-local variables)

• The thread can survive to captured variables...
They must be moved!

• How to share variables, if we need to move
them???

• Trick similar to “RefCell”...

• spawn() returns a “JoinHandle”

• Used to wait for the thread termination (invoke its
“join()” method)

Smart Pointers for Threads

Safe System Programming Introduction to Rust

• How to share variables between threads?
• We need to move cloned values... Similar to Rc!!!
• Rc does not work with threads (it is not atomic): use

Arc!
• But this is not mutable...
• Sharing mutable references: we need something

similar to RefCell

• Mutex: allows to get mutable references (lock()
method)

• So, we need an “Arc<Mutex<...>>” (use new()

to create both the Mutex and the Arc)

	Rust Functions and Closures
	Functions as Denotable Entities
	Functions and Non-Local Variables
	Rust Functions are Function Pointers
	Closures
	Closures and Non-Local Variables
	Closures Moving Non-Local Variables
	Rust Threads
	Smart Pointers for Threads

