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Rust Functions and Closures

e Rust makes a difference between functions and
closures

e Rust functions: blocks of code associated to
names, formal parameters and return value

e Associated to names: denotable entities

e (Can be stored in variables, or returned by
functions

e Cannot capture non-local variables —
equivalent to C function pointers

e Rust closures: functions associated to an
environment for non-local variables

e Again, denotable, can be stored in variables,
and can be returned
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Functions as Denotable Entities

Functions are denotable: can be bound to a name
Functions can be stored in a variable

fn main ()
{
fn inc(x: i164) —> 164 {
x + 1
}
let £ = 1inc;
let v = 5;
println! ("Inc _{} =_{}", v, f£(v))

)
e However, they cannot capture non-local variables!
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Functions and Non-Local Variables

e Something like this will not compile:

fn main ()
{
let n = 1;
fn add(x: i64) —> i64 {
X + n
}
let £ = 1inc;
let v = 5;
println! ("Inc_{} =_{}", v, f£(v))

J

e T[he errorsays “can’t capture dynamic
environment in a fn item ...

e ..And“use the ‘|| ... Y closure
form instead”

at does this mean?

Safe System Ihogrammlng Introduction to Rust



Rust Functions are Function Pointers

A function has a type implementing the “fn” trait
It really is just a function pointer, without additional
data

e No associated environment for non-local symbols!

e Thisis why the “n” variable cannot be used in
“add’...

e What we need is a real closure (function pointer +
associated environment)...

e ...Andthe compiler seems to suggest some kind of
“I'l ...” syntax!
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Closures

e Closure: parameters between “| |7, followed by the
body (between “{}”)
fn main ()
{
let n = 1;
let £ = |x| {
X + n
b
let v = 5;

println! ("Inc {} =_{}", v, f£(v))
}
Here, “n” IS borrowed
This Is not an issue because “f” and “n
same lifetime...
e ...But what happens if “£” survives to “n”?

have the
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Closures and Non-Local Variables

e This cannot compile, because the closure borrows
“n” but Is returned (and “n” does not exist outside of
the function

fn sum(n: 164) —-> impl Fn(i64) —> 164
{

| x| |
X + n
}

J

e Therelevant erroris “borrowed value does not
live long enough”

e Side note: “Fn” is the trait implemented by closures,
and “impl Fn...” means that the function returns
a type implementing the “Fn” trait

e Anyway, how to fix the issue? By moving the value!
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Closures Moving Non-Local Variables

e This compiles and works:

fn sum(n: i164) —> impl Fn(i64) —> i64
{

move |x| {

X + n
}
}
fn main ()
{
let n = 1;
let £ = sum(n);
let v = 5;

println! ("Add_{}_{}_=_{}", v, n, £(v))
)
e Other traits for closures: “PFmOnce” (move the
environment when the closure is invoked) and
Mut” (borrow mutably the environment)
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Rust Threads

e C(Create athread with “std: :thread: : spawn”

e Thread body: closure (warning: can capture
non-local variables)

e The thread can survive to captured variables...
They must be moved!

e How to share variables, if we need to move
them???

e [rick similarto “RefCell”...

e spawn () returns a “JoinHandle”

e Used to wait for the thread termination (invoke its
“Join ()” method)
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Smart Pointers for Threads

How to share variables between threads?
We need to move cloned values... Similar to Rc!!!
Rc does not work with threads (it is not atomic): use
Arc!
But this is not mutable...
Sharing mutable references: we need something
similar to RefCell

e Mutex: allows to get mutable references (1ock ()
method)

e SO, we need an “Arc<Mutex<...>>" (US€ new ()
to create both the Mutex and the Arc)
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