Advanced Rust Features

Luca Abeni
luca.abeni@santannapisa.it

March 23, 2022

Rust Functions and Closures

e Rust makes a difference between functions and
closures

e Rust functions: blocks of code associated to
names, formal parameters and return value

e Associated to names: denotable entities

e (Can be stored in variables, or returned by
functions

e Cannot capture non-local variables —
equivalent to C function pointers

e Rust closures: functions associated to an
environment for non-local variables

e Again, denotable, can be stored in variables,
and can be returned

Safe System Programming Introduction to Rust

Functions as Denotable Entities

Functions are denotable: can be bound to a name
Functions can be stored in a variable

fn main ()
{
fn inc(x: i164) —> 164 {
x + 1
}
let £ = 1inc;
let v = 5;
println! ("Inc _{} =_{}", v, f£(v))

)
e However, they cannot capture non-local variables!

Safe System Programming Introduction to Rust

Functions and Non-Local Variables

e Something like this will not compile:

fn main ()
{
let n = 1;
fn add(x: i64) —> i64 {
X + n
}
let £ = 1inc;
let v = 5;
println! ("Inc_{} =_{}", v, f£(v))

J

e T[he errorsays “can’t capture dynamic
environment in a fn item ...

e ..And“use the ‘|| ... Y closure
form instead”

at does this mean?

Safe System Ihogrammlng Introduction to Rust

Rust Functions are Function Pointers

A function has a type implementing the “fn” trait
It really is just a function pointer, without additional
data

e No associated environment for non-local symbols!

e Thisis why the “n” variable cannot be used in
“add’...

e What we need is a real closure (function pointer +
associated environment)...

e ...Andthe compiler seems to suggest some kind of
“I'l ...” syntax!

Safe System Programming Introduction to Rust

Closures

e Closure: parameters between “| |7, followed by the
body (between “{}”)
fn main ()
{
let n = 1;
let £ = |x| {
X + n
b
let v = 5;

println! ("Inc {} =_{}", v, f£(v))
}
Here, “n” IS borrowed
This Is not an issue because “f” and “n
same lifetime...
e ...But what happens if “£” survives to “n”?

have the

Safe System Programming Introduction to Rust

Closures and Non-Local Variables

e This cannot compile, because the closure borrows
“n” but Is returned (and “n” does not exist outside of
the function

fn sum(n: 164) —-> impl Fn(i64) —> 164
{

| x| |
X + n
}

J

e Therelevant erroris “borrowed value does not
live long enough”

e Side note: “Fn” is the trait implemented by closures,
and “impl Fn...” means that the function returns
a type implementing the “Fn” trait

e Anyway, how to fix the issue? By moving the value!

Safe System Programming Introduction to Rust

Closures Moving Non-Local Variables

e This compiles and works:

fn sum(n: i164) —> impl Fn(i64) —> i64
{

move |x| {

X + n
}
}
fn main ()
{
let n = 1;
let £ = sum(n);
let v = 5;

println! ("Add_{}_{}_=_{}", v, n, £(v))
)
e Other traits for closures: “PFmOnce” (move the
environment when the closure is invoked) and
Mut” (borrow mutably the environment)

Safe System Ipogrammlng Introduction to Rust

Rust Threads

e C(Create athread with “std: :thread: : spawn”

e Thread body: closure (warning: can capture
non-local variables)

e The thread can survive to captured variables...
They must be moved!

e How to share variables, if we need to move
them???

e [rick similarto “RefCell”...

e spawn () returns a “JoinHandle”

e Used to wait for the thread termination (invoke its
“Join ()” method)

Safe System Programming Introduction to Rust

Smart Pointers for Threads

How to share variables between threads?
We need to move cloned values... Similar to Rc!!!
Rc does not work with threads (it is not atomic): use
Arc!
But this is not mutable...
Sharing mutable references: we need something
similar to RefCell

e Mutex: allows to get mutable references (1ock ()
method)

e SO, we need an “Arc<Mutex<...>>" (US€ new ()
to create both the Mutex and the Arc)

Safe System Programming Introduction to Rust

	Rust Functions and Closures
	Functions as Denotable Entities
	Functions and Non-Local Variables
	Rust Functions are Function Pointers
	Closures
	Closures and Non-Local Variables
	Closures Moving Non-Local Variables
	Rust Threads
	Smart Pointers for Threads

