
Safe System Programming

Luca Abeni

luca.abeni@santannapisa.it

February 10, 2022



Safe System Programming

Safe System Programming Introduction

• Two concepts: system programming and safe
program / safety

• System programming: programming system
software

• Operating System (both kernel and user-space)
• Important “system libraries”
• Other software not traditionally considered part of

the OS

• Virtual Machine Monitors, ...

• Safety: not easy to define...

• People often identify different kinds of safety
• Different levels of safety...



System Software and its Importance

Safe System Programming Introduction

• Why is system software special?

• Why “safe system programming” and not
generically “safe programming”?

• All software needs to be “safe” and “trusted”...

• All software is equal, but some software is more
equal than others

• Seriously, the safety of system software affects
all the other software running in the system!

• For application software, we can use techniques that
are not usable on system software



Not for System Software

Safe System Programming Introduction

• Crashing might be an option for a non-safe
application...

• ...But I do not want my OS to crash!!!

• Sometimes, safety is enforced by heavyweight
runtimes...

• ...That are not available in an OS kernel!!!

• Example: Java avoids risks of “double free” by
using a garbage collector...

• ...Implemented in the JVM→ cannot be used
for programming a kernel!

• User-space programs can rely on kernel protection...



Requirements for System Software

Safe System Programming Introduction

• System software is performance critical and safety
critical

• Conflicting requirements

• Traditionally implemented focusing (mainly) on
performance

• Using low-level languages such as Assembly and
C

• Sometimes C++

• All unsafe languages!!!

• Safety mainly considered imposing constraints on
the coding/development style

• Example: MISRA C



System Programming Languages

Safe System Programming Introduction

• Designed/used to write system software

• Focus on performance, performance,
performance!

• Must allow to directly access hardware resources

• Generic/unsafe pointers

• For kernel development, must allow to build
programs without relying on syscalls→
non-hosted/bare-metal→ no runtime!

• What about safety/security?

• Generally overlooked

• So, what is safety?



Safety

Safe System Programming Introduction

• No unique or formal definition

• Many different definitions in literature

• Informally: a program is considered “safe” if it is
possible to formally prove that it behaves correctly

• “Behaves correctly”?
• Or, “it does not do anything dangerous”...
• Different possible variations...

• What about “safe” programming languages?

• Safe programming language→ enforces safety
• A well-formed program cannot do anything

dangerous
• Given a well-formed program it is possible to

formally prove that it behaves correctly



Different Kinds of Safety

Safe System Programming Introduction

• Type safety: well-formed programs cannot exhibit
bugs due to type errors

• Applying the wrong operation on the wrong type,
...

• Memory safety: well-formed programs cannot exhibit
bugs due to wrong memory accesses

• Thread safety: well-formed programs cannot exhibit
race conditions, deadlocks, and synchronization
errors

• Other kinds of safety...

• For example, a well-formed progam has a
well-defined behaviour (no UBs in C, etc...)



Memory Safety

Safe System Programming Introduction

• No bugs due to wrong memory accesses...

• Difficult to provide a generic definition

• Definition “by examples”... Wrong memory access:

• Buffer overflow
• NULL pointer dereference
• Use after free
• Use of uninitialized memory
• Illegal free (of an already-freed pointer, or a

non-malloced pointer)

• Things like “no accesses to uninitialized memory” do
not properly catch buffer overflows, etc...



Memory Safety vs Type Safety

Safe System Programming Introduction

• Sometimes, there is no clear distincion between type
safety and memory safety

• Clear buffer overflow (violation of memory safety):
int *v = malloc(sizeof(int) * 10);
v[10] = 666;

• What about this:
int v[10];
v[10] = 666;

• Is it a buffer overflow or a type error?

• Defines an array of 10 elements, and accesses
the 11th...

• OK, C arrays are pointers, but what about C++:
std::vector<int> v(10,0);
v[10] = 666;



Enforcing Safety

Safe System Programming Introduction

• Safety can be enforced at compile time

• Unsafe programs — whatever this means — do
not even build

• Or at execution time

• Some kind of “trusted language runtime” ensures
that nothing bad happens

• According to someone, a safe program is a program
that can rely on a trusted runtime

• Languages like Java try a mix of the two

• No free()→ remove the possibility to have use
after free, etc

• The JVM also enforces consistency, etc...



Breaking Memory Safety

Safe System Programming Introduction

• Features that might break memory safety:

• No array bounds checks (or, is this type
safety???)

• Pointer arithmetic
• NULL pointers (someone says, only if they cause

UB)
• Low-level memory management

• Low-level memory management:

• Explicit C-style malloc()/free() (some say ”use
new” and ”do not free()”)

• Explicit assignment of arbitrary values to pointers



Possible Solutions/Mitigations

Safe System Programming Introduction

• Some “coding standards” generically forbid dynamic
memory allocation

• This is crazy: they ban the usage of functions!

• Some others (MISRA C) forbid dynamic allocation
from the heap (malloc()/free())

• Still, a partial solution.

• Alternative: using a garbage collector

• Coming from functional programming languages;
then used by Java

• Pointers in general are dangerous (some languages
try to avoid them)



Static vs Dynamic Checks

Safe System Programming Introduction

• Consider the code
int v[10];
v[10] = 666;

• Should it fail to compile, or should it generate an
exception at runtime?

• Static type checking: build failure

• Early notification of (potential) bugs
• Not always possible: what about v[i] = 666;?

• Dynamic type checking: exception/crash

• Still safe (???)... Someone says “to make C safe,
change all the UBs into crashes”...

• Less useful for developers... But more for users?
• Need for runtime support



Static or Dynamic?

Safe System Programming Introduction

• Dynamic checks are more permissive... Consider

int StrangeFunction(bool v)
{

if (v) {
x = 10;

} else {
x = "WTH???";

}

if (v) {
return x * 2;

}

return len(x);
}

• But, is this really useful?
• If my program has potential bugs, I want it to fail to

build!



Static Typing and Static Checks

Safe System Programming Introduction

• Static typing: programs with (even potential) type
errors fail to build

• Dynamic typing: programs with type errors
crash/generate exceptions

• Still safe, but I prefer early notification

• Static typing requires a strong type system

• Example: avoid the C’s “automatic type
promotion”

• We will see that this can help with memory safety too



The Dream

Safe System Programming Introduction

• Goal: “problematic code” (code that can have
potential issues) does not even build

• Eliminate an entire class of vulnerabilities before
they ever happen

• Cost: some valid code is considered invalid

• Need for some support at the language level!

• Type theory can help, here!
• Not a new idea: functional programming

languages have already been there (for
example)!

• Avoid heavyweight runtimes

• Garbage collection, etc...



Tools for Safety — 1

Safe System Programming Introduction

• Static code analysis tools: search for possible issues
in the code (without executing it)

• Taint analysis: check how “corrupted data” can affect
the system

• Performed as static analysis on source code or
binary code

• Tools like valgrind, Address Sanitizer (asan) or other
sanitizers, etc...

• Maybe associated with fuzz testing
• Still, this is testing, does not provent dangerous

code to build



Tools for Safety — 2

Safe System Programming Introduction

• Lots of warnings from compilers...

• Warnings tend to change from compiler to
compiler and from version to version

• Only considered as “suggestions”

• Adopting “safe” development practices

• Again, coding rules... Can be checked with some
tools, at least

• Manual code review



Summing Up

Safe System Programming Introduction

• Lots of external tools for code analysis

• Not really integrated with the language

• Mechanisms to detect memory errors, concurrency
errors, and similar at runtime

• Useful for testing
• Prevent UBs
• Need some runtime support (kasan does exist,

but needs support in the Linux kernel!)

• Type/Memory safe languages exist

• Java, C#, Haskell, Go, pick your name
• All need a “not so lightweight” runtime
• Still, safety is sometimes intended as “exception

at runtime”...



Type/Memory Safe Languages

Safe System Programming Introduction

• Impossible to build programs that result in memory
errors at runtime

• Again, various definitions of “memory error”...
• Example: Java

• Null pointers do exist!
• ...And null pointer dereference can happen even

if you do not explicitly use null pointers!
• But Java is safe because null pointer

dereferences result in exceptions!

• Safety is often checked only dynamically

• Sometimes, there are no other options!

• What about safe system languages?



System Languages and Safety

Safe System Programming Introduction

• Bad news: system languages have to be unsafe...

• Why? Think about I/O...
• To access an I/O device, raw (and unchecked)

memory access is needed...

• Similitude with pure functional languages

• A pure functional language allows no side
effects...

• ...But side effects are needed! (again, I/O...)
• Solution: isolate side-effect in a runtime/abstract

machine/well-defined software component

• Maybe, it is possible to precisely isolate unsafe
sections of code?

• Of course, this risks to open cans of worms...



Source of some Problems, again

Safe System Programming Introduction

• Buffer overflow

• Can be statically checked only in some cases

• Issues with pointers

• NULL pointer dereference

• Can we really avoid NULL pointers???

• Issues with memory de-allocation (use after free,
illegal free)

• Can we avoid C-style free()...
• ...Without relying on garbage collectors?

• Use of uninitialized memory

• Can we avoid pointers???



Programs: Code and Data

Safe System Programming Introduction

• Von Neumann architecture: programs == sequences
of instructions that operate don data

• Instructions and data are stored in memory
• Long sequences of 0 and 1...

• Programming in machine language is not simple
(reading/writing long sequences of bits!)

• Assembly helps a little bit, introducing
mnemonics for the machine instructions, and
symbolic names for memory locations

• High-level languages introduce variables, types, and
values



Variables and Values

Safe System Programming Introduction

• Variable← high-level programming languages

• Used to abstract programs from the usage of
physical/virtual memory

• “Box” (set of memory locations) that can contain
a value

• Referenced by using a symbolic name

• Value: sequence of bits encoding some high-level
concept (number, character, string, ...)

• The encoding depends on the type of the variable

• Data type: defines the semantics of the variable

• Set of possible values the variable can contain
• Operations such values
• ...



Immutable Variables

Safe System Programming Introduction

• Variables can be mutable or immutable
• Immutable variable: binding between a symbolic

name and a value

• Environment: set of bindings (name→ value)
• Function mapping names into values

• Variable declarations modify the environment
• There is no way to modify the value bound to a

variable name

• No assigments! Only initializations...
• The only thing we can do is to define a new

binding that shadows the old one



Mutable Variables

Safe System Programming Introduction

• The environment maps names into “boxes”
(variables), not directly into values

• Additional function (memory) mapping variables into
their contained values

• Assignments modify the memory function,
changing the value assigned to a variable in a
variable (R-Value in C/C++)

• Aliasing: the same variable can have multiple names



Pointers

Safe System Programming Introduction

• Pointer type: special type, expressing references to
variables

• Possible values: memory addresses (of
variables)...

• ... + one special value, representing invalid
pointers

• The NULL value!!!

• Dereference operator: accesses the value contained
in the pointed variable

• Dereferencing the NULL value results in a
runtime error!

• NULL is a value like the others; NULL dereferences
cannot result in build errors



More on Data Types

Safe System Programming Introduction

• Every programming language has a set of primitive
types

• And many languages allow to define new types

• Simple way to define new types: apply sum or
product operations to existing types

• Product T1 × T2: type with possible values given
by couples of values from T1 and T2

• Sum T1 + T2: type with possible values given by
values from T1 or values from T2

• Sum == disjoint union; Product == cartesian product
• If |T | is the number of values of type T , then
|T1 × T2| = |T1| · |T2| and |T1 + T2| = |T1|+ |T2|



Algebraic Data Types

Safe System Programming Introduction

• A set (the set of the language’s data types), a sum
operation and a product operation... It’s an algebra!

• Algebra of the data types; types are called
Algebraic Data Types!

• Issue: the sum is a disjoint union...

• Easy to do “float + bool” (type with possible
values integers or booleans)...

• ...But what about “int + int” (or similar)?
• The types have to be tagged somehow...



Algebraic Data Types and Constructors

Safe System Programming Introduction

• Solution adopted by many programming languages:
do not sum types directly, but first apply a tagging
function to them

• Constructor: function generating the values of
the type to be summed

• Summing types generated by different
constructors, the issue is solved!

• Variant: set of values generated by a constructor

• Different constructors generate disjoint variants
• Hence, instead of “int + int” we can use “Left(int)

+ Right(int)”



Examples

Safe System Programming Introduction

• C unions are a special case of tagged sum
• “test = i(int) + f(float)” is

union example {

int i;
float f;

};

• Of course, algebraic data types are more generic
(0-arguments or multi-argument constructors, etc...)

• All constructors with 0 arguments: enum type
• Haskell, ML and others fully support ADT

datatype test = i of int | f of real;

data Test = I Int | F Float



Example: Option Type

Safe System Programming Introduction

• Type containing a value or nothing

• Two constructors: “Nothing” (without arguments)
and “Just” (with one argument of the desired
type)

• Example: integer or nothing→ Option int = Nothing
+ Just(int)

• Idea: instead of using a null pointer...
• ...Use an option type: Pointer to int = Nothing +

Just(int *)

• Advantage: only the “Just” variant can be
dereferenced...

• NULL pointer dereferences do not even compile!



Generic Data Types

Safe System Programming Introduction

• The definition of a new type might depend on a “type
variable”

• Parametric type, depending on another type “T”,
denoted by a variable

• Type variables, generally indicated as greek
letters

• Example: generic option type

• Not “integer or nothing”, but “type α or nothing”
• α: type variable

• In Haskell, something like

data Option a = Nothing | Just a

• Used for many other things too (lists, Monads, ...)



Recursive Data Types

Safe System Programming Introduction

• To define a data type, we must (also) define all its
possible values

• Set of possible values→ can be defined by
induction...

• Can induction/recursion be used to define a new
data type?

• How? We need induction base and induction
step

• Induction base: one (or more) constructor(s)
having 0 parameters (or, no parameters of the
data type we are defining)

• Induction step: constructor having a parameter of
the type we are defining

• Looks... Confusing??? Let’s look at some examples!



Recursive Data Types: Example

Safe System Programming Introduction

• Let’s define the “natural numbers” data type (set of
values: N )

• 0 ∈ N : constructor zero (with no parameters)
• n ∈ N ⇒ n+ 1 ∈ N : constructor succ, having as

an argument a natural number

datatype nat = zero | succ of nat;

data Nat = Zero | Succ Nat

• How to use this funny definition?

• Combination of pattern matching and recursion
• Familiar to people knowing functional

programming



More Interesting Example: Lists

Safe System Programming Introduction

• Lists can also be defined by induction/recursion
(simple example: list of intergers)

• Inductive base: an empty list is a list
• Inductive step: A non-empty list is an integer

followed by a list

• Recursive Data Type: a non-empty list is defined
based on the list data type (constructor receiving a
list as a parameter)

• Two constructors

• Empty list constructor
• Constructor for non-empty lists



Lists as RDTs — 1

Safe System Programming Introduction

• Two constructors

• Empty list constructor (no parameters)
• Constructor for non-empty lists (two parameters:

an integer and a list)

• Other operations

• car: returns the first element of a non-empty list
(head)

• cdr: given a non-empty list, returns the “rest of
the list”



Lists as RDTs — 2

Safe System Programming Introduction

• How are lists generally implemented?
• Functional languages (Haskell, ML Lisp & friends, ...)

• Recursive data type!!!
• “cons” constructor: parameter of type int *

list (or, a parameter of type int, but returns a
function list -> list)

• Imperative languages: pointers!

• Structure with 2 fields (types “int” and “list*”)
• Second field: pointer to next element
• Cannot be of type “list”,→ use “pointer to

list”!



RDTs vs Pointers

Safe System Programming Introduction

• See? Imperative languages use pointers and explicit
memory allocation...

• Adding an element to list implies doing some
malloc()/new for a node structure, setting some
“next” pointers, etc...

• ...In functional languages, RDTs avoid the need for
pointers, and memory allocation/deallocation is
hidden...

• Adding an element in front of a list “l” is as
simple as “let l1 = cons(e, l)” or similar!

• The implementation of the language abstract
machine will take care of allocating memory, etc...


	Safe System Programming
	System Software and its Importance
	Not for System Software
	Requirements for System Software
	System Programming Languages
	Safety
	Different Kinds of Safety
	Memory Safety
	Memory Safety vs Type Safety
	Enforcing Safety
	Breaking Memory Safety
	Possible Solutions/Mitigations
	Static vs Dynamic Checks
	Static or Dynamic?
	Static Typing and Static Checks
	The Dream
	Tools for Safety — 1
	Tools for Safety — 2
	Summing Up
	Type/Memory Safe Languages
	System Languages and Safety
	Source of some Problems, again
	Programs: Code and Data
	Variables and Values
	Immutable Variables
	Mutable Variables
	Pointers
	More on Data Types
	Algebraic Data Types
	Algebraic Data Types and Constructors
	Examples
	Example: Option Type
	Generic Data Types
	Recursive Data Types
	Recursive Data Types: Example
	More Interesting Example: Lists
	Lists as RDTs — 1
	Lists as RDTs — 2
	RDTs vs Pointers

