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Safe System Programming

Safe System Programming Introduction

• Two concepts: system programming and safe
program / safety

• System programming: programming system
software

• Operating System (both kernel and user-space)
• Important “system libraries”
• Other software not traditionally considered part of

the OS

• Virtual Machine Monitors, ...

• Safety: not easy to define...

• People often identify different kinds of safety
• Different levels of safety...



System Software and its Importance

Safe System Programming Introduction

• Why is system software special?

• Why “safe system programming” and not
generically “safe programming”?

• All software needs to be “safe” and “trusted”...

• All software is equal, but some software is more
equal than others

• Seriously, the safety of system software affects
all the other software running in the system!

• For application software, we can use techniques that
are not usable on system software



Not for System Software

Safe System Programming Introduction

• Crashing might be an option for a non-safe
application...

• ...But I do not want my OS to crash!!!

• Sometimes, safety is enforced by heavyweight
runtimes...

• ...That are not available in an OS kernel!!!

• Example: Java avoids risks of “double free” by
using a garbage collector...

• ...Implemented in the JVM→ cannot be used
for programming a kernel!

• User-space programs can rely on kernel protection...



Requirements for System Software

Safe System Programming Introduction

• System software is performance critical and safety
critical

• Conflicting requirements

• Traditionally implemented focusing (mainly) on
performance

• Using low-level languages such as Assembly and
C

• Sometimes C++

• All unsafe languages!!!

• Safety mainly considered imposing constraints on
the coding/development style

• Example: MISRA C



System Programming Languages
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• Designed/used to write system software

• Focus on performance, performance,
performance!

• Must allow to directly access hardware resources

• Generic/unsafe pointers

• For kernel development, must allow to build
programs without relying on syscalls→
non-hosted/bare-metal→ no runtime!

• What about safety/security?

• Generally overlooked

• So, what is safety?



Safety
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• No unique or formal definition

• Many different definitions in literature

• Informally: a program is considered “safe” if it is
possible to formally prove that it behaves correctly

• “Behaves correctly”?
• Or, “it does not do anything dangerous”...
• Different possible variations...

• What about “safe” programming languages?

• Safe programming language→ enforces safety
• A well-formed program cannot do anything

dangerous
• Given a well-formed program it is possible to

formally prove that it behaves correctly



Different Kinds of Safety

Safe System Programming Introduction

• Type safety: well-formed programs cannot exhibit
bugs due to type errors

• Applying the wrong operation on the wrong type,
...

• Memory safety: well-formed programs cannot exhibit
bugs due to wrong memory accesses

• Thread safety: well-formed programs cannot exhibit
race conditions, deadlocks, and synchronization
errors

• Other kinds of safety...

• For example, a well-formed progam has a
well-defined behaviour (no UBs in C, etc...)



Memory Safety
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• No bugs due to wrong memory accesses...

• Difficult to provide a generic definition

• Definition “by examples”... Wrong memory access:

• Buffer overflow
• NULL pointer dereference
• Use after free
• Use of uninitialized memory
• Illegal free (of an already-freed pointer, or a

non-malloced pointer)

• Things like “no accesses to uninitialized memory” do
not properly catch buffer overflows, etc...



Memory Safety vs Type Safety
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• Sometimes, there is no clear distincion between type
safety and memory safety

• Clear buffer overflow (violation of memory safety):
int *v = malloc(sizeof(int) * 10);
v[10] = 666;

• What about this:
int v[10];
v[10] = 666;

• Is it a buffer overflow or a type error?

• Defines an array of 10 elements, and accesses
the 11th...

• OK, C arrays are pointers, but what about C++:
std::vector<int> v(10,0);
v[10] = 666;



Enforcing Safety
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• Safety can be enforced at compile time

• Unsafe programs — whatever this means — do
not even build

• Or at execution time

• Some kind of “trusted language runtime” ensures
that nothing bad happens

• According to someone, a safe program is a program
that can rely on a trusted runtime

• Languages like Java try a mix of the two

• No free()→ remove the possibility to have use
after free, etc

• The JVM also enforces consistency, etc...



Breaking Memory Safety
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• Features that might break memory safety:

• No array bounds checks (or, is this type
safety???)

• Pointer arithmetic
• NULL pointers (someone says, only if they cause

UB)
• Low-level memory management

• Low-level memory management:

• Explicit C-style malloc()/free() (some say ”use
new” and ”do not free()”)

• Explicit assignment of arbitrary values to pointers



Possible Solutions/Mitigations
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• Some “coding standards” generically forbid dynamic
memory allocation

• This is crazy: they ban the usage of functions!

• Some others (MISRA C) forbid dynamic allocation
from the heap (malloc()/free())

• Still, a partial solution.

• Alternative: using a garbage collector

• Coming from functional programming languages;
then used by Java

• Pointers in general are dangerous (some languages
try to avoid them)



Static vs Dynamic Checks
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• Consider the code
int v[10];
v[10] = 666;

• Should it fail to compile, or should it generate an
exception at runtime?

• Static type checking: build failure

• Early notification of (potential) bugs
• Not always possible: what about v[i] = 666;?

• Dynamic type checking: exception/crash

• Still safe (???)... Someone says “to make C safe,
change all the UBs into crashes”...

• Less useful for developers... But more for users?
• Need for runtime support



Static or Dynamic?
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• Dynamic checks are more permissive... Consider

int StrangeFunction(bool v)
{

if (v) {
x = 10;

} else {
x = "WTH???";

}

if (v) {
return x * 2;

}

return len(x);
}

• But, is this really useful?
• If my program has potential bugs, I want it to fail to

build!



Static Typing and Static Checks
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• Static typing: programs with (even potential) type
errors fail to build

• Dynamic typing: programs with type errors
crash/generate exceptions

• Still safe, but I prefer early notification

• Static typing requires a strong type system

• Example: avoid the C’s “automatic type
promotion”

• We will see that this can help with memory safety too



The Dream
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• Goal: “problematic code” (code that can have
potential issues) does not even build

• Eliminate an entire class of vulnerabilities before
they ever happen

• Cost: some valid code is considered invalid

• Need for some support at the language level!

• Type theory can help, here!
• Not a new idea: functional programming

languages have already been there (for
example)!

• Avoid heavyweight runtimes

• Garbage collection, etc...



Tools for Safety — 1
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• Static code analysis tools: search for possible issues
in the code (without executing it)

• Taint analysis: check how “corrupted data” can affect
the system

• Performed as static analysis on source code or
binary code

• Tools like valgrind, Address Sanitizer (asan) or other
sanitizers, etc...

• Maybe associated with fuzz testing
• Still, this is testing, does not provent dangerous

code to build



Tools for Safety — 2
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• Lots of warnings from compilers...

• Warnings tend to change from compiler to
compiler and from version to version

• Only considered as “suggestions”

• Adopting “safe” development practices

• Again, coding rules... Can be checked with some
tools, at least

• Manual code review



Summing Up
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• Lots of external tools for code analysis

• Not really integrated with the language

• Mechanisms to detect memory errors, concurrency
errors, and similar at runtime

• Useful for testing
• Prevent UBs
• Need some runtime support (kasan does exist,

but needs support in the Linux kernel!)

• Type/Memory safe languages exist

• Java, C#, Haskell, Go, pick your name
• All need a “not so lightweight” runtime
• Still, safety is sometimes intended as “exception

at runtime”...



Type/Memory Safe Languages
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• Impossible to build programs that result in memory
errors at runtime

• Again, various definitions of “memory error”...
• Example: Java

• Null pointers do exist!
• ...And null pointer dereference can happen even

if you do not explicitly use null pointers!
• But Java is safe because null pointer

dereferences result in exceptions!

• Safety is often checked only dynamically

• Sometimes, there are no other options!

• What about safe system languages?



System Languages and Safety
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• Bad news: system languages have to be unsafe...

• Why? Think about I/O...
• To access an I/O device, raw (and unchecked)

memory access is needed...

• Similitude with pure functional languages

• A pure functional language allows no side
effects...

• ...But side effects are needed! (again, I/O...)
• Solution: isolate side-effect in a runtime/abstract

machine/well-defined software component

• Maybe, it is possible to precisely isolate unsafe
sections of code?

• Of course, this risks to open cans of worms...



Source of some Problems, again
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• Buffer overflow

• Can be statically checked only in some cases

• Issues with pointers

• NULL pointer dereference

• Can we really avoid NULL pointers???

• Issues with memory de-allocation (use after free,
illegal free)

• Can we avoid C-style free()...
• ...Without relying on garbage collectors?

• Use of uninitialized memory

• Can we avoid pointers???



Programs: Code and Data
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• Von Neumann architecture: programs == sequences
of instructions that operate don data

• Instructions and data are stored in memory
• Long sequences of 0 and 1...

• Programming in machine language is not simple
(reading/writing long sequences of bits!)

• Assembly helps a little bit, introducing
mnemonics for the machine instructions, and
symbolic names for memory locations

• High-level languages introduce variables, types, and
values



Variables and Values
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• Variable← high-level programming languages

• Used to abstract programs from the usage of
physical/virtual memory

• “Box” (set of memory locations) that can contain
a value

• Referenced by using a symbolic name

• Value: sequence of bits encoding some high-level
concept (number, character, string, ...)

• The encoding depends on the type of the variable

• Data type: defines the semantics of the variable

• Set of possible values the variable can contain
• Operations such values
• ...



Immutable Variables
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• Variables can be mutable or immutable
• Immutable variable: binding between a symbolic

name and a value

• Environment: set of bindings (name→ value)
• Function mapping names into values

• Variable declarations modify the environment
• There is no way to modify the value bound to a

variable name

• No assigments! Only initializations...
• The only thing we can do is to define a new

binding that shadows the old one



Mutable Variables
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• The environment maps names into “boxes”
(variables), not directly into values

• Additional function (memory) mapping variables into
their contained values

• Assignments modify the memory function,
changing the value assigned to a variable in a
variable (R-Value in C/C++)

• Aliasing: the same variable can have multiple names



Pointers

Safe System Programming Introduction

• Pointer type: special type, expressing references to
variables

• Possible values: memory addresses (of
variables)...

• ... + one special value, representing invalid
pointers

• The NULL value!!!

• Dereference operator: accesses the value contained
in the pointed variable

• Dereferencing the NULL value results in a
runtime error!

• NULL is a value like the others; NULL dereferences
cannot result in build errors



More on Data Types
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• Every programming language has a set of primitive
types

• And many languages allow to define new types

• Simple way to define new types: apply sum or
product operations to existing types

• Product T1 × T2: type with possible values given
by couples of values from T1 and T2

• Sum T1 + T2: type with possible values given by
values from T1 or values from T2

• Sum == disjoint union; Product == cartesian product
• If |T | is the number of values of type T , then
|T1 × T2| = |T1| · |T2| and |T1 + T2| = |T1|+ |T2|



Algebraic Data Types
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• A set (the set of the language’s data types), a sum
operation and a product operation... It’s an algebra!

• Algebra of the data types; types are called
Algebraic Data Types!

• Issue: the sum is a disjoint union...

• Easy to do “float + bool” (type with possible
values integers or booleans)...

• ...But what about “int + int” (or similar)?
• The types have to be tagged somehow...



Algebraic Data Types and Constructors
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• Solution adopted by many programming languages:
do not sum types directly, but first apply a tagging
function to them

• Constructor: function generating the values of
the type to be summed

• Summing types generated by different
constructors, the issue is solved!

• Variant: set of values generated by a constructor

• Different constructors generate disjoint variants
• Hence, instead of “int + int” we can use “Left(int)

+ Right(int)”



Examples
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• C unions are a special case of tagged sum
• “test = i(int) + f(float)” is

union example {

int i;
float f;

};

• Of course, algebraic data types are more generic
(0-arguments or multi-argument constructors, etc...)

• All constructors with 0 arguments: enum type
• Haskell, ML and others fully support ADT

datatype test = i of int | f of real;

data Test = I Int | F Float



Example: Option Type
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• Type containing a value or nothing

• Two constructors: “Nothing” (without arguments)
and “Just” (with one argument of the desired
type)

• Example: integer or nothing→ Option int = Nothing
+ Just(int)

• Idea: instead of using a null pointer...
• ...Use an option type: Pointer to int = Nothing +

Just(int *)

• Advantage: only the “Just” variant can be
dereferenced...

• NULL pointer dereferences do not even compile!



Generic Data Types
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• The definition of a new type might depend on a “type
variable”

• Parametric type, depending on another type “T”,
denoted by a variable

• Type variables, generally indicated as greek
letters

• Example: generic option type

• Not “integer or nothing”, but “type α or nothing”
• α: type variable

• In Haskell, something like

data Option a = Nothing | Just a

• Used for many other things too (lists, Monads, ...)



Recursive Data Types
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• To define a data type, we must (also) define all its
possible values

• Set of possible values→ can be defined by
induction...

• Can induction/recursion be used to define a new
data type?

• How? We need induction base and induction
step

• Induction base: one (or more) constructor(s)
having 0 parameters (or, no parameters of the
data type we are defining)

• Induction step: constructor having a parameter of
the type we are defining

• Looks... Confusing??? Let’s look at some examples!



Recursive Data Types: Example
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• Let’s define the “natural numbers” data type (set of
values: N )

• 0 ∈ N : constructor zero (with no parameters)
• n ∈ N ⇒ n+ 1 ∈ N : constructor succ, having as

an argument a natural number

datatype nat = zero | succ of nat;

data Nat = Zero | Succ Nat

• How to use this funny definition?

• Combination of pattern matching and recursion
• Familiar to people knowing functional

programming



More Interesting Example: Lists
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• Lists can also be defined by induction/recursion
(simple example: list of intergers)

• Inductive base: an empty list is a list
• Inductive step: A non-empty list is an integer

followed by a list

• Recursive Data Type: a non-empty list is defined
based on the list data type (constructor receiving a
list as a parameter)

• Two constructors

• Empty list constructor
• Constructor for non-empty lists



Lists as RDTs — 1
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• Two constructors

• Empty list constructor (no parameters)
• Constructor for non-empty lists (two parameters:

an integer and a list)

• Other operations

• car: returns the first element of a non-empty list
(head)

• cdr: given a non-empty list, returns the “rest of
the list”



Lists as RDTs — 2
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• How are lists generally implemented?
• Functional languages (Haskell, ML Lisp & friends, ...)

• Recursive data type!!!
• “cons” constructor: parameter of type int *

list (or, a parameter of type int, but returns a
function list -> list)

• Imperative languages: pointers!

• Structure with 2 fields (types “int” and “list*”)
• Second field: pointer to next element
• Cannot be of type “list”,→ use “pointer to

list”!



RDTs vs Pointers
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• See? Imperative languages use pointers and explicit
memory allocation...

• Adding an element to list implies doing some
malloc()/new for a node structure, setting some
“next” pointers, etc...

• ...In functional languages, RDTs avoid the need for
pointers, and memory allocation/deallocation is
hidden...

• Adding an element in front of a list “l” is as
simple as “let l1 = cons(e, l)” or similar!

• The implementation of the language abstract
machine will take care of allocating memory, etc...
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