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Types and Operations

Safe System Programming Zero-Cost Abstractions

• Rust custom types are new types defined by the
user

• A data type defined by:

• Set of possible values the variable can contain
• Operations such values

• Until now, we only saw how to define the possible
values (struct and enum)

• Let’s define the operations for a custom type!

• impl block: methods and associated functions
• Applied to struct, recalls concepts from OO

design...
• Applied to enum, is a less known concept



Methods
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• Method: function associated to a custom type
(struct or enum)

• Always bound to a variable (of the method’s custom
type)

• First parameter of the method: self value (or
reference to it)

• It is the variable (of the custom type) used to
invoke the method

• Note: it can be a value, a reference, or a mutable
reference!

• If the custom type is a struct, looks like a class
method in C++, Java or similar

• But impl blocks can be used for enum types too...



Methods — Example
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struct Point {
x: f64,
y: f64

}

impl Point {

fn display(&self) {

println!("({},{})", self.x, self.y)
}

}

fn main()
{

let p = Point{x:1.0,y:1.0};

p.display();
}



Methods on Enumerations
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enum Colore {

Bianco,
Nero

}

impl Colore {
fn stampa(&self) {

match self {

Colore::Bianco => println!("Bianco!"),
Colore::Nero => println!("Nero!")

}
}

}

fn main() {
let v = Colore::Nero;

v.stampa()
}



More on impl Blocks
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• Multiple impl blocks can be added to the same data
type

• An impl block can contain definition of functions
that are not methods

• Associated functions: do not have self

• Associated to the type, but not bound to any
particular variable

• Example: “new” function

• It is not a method or a constructor

impl Point {

fn new(v:f64) -> Point{

Point{x:v, y:v}
}

}



Abstractions and Overhead
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• Zero cost abstractions (from C++): what you do not
use, you do not pay for

• Introduce only the overhead of the abstractions
that are really used

• How?

• Rust approach (once again): resolve as much as
possible at build time!

• Avoid dynamic method dispatch
• Avoid duck typing
• ...

• In general, specify the types behaviour so that the
compiler knows it!



Specifying the Types Behaviour
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• Mechanism used by Rust: traits

• Mechanism used to define shared behaviours in
an abstract way

• Similar to interfaces, but with some important
differences

• Behaviour of a type: set of methods invocable on the
type, + some other properties...

• For example, the fact that for this type
assignments have a copy behaviour!!!

• Trait syntax: “trait” keyword followed by a “{}”
block

• Can contain declarations (an maybe definitions...)
or methods and associated functions



Differences between Traits and Interfaces
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• An interface is generally specified for new data types
when defining them

• The interface of pre-defined types cannot be
modified/extended

• Traits can be implemented for existing types after
they are defined

• First I define a new structure “struct S”...
• ...Then I define a trait “trait Display”...
• ...And finally I implement “Display” for “S”!

• Traits can be implemented even for pre-defined
types...

• I can implement “Display” even for “i32”!



Trait Example
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struct S {
v1: f64, v2: f64

}

trait Display {

fn display(&self);
}

impl Display for S {

fn display(&self) {

println!("This is an S({},{})", self.v1, self.v2)
}

}

impl Display for i64 {

fn display(&self) {

println!("This is a 64 bit integer: {}", self)
}

}

fn main()
{
let s = S{v1:1.1,v2:1.1};
let n1 = 2;

s.display();

n1.display()
}



More on Traits
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• A trait generally declares some methods/functions to
be implemented for the type...

• ...But in some cases it can also define the
methods/functions!

• Provide default implementation...

• The default implementation is used when “impl
...” is used for a type without specifying the method
implementations (empty “impl” block, etc...)

• In some cases, empty traits also make sense

• We will see later...



Using Traits
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• Interesting concept, but... What are traits useful for?

• Defining/extending the interface of a type
• Declaring the properties of a type
• All done at build time!

• The real power of traits becomes clear only when
considering generic functions and types

• Will see later

• Can be used to define functions that accept different
types as input

• Defining some properties of the input types
• Example: “fn f(v: impl Display) {

...”



Trait Parameters...
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fn f(v: impl Display) {

println!("Going to invoke display():");

v.display()
}

• For the parameter “v”, no concrete type is specified
• “impl Display” here denotes a generic type for

which the “Display” trait is implemented

• Hence, “f()” can invoke “v.display()”

• The compiler knows how “f()” is invoked...

• ...And can generate different versions of the
function (one for “S”, one for “i64”, ...)

• There is no runtime cost/overhead!



...And Generic Functions!
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• In the previous example, “f()” is a generic function

• Can receive multiple types for the input
parameter

• One single function definition, using the trait
interface of a generic type

• Monomorphized by the compiler at build time

• A different version of the function is generated,
for each type used to invoke it

• Similar to C++ templates
• This is just a special case of generic function

(generic types exist too!!!)



Generic Functions and Types
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• Functions like “fn f(v: impl Display)” are
generic

• The code describes a class of functions, all with
the same structure but operating on different
concrete types

• Here, the generic nature of the function is hidden...
• ...But it can be made more explicit
• “fn f<T: Display>(v: T)”

• See? The function is parametric respect to type
“T”!

• Similar to C++ templates...

• Parametric types (generic types) exist too...



Generics Syntax
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• Inspired by the C++ templates syntax:

• The “type parameter” is part of the function/type
name

• Enclosed in angle brackets

• So, “id<T>(v: T) -> T” is a generic function
with type parameter “T”

• Multiple (comma-separated) type parameters are of
course possible

struct S<T,V> {
v1: T,
v2: V

}



Remember the Option Type?
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• Sum type, previously introduced to avoid NULL
pointers...

• Values “Nothing” or “Just(p)”

• Can be more generic, not only for pointers
• Here is a possible definition in Rust:

enum Option<T> {
Some(T),
None

}

• Why “None” and “Some()” instead of “Nothing”
and “Just()”?

• Because these are the names actually used by
Rust



Predefined Generic Types
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• Rust provides some useful generic types like
“Option<T>”

• Not really predefined, they are part of a Rust
standard library

• Other important type (another generic sum type):
“Result”
enum Result<T, E> {

Ok(T),
Err(E)

}

• Used by all the standard functions that can
potentially fail

• Two type parameters: “T” (the wrapped result) and
“E” (describing a possible error)



Monomorphization
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• As usual, Rust tries to minimize the abstractions’
overhead

• Done through monomorphization at build time (as for
traits)

• The generic code/type is transformed in specific
instances of the function/type by replacing type
parameters with concrete types

• Again, the compiler knows the concrete values of
type parameters when the generic function is
called (or the generic type is used)

• Example: “f<T>(v: T) -> T” invoked as “f(3)”
and “f(3.14)”...

• The compiler generates 2 functions: one working
on integers and one on floating points



Scope and Lifetime
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• Scope of an “entity” (value or variable): part of the
code where an entity can be referenced

• A binding between a name and the entity is in the
environment

• Lifetime of an entity: time interval in which the entity
exists

• There must be a precise relationship between
lifetime and scope

• If an entity is destroyed when it is in scope,
dangling reference!



Rust and Dangling References
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• Rust avoids dangling references/pointers by
destroying a value when it is not owned by any
variable

• The variable owning it goes out of scope
• The (mutable) variable is assigned a new value

• However, a value can be borrowed (references)...

• The compiler must ensure that a value is not
destroyed when it is borrowed

• Restrictions on borrowing/references

• How can the compiler enforce this?
• Other way to see it: references are variables →

every reference has a lifetime

• End of value lifetime > end of reference lifetime



Enforcing the Validity of References
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• For nested blocks, it is simple
• What about function invocations?

• Passing a reference as an argument to a function
→ borrowing

• The function might return such a reference...
• ...And in some cases the borrow checker might

be in trouble!

• Some help is needed ⇒ explicit lifetime annotations

• Lifetime: similar to a type parameter
• Lowercase and starting with ’

• Example: “fn f<’a,’b>(v: &’a i32, b:

&’b i32) -> &’a i32”

• The issue exists for custom data types too...



Lifetime Annotations
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• When are lifetime annotations needed?

• In general, every time a function returns a
reference...

• ...Or every time a custom type contains/wraps a
reference

• Can lifetime annotations be omitted some times?

• When the lifetime of the return value (or
wrapped/contained) reference is univoque, the
compiler can infer it

• Lifetime inference → lifetime elision

fn f(v: (&i32, i32)) -> &i32 {
let (a, b) = v;
a

}
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