
Zero-Cost Abstractions

Luca Abeni

luca.abeni@santannapisa.it



Types and Operations

Safe System Programming Zero-Cost Abstractions

• Rust custom types are new types defined by the
user

• A data type defined by:

• Set of possible values the variable can contain
• Operations such values

• Until now, we only saw how to define the possible
values (struct and enum)

• Let’s define the operations for a custom type!

• impl block: methods and associated functions
• Applied to struct, recalls concepts from OO

design...
• Applied to enum, is a less known concept



Methods

Safe System Programming Zero-Cost Abstractions

• Method: function associated to a custom type
(struct or enum)

• Always bound to a variable (of the method’s custom
type)

• First parameter of the method: self value (or
reference to it)

• It is the variable (of the custom type) used to
invoke the method

• Note: it can be a value, a reference, or a mutable
reference!

• If the custom type is a struct, looks like a class
method in C++, Java or similar

• But impl blocks can be used for enum types too...



Methods — Example

Safe System Programming Zero-Cost Abstractions

struct Point {
x: f64,
y: f64

}

impl Point {

fn display(&self) {

println!("({},{})", self.x, self.y)
}

}

fn main()
{

let p = Point{x:1.0,y:1.0};

p.display();
}



Methods on Enumerations

Safe System Programming Zero-Cost Abstractions

enum Colore {

Bianco,
Nero

}

impl Colore {
fn stampa(&self) {

match self {

Colore::Bianco => println!("Bianco!"),
Colore::Nero => println!("Nero!")

}
}

}

fn main() {
let v = Colore::Nero;

v.stampa()
}



More on impl Blocks

Safe System Programming Zero-Cost Abstractions

• Multiple impl blocks can be added to the same data
type

• An impl block can contain definition of functions
that are not methods

• Associated functions: do not have self

• Associated to the type, but not bound to any
particular variable

• Example: “new” function

• It is not a method or a constructor

impl Point {

fn new(v:f64) -> Point{

Point{x:v, y:v}
}

}



Abstractions and Overhead

Safe System Programming Zero-Cost Abstractions

• Zero cost abstractions (from C++): what you do not
use, you do not pay for

• Introduce only the overhead of the abstractions
that are really used

• How?

• Rust approach (once again): resolve as much as
possible at build time!

• Avoid dynamic method dispatch
• Avoid duck typing
• ...

• In general, specify the types behaviour so that the
compiler knows it!



Specifying the Types Behaviour

Safe System Programming Zero-Cost Abstractions

• Mechanism used by Rust: traits

• Mechanism used to define shared behaviours in
an abstract way

• Similar to interfaces, but with some important
differences

• Behaviour of a type: set of methods invocable on the
type, + some other properties...

• For example, the fact that for this type
assignments have a copy behaviour!!!

• Trait syntax: “trait” keyword followed by a “{}”
block

• Can contain declarations (an maybe definitions...)
or methods and associated functions



Differences between Traits and Interfaces

Safe System Programming Zero-Cost Abstractions

• An interface is generally specified for new data types
when defining them

• The interface of pre-defined types cannot be
modified/extended

• Traits can be implemented for existing types after
they are defined

• First I define a new structure “struct S”...
• ...Then I define a trait “trait Display”...
• ...And finally I implement “Display” for “S”!

• Traits can be implemented even for pre-defined
types...

• I can implement “Display” even for “i32”!



Trait Example

Safe System Programming Zero-Cost Abstractions

struct S {
v1: f64, v2: f64

}

trait Display {

fn display(&self);
}

impl Display for S {

fn display(&self) {

println!("This is an S({},{})", self.v1, self.v2)
}

}

impl Display for i64 {

fn display(&self) {

println!("This is a 64 bit integer: {}", self)
}

}

fn main()
{
let s = S{v1:1.1,v2:1.1};
let n1 = 2;

s.display();

n1.display()
}



More on Traits

Safe System Programming Zero-Cost Abstractions

• A trait generally declares some methods/functions to
be implemented for the type...

• ...But in some cases it can also define the
methods/functions!

• Provide default implementation...

• The default implementation is used when “impl
...” is used for a type without specifying the method
implementations (empty “impl” block, etc...)

• In some cases, empty traits also make sense

• We will see later...



Using Traits

Safe System Programming Zero-Cost Abstractions

• Interesting concept, but... What are traits useful for?

• Defining/extending the interface of a type
• Declaring the properties of a type
• All done at build time!

• The real power of traits becomes clear only when
considering generic functions and types

• Will see later

• Can be used to define functions that accept different
types as input

• Defining some properties of the input types
• Example: “fn f(v: impl Display) {

...”



Trait Parameters...

Safe System Programming Zero-Cost Abstractions

fn f(v: impl Display) {

println!("Going to invoke display():");

v.display()
}

• For the parameter “v”, no concrete type is specified
• “impl Display” here denotes a generic type for

which the “Display” trait is implemented

• Hence, “f()” can invoke “v.display()”

• The compiler knows how “f()” is invoked...

• ...And can generate different versions of the
function (one for “S”, one for “i64”, ...)

• There is no runtime cost/overhead!



...And Generic Functions!

Safe System Programming Zero-Cost Abstractions

• In the previous example, “f()” is a generic function

• Can receive multiple types for the input
parameter

• One single function definition, using the trait
interface of a generic type

• Monomorphized by the compiler at build time

• A different version of the function is generated,
for each type used to invoke it

• Similar to C++ templates
• This is just a special case of generic function

(generic types exist too!!!)



Generic Functions and Types

Safe System Programming Zero-Cost Abstractions

• Functions like “fn f(v: impl Display)” are
generic

• The code describes a class of functions, all with
the same structure but operating on different
concrete types

• Here, the generic nature of the function is hidden...
• ...But it can be made more explicit
• “fn f<T: Display>(v: T)”

• See? The function is parametric respect to type
“T”!

• Similar to C++ templates...

• Parametric types (generic types) exist too...



Generics Syntax

Safe System Programming Zero-Cost Abstractions

• Inspired by the C++ templates syntax:

• The “type parameter” is part of the function/type
name

• Enclosed in angle brackets

• So, “id<T>(v: T) -> T” is a generic function
with type parameter “T”

• Multiple (comma-separated) type parameters are of
course possible

struct S<T,V> {
v1: T,
v2: V

}



Remember the Option Type?

Safe System Programming Zero-Cost Abstractions

• Sum type, previously introduced to avoid NULL
pointers...

• Values “Nothing” or “Just(p)”

• Can be more generic, not only for pointers
• Here is a possible definition in Rust:

enum Option<T> {
Some(T),
None

}

• Why “None” and “Some()” instead of “Nothing”
and “Just()”?

• Because these are the names actually used by
Rust



Predefined Generic Types

Safe System Programming Zero-Cost Abstractions

• Rust provides some useful generic types like
“Option<T>”

• Not really predefined, they are part of a Rust
standard library

• Other important type (another generic sum type):
“Result”
enum Result<T, E> {

Ok(T),
Err(E)

}

• Used by all the standard functions that can
potentially fail

• Two type parameters: “T” (the wrapped result) and
“E” (describing a possible error)



Monomorphization

Safe System Programming Zero-Cost Abstractions

• As usual, Rust tries to minimize the abstractions’
overhead

• Done through monomorphization at build time (as for
traits)

• The generic code/type is transformed in specific
instances of the function/type by replacing type
parameters with concrete types

• Again, the compiler knows the concrete values of
type parameters when the generic function is
called (or the generic type is used)

• Example: “f<T>(v: T) -> T” invoked as “f(3)”
and “f(3.14)”...

• The compiler generates 2 functions: one working
on integers and one on floating points



Scope and Lifetime

Safe System Programming Zero-Cost Abstractions

• Scope of an “entity” (value or variable): part of the
code where an entity can be referenced

• A binding between a name and the entity is in the
environment

• Lifetime of an entity: time interval in which the entity
exists

• There must be a precise relationship between
lifetime and scope

• If an entity is destroyed when it is in scope,
dangling reference!



Rust and Dangling References

Safe System Programming Zero-Cost Abstractions

• Rust avoids dangling references/pointers by
destroying a value when it is not owned by any
variable

• The variable owning it goes out of scope
• The (mutable) variable is assigned a new value

• However, a value can be borrowed (references)...

• The compiler must ensure that a value is not
destroyed when it is borrowed

• Restrictions on borrowing/references

• How can the compiler enforce this?
• Other way to see it: references are variables →

every reference has a lifetime

• End of value lifetime > end of reference lifetime



Enforcing the Validity of References

Safe System Programming Zero-Cost Abstractions

• For nested blocks, it is simple
• What about function invocations?

• Passing a reference as an argument to a function
→ borrowing

• The function might return such a reference...
• ...And in some cases the borrow checker might

be in trouble!

• Some help is needed ⇒ explicit lifetime annotations

• Lifetime: similar to a type parameter
• Lowercase and starting with ’

• Example: “fn f<’a,’b>(v: &’a i32, b:

&’b i32) -> &’a i32”

• The issue exists for custom data types too...



Lifetime Annotations

Safe System Programming Zero-Cost Abstractions

• When are lifetime annotations needed?

• In general, every time a function returns a
reference...

• ...Or every time a custom type contains/wraps a
reference

• Can lifetime annotations be omitted some times?

• When the lifetime of the return value (or
wrapped/contained) reference is univoque, the
compiler can infer it

• Lifetime inference → lifetime elision

fn f(v: (&i32, i32)) -> &i32 {
let (a, b) = v;
a

}


	Types and Operations
	Methods
	Methods — Example
	Methods on Enumerations
	More on impl Blocks
	Abstractions and Overhead
	Specifying the Types Behaviour
	Differences between Traits and Interfaces
	Trait Example
	More on Traits
	Using Traits
	Trait Parameters...
	...And Generic Functions!
	Generic Functions and Types
	Generics Syntax
	Remember the Option Type?
	Predefined Generic Types
	Monomorphization
	Scope and Lifetime
	Rust and Dangling References
	Enforcing the Validity of References
	Lifetime Annotations

