
TuToR 2017 Luca Abeni – 1 / 33

SCHED DEADLINE:

a real-time CPU

scheduler for Linux
Luca Abeni

luca.abeni@santannapisa.it



Scheduling Real-Time Tasks

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 2 / 33

fj

cj

rj
dj fj+1

cj+1

rj+1
dj+1

� Consider a set of N real-time tasks

Γ = {τ0, ...τN−1}
� Scheduled on M CPUs

� Real-Time theory→ lot of scheduling algorithms...

� ...But which ones are available on a commonly used

OS?

� POSIX: fixed priorities

� Can be used to do RM, DM, etc...

� Multiple processors: DkC, etc...

� Linux also provides SCHED DEADLINE: resource

reservations + EDF



Definitions

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 3 / 33

� Real-time task τ : sequence of jobs Ji = (ri, ci, di)

� Finishing time fi
� Goal: fi ≤ di
� ∀Ji, or control the amount of missed deadlines

� Schedule on multiple CPUS: partitioned or global

� Schedule in a general-purpose OS

� Open System (with online admission control)

� Presence of non real-time tasks (do not starve

them!)



Using Fixed Priorities with POSIX

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 4 / 33

� SCHED FIFO and SCHED RR use fixed priorities

� They can be used for real-time tasks, to

implement RM and DM

� Real-time tasks have priority over non real-time

(SCHED OTHER) tasks

� The difference between the two policies is visible

when more tasks have the same priority

� In real-time applications, try to avoid multiple

tasks with the same priority



Setting the Scheduling Policy

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 5 / 33

int sched_get_priority_max(int policy );

int sched_get_priority_min(int policy );

int sched_setscheduler(pid_t pid , int policy ,

const struct sched_param *param );

int sched_setparam(pid_t pid ,

const struct sched_param *param);

� If pid == 0, then the parameters of the running

task are changed

� The only meaningful field of struct sched param

is sched priority



Issues with Real-Time Priorities

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 6 / 33

� Open Systems→ real-time tasks can dynamically

arrive (in an unpredictable way)

� Need to re-arrange priorities to respect RM / DM

/ ...

� Interactions with non real-time tasks?

� Scheduled in background respect to real-time

tasks

� Suboptimal utilization?



Real-Time Priorities vs “Regular Tasks”

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 7 / 33

� In general, “regular” (SCHED OTHER) tasks are

scheduled in background respect to real-time ones

� Real-time tasks can starve other applications

� Example: the following task scheduled at high

priority can make a CPU / core unusable

vo id bad bad task ( )

{
whi le ( 1 ) ;

}



Starvation of Non Real-Time Tasks

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 8 / 33

� Starvation of non real-time tasks

� Real-time computation have to be limited (use

real-time priorities only when really needed!)

� On sane systems, running applications with real-time

priorities requires root privileges (or part of them!)

� Not usable by everyone



Real-Time Throttling

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 9 / 33

� A “bad” high-priority task can make a CPU / core

unusable...

� ...Linux provides the real-time throttling mechanism

to address this problem

� How does real-time throttling interfere with

real-time guarantees?

� Given a priority assignment, a taskset is

guaranteed all the deadlines if no throttling

mechanism is used...

� ...But, what happens in case of throttling?

� Very useful idea, but something more “theoretically

founded” might be needed...



Can We Do Better?

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 10 / 33

� Avoid starvation issues by using resource

reservations

� Use EDF instead of fixed priorities

� CPU Reservations + EDF = SCHED DEADLINE!!!

� So, how to implement EDF (or something similar) in

Linux?

� Issue: the kernel is (was?) not aware of tasks

deadlines...

� ...But deadlines are needed in order to schedule

the tasks!



EDF in the Linux Kernel

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 11 / 33

� EDF assigns dynamic priorities based on absolute

deadlines

� So, a more advanced API for the scheduler is

needed...

� Assign at least a relative deadline D to the

task...

� We will see that we need a runtime and a period

too

� Moreover, dj = rj +D...

� ...However, how can the scheduler know rj?
� The scheduler is not aware of jobs...



Tasks, and Jobs...

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 12 / 33

� EDF→ need to know when a job starts / finishes

� Applications must be modified to signal the

beginning / end of a job (some kind of

startjob() / endjob() system call)...

� ...Or the scheduler can assume that a new job

arrives each time a task wakes up!

� Or, some other algorithm can be used to assign

dynamic scheduling deadlines to tasks



...And Scheduling Deadlines!

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 13 / 33

� The scheduler does EDF on scheduling deadlines

� Scheduling deadline ds: assigned by the kernel

to task τ

� But the task cares about its absolute deadlines

� If the scheduling deadline ds matches the

absolute deadline dj of a job, then the scheduler

can respect dj !!!



CBS: The Basic Idea

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 14 / 33

� Constant Bandwidth Server (CBS): algorithm used to

assign a dynamic scheduling deadline ds to a task τ
� Based on the Resource Reservation paradigm

� Task τ is periodically reserved a maximum

runtime Q every reservation period P

� Temporal isolation between tasks

� The worst case finishing time for a task does not

depend on the other tasks running in the

system...

� ...Because the task is guaranteed to receive its

reserved time



CBS: Some More Details

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 15 / 33

� Solves the issue with “bad tasks” trying to consume

too much execution time

� Based on CPU reservations (Q,P )

� If τ tries to execute for more than Q every P , the

algorithm decreases its priority, or throttles it

� τ consumes the same amount of CPU time

consumed by a periodic task with WCET Q and

period P

� Q/P : fraction of CPU time reserved to τ



CBS: Admission Control

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 16 / 33

� The CBS is based on EDF

� Assigns scheduling deadlines ds

� EDF on ds ⇒ good CPU utilization (optimal on

UP!)

� If EDF is used (based on the scheduling deadlines

assigned by the CBS), then τi is guaranteed to

receive Qi time units every Pi if
∑

j Qj/Pj ≤ 1!!!

� Only on uni-processor / partitioned systems...

� M CPUs / cores with global scheduling: if∑
j Qj/Pj ≤M each task is guaranteed to

receive Qi every Pi with a maximum delay



CBS vs Other Reservation Algorithms

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 17 / 33

� The CBS allows to serve non periodic tasks

� Some reservation-based schedulers have

problems with aperiodic job arrivals - due to the

(in)famous “deferrable server problem”

� The CBS explicitly supports aperiodic arrivals

(see the rule for assigning deadlines when a task

wakes up)

� Allows to support “self-suspending” tasks

� No need to strictly respect the Liu&Layland task

model

� No need to explicitly signal job arrivals /

terminations



CBS: the Algorithm

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 18 / 33

� Each task τ is associated a scheduling deadline ds

and a current runtime q

� Both initialized to 0 when the task is created

� When a job arrives:

� If the previous job is not finished yet, queue the

activation

� Otherwise, check if the current scheduling

deadline can be used (ds > t and

q/(ds − t) < Q/P )

� If not, ds = t+ P , q = Q

� When τ executes for a time δ, q = q − δ
� When q = 0, τ cannot be scheduled (until time ds)

At time ds, ds = ds + P and q = q +Q



SCHED DEADLINE

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 19 / 33

� New SCHED DEADLINE scheduling policy

� Foreground respect to all of the other policies



SCHED DEADLINE and CBS

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 20 / 33

� Uses the CBS to assign scheduling deadline to

SCHED DEADLINE tasks

� Assign a (maximum) runtime Q and a

(reservation) period P to SCHED DEADLINE

tasks

� Additional parameter: relative deadline D
� The “check if the current scheduling deadline can

be used” rule is used at task wake-up

� Then uses EDF to schedule them

� Both global EDF and partitioned EDF are

possible

� Configurable through the cpuset mechanism



SCHED DEADLINE Design: Flexibility

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 21 / 33

� Supports both global and partitioned scheduling

� For partitioned scheduling, use cpusets

� Flexible utilization-based admission control

�

∑
j

Qj

Pj
≤ UL

� UL configurable, ranging from 0 to M

� /proc/sys/kernel/sched rt {runtime, period} us

� Can leave CPU time for non-deadline tasks

� Bounded tardiness; hard respect of deadlines for

partitioned scheduling

� Even supports arbitrary affinities!

� But admission control must be disabled...



Setting the Scheduling Policy

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 22 / 33

� No sched setsched()← new syscalls (and data

structures added to be extensible)

� Maybe even too extensible!

int sched_setattr(pid_t pid , const struct sched_attr *attr ,

unsigned int flags);

int sched_getattr(pid_t pid , struct sched_attr *attr ,

unsigned int size , unsigned int flags);

struct sched_attr {

__u32 size;

__u32 sched_policy;

__u64 sched_flags;

...

__u64 sched_runtime;

__u64 sched_deadline;

__u64 sched_period;

};



Using sched setattr()

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 23 / 33

� pid: as for sched setscheduler()

� flags: currently unused (for future extensions!)

� attr: scheduling parameters for the task

� size: must be set to sizeof(struct

sched attr)

� sched policy: set to SCHED DEADLINE!

� sched runtime: Q
� sched deadline: D
� sched period: P
� sched flags: will see later (set to 0 for now)



libdl

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 24 / 33

� So, can we use SCHED DEADLINE in our user

programs?

� sched setattr() & friends are in the kernel since

3.14...

� But the user-space side of things is still missing in

many Linux distributions

� No support in glibc, no definition of struct

sched attr, etc...

� Solution: small user-space library providing the

sched *attr() system calls and related data

structures

� libdl, released by Juri Lelli under GPL



Example

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 25 / 33

#include "libdl/dl_syscalls.h"

...

struct sched_attr attr;

attr.size = sizeof(struct attr);

attr.sched_policy = SCHED_DEADLINE;

attr.sched_runtime = 30000000;

attr.sched_period = 100000000;

attr.sched_deadline = 100000000;

...

res = sched_setattr (0, &attr , 0);

if (res < 0)

perror (" sched_setattr ()");

...



Admission Control

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 26 / 33

� sched setattr() might fail if admission control

fails

� Sum of reserved utilizations exceed the limit UL

� Affinity of the task is different from its root domain

� Why the check on the affinity?

�

∑
j

Qj

Pj
≤M guarantees bounded tardiness for

global scheduling!

� Arbitrary affinities need a different analysis...

� So, how to use arbitrary affinities?

� Disable admission control!

� echo -1 > /proc/sys/kernel/sched rt runtime us



Partitioned Scheduling

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 27 / 33

� cpuset: mechanism for assigning a set of CPUs to

a set of tasks

� Exclusive cpuset: CPUs not shared

� Tasks migrate inside scheduling domains⇐
cpusets can bee used to create isolated domains

� Only one CPU⇒ partitioned scheduling

mount -t tmpfs cgroup_root /sys/fs/cgroup

mkdir /sys/fs/cgroup/cpuset

mount -t cgroup -o cpuset cpuset /sys/fs/cgroup/cpuset

mkdir /sys/fs/cgroup/cpuset/Set1

echo 3 > /sys/fs/cgroup/cpuset/Set1/cpuset.cpus

echo 0 > /sys/fs/cgroup/cpuset/Set1/cpuset.mems

echo 0 > cpuset.sched_load_balance

echo 1 > /sys/fs/cgroup/cpuset/Set1/cpuset.cpu_exclusive

echo $PID > /sys/fs/cgroup/cpuset/Set1/tasks



Warning!

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 28 / 33

� sched setaffinity() on SCHED DEADLINE

tasks can fail

� Again, disable admission control to use

something different from global scheduling

� SCHED DEADLINE tasks cannot fork

� Which scheduling parameters would be

inherited?

� Remember: runtimes and periods are in

nanoseconds (not microseconds)



Using SCHED DEADLINE

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 29 / 33

� ...How to dimension the scheduling parameters?

� (Maximum) runtime Q: rt runtime (in nsec)

� (Reservation) period P : rt period (in nsec)

� SCHED DEADLINE also provides a (relative)

deadline D

� Obviously, it must be

∑

j

Qj

Pj

≤M

� The kernel can do this admission control

� Better to use a limit UL smaller than M (so that

other tasks are not starved!)



Assigning Runtime and Period

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 30 / 33

� Temporal isolation

� Each task can be guaranteed independently from

the others

� Hard Schedulability property

� If Q ≥ WCET and P ≤MIT (maximum

runtime larger than WCET, and server period

smaller than task period)...

� ...Then the scheduling deadlines are equal to the

jobs’ deadlines!!!

� All deadlines are guaranteed to be respected (on

UP / partitioned systems), or an upper bound for

the tardiness is provided (if global scheduling is

used)!!!

So, can be used to serve hard



What About Soft Real-Time?

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 31 / 33

� What happens if Q < WCET , or P > MIT?

�
Q
P

must be larger than the ratio between average

execution time ci and average inter-arrival time

ti...
� ...Otherwise, dsi →∞ and there will be no

control on the task’s response times

� Possible to perform some stochastic analysis

(Markov chains, etc...)



Changing Parameters...

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 32 / 33

� Tasks’ parameters (execution and inter-arrival times)

can change during the tasks lifetime... So, how to

dimension Q and P?

� Short-term variations: CPU reclaiming mechanisms

(GRUB, ...)

� If a job does not consume all of the runtime Q,

try to reuse the residual

� Long-term variations: adaptive reservations

� Generally “slower”, can be implemented by a

user-space daemon

� Monitor the difference between ds and dj

� If ds− dj increases, Q needs to be increased

If s , can be decreased



CPU Reclaiming!

Introduction

Real-Time Scheduling in

Linux

Setting the Scheduling

Policy

The Constant

Bandwidth Server

SCHED DEADLINE

Using

SCHED DEADLINE

TuToR 2017 Luca Abeni – 33 / 33

� As mentioned, CPU reclaiming can be used to better

tolerate short-term variations in the execution

times...

� ...And a CPU reclaiming mechanism has just been

added to SCHED DEADLINE!

� Available since Linux 4.13

� M-GRUB: multi-processor GRUB: per-runqueue

reclaiming of unused CPU time

� Ah... This is what the sched flags field is for! Set

SCHED FLAG RECLAIM (2)


	Scheduling Real-Time Tasks
	Definitions
	Using Fixed Priorities with POSIX
	Setting the Scheduling Policy
	Issues with Real-Time Priorities
	Real-Time Priorities vs ``Regular Tasks''
	Starvation of Non Real-Time Tasks
	Real-Time Throttling
	Can We Do Better?
	EDF in the Linux Kernel
	Tasks, and Jobs...
	...And Scheduling Deadlines!
	CBS: The Basic Idea
	CBS: Some More Details
	CBS: Admission Control
	CBS vs Other Reservation Algorithms
	CBS: the Algorithm
	SCHED_DEADLINE
	SCHED_DEADLINE and CBS
	SCHED_DEADLINE Design: Flexibility
	Setting the Scheduling Policy
	Using sched_setattr()
	libdl
	Example
	Admission Control
	Partitioned Scheduling
	Warning!
	Using SCHED_DEADLINE
	Assigning Runtime and Period
	What About Soft Real-Time?
	Changing Parameters...
	CPU Reclaiming!

