
Virtual Machines

Luca Abeni

luca.abeni@santannapisa.it

February 27, 2020

Virtual Machine Abstraction

Virtualization Technologies Virtual Machines

• Remember? Virtual Machine == efficient, isolated
duplicate of a physical machine

• Virtual devices, some virtual CPUs, some
amount of (virtual!) memory, ...

• Supports the execution of OS kernel or
bare-metal applications

• Users can (and have to!) install their own
kernel, etc...

• Execution environment essentially identical to the
physical machine

• A “virtual machine monitor” or “hypervisor” is in full
control of physical resources

Virtual Machine Implementation

Virtualization Technologies Virtual Machines

• Software (maybe hardware-assisted) implementation
of an abstract machine

• Understands the hardware machine language
and implements some devices

• Plus, eventually some additional machine
instuctions: hypercalls

• Requirements

1. Programs running in a VM should not see
differences respect to real hw

2. Virtualization should be efficient
3. Programs should not be able to access

resources outside of the VM

Implemented Abstraction

Virtualization Technologies Virtual Machines

• Abstract machineML: understand language L
(same as the physical machine language, plus
hypercalls)

• Can execute sequences of instructions written in
L

• So,ML has to:

• Execute some “elementary operations”
• Manage the execution flow
• Move data from / to (virtual) memory and devices
• Take care of memory management

• All respecting the three requirements mentioned
above

Implementing a Language

Virtualization Technologies Virtual Machines

• ML undestands its machine language L

• One single machine language per abstract
machine

• L can be executed by multiple different abstract
machines

• Might differ in implementation, data structures, ...

• Implementation of language L: abstract machine
ML that understands programs written in language
L

• Implementation in hw, sw, firmware, ...

Software Implementation

Virtualization Technologies Virtual Machines

• ML in software (can execute programs written in L)
• Executes on a Host MachineMhLh (having machine

language Lh)
• Two possible implementations: interpreter or

compiler

• Interpreter: program written in Lh that
understands and executes L

• Implements the fetch/decode/load/exec/save
cycle

• Compiler: program translating other programs
from L to Lh

Pure Interpreters

Virtualization Technologies Virtual Machines

written in L

Input

Output

Execution

Data

Data

L interpreter

written in Lh

Host Machine
Mh

Program

• Interpreter: program written in Lh (executes on
MhLh) understanding programs written in L

• Translates Lh in L “instruction by instruction”

Pure Compilers

Virtualization Technologies Virtual Machines

written in L

Execution

Abstract Machine
Ma

Input

Execution

Host Machine
Mh

Program Compiler

from L into Lh

Program

written in Lh

Data

Output
Data

• Translates the whole program from L to Lh before
executing it

• Translation performed by a dedicated program, the
Compiler

• Compiler: not necessarely written in Lh
• Can execute on an abstract machineMa

different fromMhLh

Hybrid Implementation

Virtualization Technologies Virtual Machines

written in L

Execution

Ma

written in Li

Abstract Machine

Input

Output

Execution

written in Lh

Host Machine
Mh

from L into Li

Program Li interpreter

Data

Data

Program Compiler

• Not a pure compiler nor a pure interpreter
• Compiler translate in an intermediate language Li
• Interpreter executes onMhLh programs written in Li

• Java: compiler→ bytecode, then JVM
• C: compiler generally produces code that needs

OS and runtime to execute

CPU Emulators

Virtualization Technologies Virtual Machines

• CPU Emulator: software implementation of the
fetch/decode/load/exec/save cycle

• Can be an interpreter, some sort of compiler, or a
hybrid implementation

• Different complexity / performance / flexibility
trade-offs depending on the implementation
strategy

• Performance penalty respect to direct execution on
the emulated CPU

• Allows to emulate target CPU architectures different
from the host CPU architecture

• L and Lh can be different
• No constraints on the emulated or host ISA

Interpreting CPU Instructions

Virtualization Technologies Virtual Machines

• Simplest CPU emulator: software cycle interpreting
CPU instructions

• Read CPU instructions one by one← according
to the syntax defined in ISA manuals

• Machine language instructions can have fixed
size (RISC) or variable size (x86, ...)

• Decode and execute (eventually loading or
saving data) modifying the emulator’s state

• Can be easily implemented reading the CPU
documentation

• Example: Bochs (http://bochs.sf.net)

http://bochs.sf.net

Compiling Blocks of CPU Instructions

Virtualization Technologies Virtual Machines

• Compiler-based approach: just-in-time translation of
CPU instructions from L to Lh

• More complex than a CPU interpreter, but can
provide better performance

• Example: loop translated 1 time and then execute
multiple times at near-native speed

• Additional issues with self-modifying code and
similar...

• Example: qemu

• Contains a “Tiny Code Generator” (TCG)→ sort
of simple compiler

Qemu TCG

Virtualization Technologies Virtual Machines

• Compile a “Translation Block” (TB) when needed,
and then execute compiled instructions

• Different “frontends” for each supported target
(language L)

• Convert machine instructions of L into “TCG
instructions”

• Different “backends” for each supported host
architecture (host language Lh)

• Convert TCG instructions into machine
instructions of Lh

• Issues: identify TBs, invalidate them when needed,
etc...

CPU Virtualization

Virtualization Technologies Virtual Machines

• Instead of emulating a CPU implementingML in
software, execute target instructions in the host

• This implies L == Lh!!!

• How can the monitor be in control of physical
resources?

• If the guest has control of the virtual machine...
• ...It risks to have full control of the physical

machine too!!!

• Only some of the guest instructions can be directly
executed on the host CPU

• Which ones? User application (low privilege
level) for sure...

The Monitor / Hypervisor

Virtualization Technologies Virtual Machines

• The Virtual Machine Monitor (VMM) must be in
control of physical resources (requirement 3)

• It manages Virtual Machines like an OS kernel
manages processes

• Virtual Machine: contains user code
(unprivileged instructions) and (guest) OS kernel

• OS Kernel: runs in supervisor mode→ supervisor
for user code (user processes)

• VMM: supervises both user code and OS kernels→
supervisor of supervisors⇒ Hypervisor!!!

• How does it work?
• Mechanisms to control the execution of OS

kernel code (privileged instructions)?

Direct Execution of Untrusted Guest Code

Virtualization Technologies Virtual Machines

• Some instructions cannot be executed

• Which ones? We need a formal definition...
• When the guest tries to execute these

instructions, the hypervisor / VMM must intercept
them

• OS kernels have similar issues

• When user code tries to execute a privileged
instruction, an exception fires→ the kernel
handles it

• Simple concept: user code cannot execute
privileged instructions

• Can something similar be done for CPU
virtualization?

Guest Code at Low Privilege Level

Virtualization Technologies Virtual Machines

• Idea: execute the guest with a low privilege level

• Intel x86: ring 3

• Hypervisor / VMM at high privilege level

• When the guest tries to execute privileged
instructions, exception / trap!

• The VMM can handle it

• Will this work?

• Thinking about x86, we can immediately see
some issues...

• Example: some unprivileged instructions can
read some parts of the “CPU state” (AKA
machine status word) without generating
exceptions

More Formal Definitions: Popek and Goldberg

Virtualization Technologies Virtual Machines

• Paper from 1974!!!

• Formal Requirements for Virtualizable Third
Generation Architectures

• Provides formal definitions for VMM (the term
“hypervisor” is only used in the keywords)

• Uses the formal definitions to determine a set of
requirements for easily and efficiently virtualize the
CPU

• If the requirements are satisfied, it is possible to
execute guest code in the host intercepting the
relevant instructions

• Distinction between sensitive instructions and
privileged instructions

Privileged and Sensitive Instructions

Virtualization Technologies Virtual Machines

• Privileged instructions (we already know)

• Can be executed when the CPU is at high
privilege level

• Generate an exception when the CPU is at low
privilege level

• Sensitive instructions (these are the “problematic
ones”)

• Change the “CPU configuration” / CPU state
• Reveal something about the CPU state

• Popek and Goldberg provide formal definitions (for a
simplified system: only memory, no interrupts, no
paging, ...)

Sensitive Instructions

Virtualization Technologies Virtual Machines

• These are the instructions relevant when virtualizing
the CPU!!!

• Control Sensitive Instructions: change the CPU state

• In Popek and Goldberg’s model, privilege level or
accessible memory - memory is the only
considered resource

• In real systems, interrupt table, paging table, ...

• Behavior Sensitive Instructions: effects depend on
the CPU state

• In Popek and Goldberg’s model, privilege level or
accessible memory

• In real systems, things are more complex...

Popek & Goldberg Requirements

Virtualization Technologies Virtual Machines

A VMM can be easily and efficiently implemented if the
set of sensitive instructions is a subset of the privileged
instructions

• Intuition: all the “problematic” instructions cause an
exception if executed with low privilege level

• Hence a privileged VMM can intercept them by
executing the guest as unprivileged!!!

• More formally, instructions executed in user mode
either:

• Generate a result that does not depend on the
“CPU state”...

• ...Or generate an exception!

Real CPUs vs Popek & Goldberg

Virtualization Technologies Virtual Machines

• Do real CPUs satisfy Popek & Goldberg
requirements?

• Some of them do... Mainly by IBM

• Other CPUs did not initially comply with the
virtualization requirements

• Motorola 68000: unprivileged instruction able to
read the whole status register

• Fixed in 68010

• ARM: some sensitive unprivileged instructions
• Intel x86: plenty of sensitive unprivileged

instructions
• MIPS had issue too... Fixed in Release 5 (2012)

Intel x86 vs Popek & Goldberg

Virtualization Technologies Virtual Machines

• Original x86 architecture: plenty of sensitive
unprivileged instructions

• Mainly related to the accessibility of status flags
and to the privilege levels bits in segment
registers

• S{GDT, IDT, LDT, MSW}
• PUSHF and POPF

• LAR, LSL, VERR, VERW
• PUSH, and POP with segment registers
• ...

Instructions Accessing Special Registers

Virtualization Technologies Virtual Machines

• GDTR, LDTR and IDTR: registers pointing to
descriptor tables (data structures controlling the
CPU operation

• SGDT, SLDT and SIDT allow to read the content of
these registers

• Sensitive instructions!
• A guest OS can use them to know the host

descriptor tables...

• Allowed in user mode (ring 3 - low privilege level)
without raising exceptions!

• SMSW allows to read the machine status word (part of
cr0)

• Sensitive too... And still not privileged!

PUSHF and POPF

Virtualization Technologies Virtual Machines

• Flags register: contains sensitive information, such
as the interrupt flag

• PUSHF: pushes the flags register on the stack

• Can be used to know the state of the interrupt
flag

• Does not generate exceptions...

• POPF: pops the flags register from the stack

• Could be used to set / reset the interrupt flag???
• If executed from ring 3, the state of if is not

changed, but no exception is generated!!!

Instructions Accessing the Privilege Level

Virtualization Technologies Virtual Machines

• LAR, LSL, VERR and VERW play with the privilege
level of a segment (least significant 2 bits of the
segment descriptor)

• Allow to read the privilege level of a segment
• Allow to check if a segment can be accessed

from current privilege level
• ...

• Again, no exception is generated

• A guest OS can easily know the host segments
• A guest OS kernel can know that it is not running

in ring 0
• ...

PUSH / POP with Segment Registers

Virtualization Technologies Virtual Machines

• PUSH and POP can be used with segment registers
• Segment register: contain a segment descriptor

• Two rightmost bits: protection level for the
segment

• Can easily leak from host to guest!!!

• Similar issues with segment registers in other
instructions

• STR

• MOVE

• CALL FAR / INT FAR

• ...

Example: POPF

Virtualization Technologies Virtual Machines

movl $0, %eax
pushl %eax
popf

• Tries to load “0” in the flags register
• The flags register contains the interrupt flag⇒ clear

the interrupt flag!

• Clearly not possible at low privilege level (ring 3)
• The interrupt flag (and other flags) is not affected

by POPF at ring 3

• No exception is generated⇒ the VMM cannot know
that the guest is trying to clear if

A Dirty Workaround

Virtualization Technologies Virtual Machines

• Does this mean that VMM / hypervisors could not be
implemented on x86?

• VMWare proved the opposite...

• Notice: Popek and Goldberg say that a VMM cannot
be easily and efficiently implemented

• If we accept complications and performance loss,
we can work around the issue...

• Idea: replace all the sensitive unprivileged
instructions with something that generate an
interrupt / exception!!!

• VMWare & friends used variations of this idea...
• Possibly patented?

The ARM Architecture

Virtualization Technologies Virtual Machines

• ARM: RISC CPU (32-bit instructions, 16 registers, ...)
with pragmatic design

• Currently one of the major players in embedded
systems

• Many different versions of the ARM core

• Let’s consider ARM v7

• Multiple privilege levels: user (USR), system (SYS),
supervisor (SVC), interrupt (IRQ), fast interrupt
(FIQ), abort (ABT) and undefined (UND)

ARM vs Popek & Goldberg

Virtualization Technologies Virtual Machines

• Original ARM: some sensitive unprivileged
instructions

• As for x86, mainly related to accessibility of the
CPU state (status flags and other)

• CPU state:

• Currently Active Processor Status Register
(CPSR), saved in SPSR when switching from user
mode to a privileged mode

• Some coprocessors (example: CP15 - system
coprocessor - controlling caches and similar)

• ...

Example: Accessing the PSR

Virtualization Technologies Virtual Machines

• CPS modifies the CPSR

• Similar to x86 flags register: can disable
interrupts, etc...

• Obviously, can be done from a privileged mode
only!

• If executed with low privilege level (user mode), does
nothing!

• Does not trap!!!

• So it is control sensitive (can disable interrupts),
behaviour sensitive (its behaviour depends on the
privilege level) and unprivileged!

ARM Sensitive Unprivileged Instructions

Virtualization Technologies Virtual Machines

• ARM handling of the PSR→ very similar to x86
handling of flags register

• Unprivileged instructions can read it

• Access to interrupt flag and other sensible
information (behaviour sensitive)

• Access to the privilege level (that is part of
PSR)← similar to x86 issues with segment
registers

• Unprivileged instructions can try to write it
without generating exceptions!

• Looks like ARM “inherited” from x86 some of the
issues that make it non-compliant with Popek &
Goldberg requirements

Virtual Memory

Virtualization Technologies Virtual Machines

• Popek and Goldberg considered a very simple
model of virtual memory

• Segmented architecture with only one segment
• If V A > limit, memory fault (exception)
• Otherwise, PA = V A+ base

• Paging can also be supported, if P&G requirements
are met and the VMM can intercept page faults

• The VMM knows when the guest accesses the
page table register

• The VMM knows when the guest causes a page
fault

• The VMM can know when the guest accesses
the page table

Virtualized Paging

Virtualization Technologies Virtual Machines

• The guest page table is not the “real” (host) page
table

• The VMM can intercept accesses to the page
table register...

• The guest can freely modify its “virtualized page
table”

• Without even knowing that it is not the real page
table!

• When the guest tries to use some of the mappings it
created, a host page fault is generated!

• The VMM can handle it adding a proper mapping
in the host page table

Example - 1

Virtualization Technologies Virtual Machines

1. The guest sets the page table register (example:
cr3) to some value

• Exception→ the VMM intercept the write
• Now the VMM knows where the guest page

table is
• If the guest tries to read the page table register,

the read is intercepted by the VMM, that returns
this value

• The host page table is not affected

2. The guest modifies its page table mapping address
V A1 into PA1

• Nothing happens in the VMM / host

Example - 2

Virtualization Technologies Virtual Machines

3. The guest accesses V A1

• V A1 is not mapped in the “real” page table⇒
page fault!

4. The VMM handles the page fault

• Look at the guest page table
• Find mapping for V A1

• Create appropriate mapping in the host page
table

5. The guest access to V A1 completes without issues

• Technique sometimes known as “shadow paging”

Shadow Paging - 1

Virtualization Technologies Virtual Machines

• A “shadow page table” is used for converting guest
VA into host PA

• The guest page table is not really used by the
MMU!!!

• Used only by the VMM to update the shadow
page table

• The VMM handles page faults

• If a VA is not mapped in the guest page table,
page fault forwarded to the guest

• Otherwise, used to update the shadow page table

• A guest memory access can result in 2 page faults!!!

Shadow Paging - 2

Virtualization Technologies Virtual Machines

• The VMM can detect accesses to the guest page
table, and update the shadow page table
immediately

• Avoid “lazy behaviour”
• Can avoid the double page fault...
• ...At the cost of introducing other page faults!
• More complex code

• In any case, huge overhead!!!

• Can we do better?
• Not without paravirtualization or hardware

support!

Hardware Support for Page Table Virtualization

Virtualization Technologies Virtual Machines

• In non-virtualized CPUs, the MMU translates VAs to
PAs

• Translation performed in hw→ fast, efficient
• TLB-like caching tricks to improve performance

• What to do in virtualized CPUs?

• Additional level of indirection: VA→ PA→ MA
(Machine Address)

• VA and PA are guest addresses, MA is a host
address

• The MMU uses two page tables: guest page table
(VA→ PA) and host page table (PA→ MA)

• Can use TLB-like caches and trickery, etc...

Extended / Nested Page Tables

Virtualization Technologies Virtual Machines

• Hardware feature provided by the major CPU
manufacturers

• Intel: Extended Page Tables (EPT)
• AMD: Nested Page Tables (NPT)
• ARM has a similar thing, too...

• Different naming, small differences, similar concepts

• The VMM can setup a Nested / Extended page
table to convert guest PAs in host MAs

• The guest can handle its page table (no need to
intercept accesses to the guest page table!)

• The VMM just needs to update its extended page
table when a guest tries to access a PA not
mapped in MA

Popek and Goldberg’s Virtualization

Virtualization Technologies Virtual Machines

• Basically, trap and emulate

• Execute guest code at low privilege level
• Execution of privileged instructions causes

exceptions / faults
• The hypervisor running at high privilege level can

emulate such instructions (exeption handler)

• Works if all sensitive instructions are privileged

• For some architectures (x86, ARM, ...) this
requirement is not satisfiled

• Hardware extensions for virtualization

• Do not consider devices (interrupts), paging, etc...

Hardware Assisted Virtualization

Virtualization Technologies Virtual Machines

• Needed if the original hw architecture is not
virtualizable...

• ...Or to improve performance
• Paging support, interrupt virtualization, ...

• Must somehow keep compatibility with the original
hw architecture

• First idea: introduce a new privilege level

• Hypervisor privilege level, more privileged than
system (kernel)

• All sensitive instruction trap to hypervisor level

Hypervisor Privilege Level

Virtualization Technologies Virtual Machines

• Privilege level -1 (privilege level 0 is kernel)
• Designed to comply with Popek and Goldberg’s

requirements
• Advantage: trap and emulate can be implemented!

• Writing simple hypervisors is easy

• But there are some disadvantages...

• The hypervisor execution environment is different
from the kernel’s one

• Difficult to re-use existing kernel code,
problem for hosted hypervisors

• Every sensitive instruction is emulated

• Exception / trap / VM exit→ overhead!

Beyond Popek and Goldberg

Virtualization Technologies Virtual Machines

• Should we emulate in software every sensitive
instruction?

• If the hardware “just complies” with Popek and
Goldberg requirements, yes!

• But the hardware can do better...

• Idea: keep a copy of the CPU state, and allow the
guest instructions to access the copy

• So, we do not need to emulate all of them!
• The CPU in a “special execution mode” will not

access the real state, but only the shadow copy!
Without the hypervisor intervention

• Two modes of operation: one for the host and one for
the guests

Shadow CPU State

Virtualization Technologies Virtual Machines

• Host execution mode: the “real CPU state” is
accessed

• Can be identical to a CPU without virtualization

• Guest execution mode: the “shadow copy” is
accessed (one copy per guest)

• Data structure in memory, containing a private
copy of the CPU state

• The guest can access it without compromising
security and performance

• The hypervisor can access / modify / control all of
the copies

• Advantage: performance
• Disadvantage: much more complex to use / program

Intel VT-x

Virtualization Technologies Virtual Machines

• Intel VT-x technology follows the second approach
for hw assisted virtualization (shadow guest state)

• Distinction between “root mode” and “non-root
mode”

• Both the two execution modes have the
traditional intel privilege levels

• In root mode, the CPU is almost identical to a
“traditional” intel CPU

• In non-root mode, the shadow guest state is stored
in a Virtual Machine Control Structute

• The VMCS actually also contains configuration
data and other things

Using Intel VT-x

Virtualization Technologies Virtual Machines

• First, check if the CPU supports it

• Use the cpuid instruction to check for VT-x
• Access a machine specific register to check if

VT-x is enabled

• If it is not, try to enable it - if the BIOS did not
lock it

• Then, initialize VT-x and enter root mode

• Set a bit in cr4

• Assign a VMCS region to root mode
• Execute vmxon

• Now, the difficult part begins...

Creating VT-x VMs

Virtualization Technologies Virtual Machines

• Once in root mode, it is possible to create VMs...

• Allocate a VMCS for the VM
• Assign it to the VM (vmptrld instruction)
• Configure the VMCS
• Start the VM (vmlaunch instruction)

• VMCS configuration: host / guest state and control
information)

• Guest state: initialization of the “shadow state”
for the guest

• Host state: CPU state after VM exit
• Control: configure which instructions cause VM

exit, the behaviour of some control registers, ...

VMCS Setup - I

Virtualization Technologies Virtual Machines

• Configuring the guest state, it is possible to execute
real-mode, 32bit or 64bit guests, controlling paging,
etc...

• It is possible to configure an inconsistent guest
state

• vmlaunch will fail

• Control information: VM exits (which instructions to
trap), some “shadow control registers”, ...

• Example: guest access to cr0

• Possible to decide if the guest “sees” the host
cr0, the guest cr0, or some “fake value”
configured by the hypervisor

• This is configurable bit-per-bit

VMCS Setup - II

Virtualization Technologies Virtual Machines

• VMCS configuration and setup is not easy

• Also, requires to know a lot of details about the
CPU architecture

• Starting a VM (even a “simple” one) requires some
work!

• I skipped the details about nested page tables...

• On the other hand, it is easier to build hosted
hypervisors

The Kernel Virtual Machine

Virtualization Technologies Virtual Machines

• Kernel Virtual Machine (kvm): Linux driver for VT-x

• Actually, it also supports AMD’s SVM

• Hides most of the dirty details in setting up a
hardware-assisted VM

• Also checks for consistency of the guest state,
etc...

• Started as an x86-only driver, now supports more
architectures

• With some “tricks”, for example for ARM

• Accessible through a /dev/kvm device file

• Allows to use the “standard” UNIX permission
management

Using kvm

Virtualization Technologies Virtual Machines

• First, check if the CPU is supported by kvm

• Open /dev/kvm

• This also checks for permissions

• Then, check the kvm version

• Use the KVM GET API VERSION ioctl
• Compare the result with KVM API VERSION

• Now, create a VM (KVM CREATE VM ioctl)

• Without memory and virtual CPUs
• Memory must be added later

• KVM SET USER MEMORY REGION ioctl

• Virtual CPUs must be created later
• KVM CREATE VCPU ioctl

kvm Virtual CPUs

Virtualization Technologies Virtual Machines

• Created after creating a VM, and associated to it

• Allow to create multi-(v)CPU VMs

• After creating a virtual CPU, its state must be
initialized

• Allow to start VMs in real-mode, protected mode,
long mode, etc...

• Done by setting registers and system registers
(KVM {GET,SET} REGS and
KVM {GET,SET} SREGS ioctls)

• Interaction through memory region shared between
kernel and application (mmap())

Virtual CPU Setup

Virtualization Technologies Virtual Machines

• Before starting a VM, the state of each virtual CPU
must be properly initialized

• RM, 32bit PM (with or without paging), 64bit “long
mode” (paging is mandatory), ...

• Properly initialize some control registers (cr0,
cr3 and cr4, ...)

• In PM, setup segments

• No need to setup a GDT, kvm can do it for
us!!!

• Page tables configuration

• kvm checks the consistency of this configuration

• Example: if we configures segments, PM must
be enabled in cr0

Running the VM

Virtualization Technologies Virtual Machines

• A thread for each virtual CPU
• Loop on the KVM RUN ioctl

• The ioctl can return because of error

• Check for EINTR or EAGAIN

• Or because of a VM exit (KVM EXIT)

• Check the exit reason (KVM EXIT xxx)...
• ...And properly serve it!

• Virtual CPU execution can be interrupted by signals
• Virtual devices implemented serving I/O exits or

accesses to unmapped memory

	Virtual Machine Abstraction
	Virtual Machine Implementation
	Implemented Abstraction
	Implementing a Language
	Software Implementation
	Pure Interpreters
	Pure Compilers
	Hybrid Implementation
	CPU Emulators
	Interpreting CPU Instructions
	Compiling Blocks of CPU Instructions
	Qemu TCG
	CPU Virtualization
	The Monitor / Hypervisor
	Direct Execution of Untrusted Guest Code
	Guest Code at Low Privilege Level
	More Formal Definitions: Popek and Goldberg
	Privileged and Sensitive Instructions
	Sensitive Instructions
	Popek & Goldberg Requirements
	Real CPUs vs Popek & Goldberg
	Intel x86 vs Popek & Goldberg
	Instructions Accessing Special Registers
	PUSHF and POPF
	Instructions Accessing the Privilege Level
	PUSH / POP with Segment Registers
	Example: POPF
	A Dirty Workaround
	The ARM Architecture
	ARM vs Popek & Goldberg
	Example: Accessing the PSR
	ARM Sensitive Unprivileged Instructions
	Virtual Memory
	Virtualized Paging
	Example - 1
	Example - 2
	Shadow Paging - 1
	Shadow Paging - 2
	Hardware Support for Page Table Virtualization
	Extended / Nested Page Tables
	Popek and Goldberg's Virtualization
	Hardware Assisted Virtualization
	Hypervisor Privilege Level
	Beyond Popek and Goldberg
	Shadow CPU State
	Intel VT-x
	Using Intel VT-x
	Creating VT-x VMs
	VMCS Setup - I
	VMCS Setup - II
	The Kernel Virtual Machine
	Using kvm
	kvm Virtual CPUs
	Virtual CPU Setup
	Running the VM

