
Multi-Processor Real-Time

Virtual Machines

Luca Abeni

luca.abeni@santannapisa.it

March 30, 2020



Multi-CPU VMs

Virtualization Technologies Multi-Processor Real-Time VMs

• What about multiple CPUs?

• Much more complex problem...
• How to schedule the VMs on multiple CPUs?
• Which local scheduler for multi-CPU VMs?

• How to model multi-CPU VMs?

• Simplest (but pessimistic) solution: a supply
function per CPU

• How to perform the schedulability analysis?

• Depends on the (local and/or root) scheduler

• Multi-processor scheduling strategies: global vs
partitioned



Multi-CPU Schedulers

Virtualization Technologies Multi-Processor Real-Time VMs

• Root scheduler model:

• Multi Supply Function, Multi-Processor Resource
model (MPR), Parallel Supply Function (PSF), ...

• MSF: Pessimistic, because the worst cases often
cannot happen simultaneously

• MPR: Again, pessimistic (does not specify how
the runtime is distributed between cores)

• PSF: much less pessimistic, but difficult to use

• MPR is strictly tied to global scheduling in the guest
• PSF is much more generic...
• What about MSF? Depends on the local scheduler



MSF And the Guest Scheduler

Virtualization Technologies Multi-Processor Real-Time VMs

• MSF supports both global scheduling and
partitioned scheduling in the guest

• Global EDF (or Global FP) analysis...
• Compute a (pessimistic) workload and compare it

with the multi supply function

• Partitioned scheduling in the guest is also possible

• Consider the tasks assinged to a virtual CPU...
• ...Compute their dbf (or workload)...
• ...And compare it with the sbf of the virtual CPU!!!

• This is all cool, but... What does “global scheduling”
or “partitioned scheduling” mean?

• Let’s see... Multi-processor real-time scheduling in
less than 10 slides!



Multiprocessor Scheduling

Virtualization Technologies Multi-Processor Real-Time VMs

• UniProcessor Systems

• A schedule σ(t) is a function mapping time t into
an executing task σ : t→ T ∪ {τidle} where T is
the set of tasks running in the system

• τidle is the idle task

• For a multiprocessor system with M CPUs, σ(t) is
extended to map t in vectors τ ∈ (T ∪ {τidle})

M

• Scheduling algorithms for M > 1 processors?

• Partitioned scheduling
• Global scheduling



The Quest for Optimality

Virtualization Technologies Multi-Processor Real-Time VMs

• UP Scheduling:

• N periodic tasks with Di = Ti: (Ci, Ti, Ti)
• Optimal scheduler: if

∑ Ci

Ti

≤ 1, then the task set
is schedulable

• EDF is optimal

• Multiprocessor scheduling:

• Goal: schedule periodic task sets with
∑ Ci

Ti

≤M

• Is this possible?
• Optimal algorithms



Partitioned Scheduling - 1

Virtualization Technologies Multi-Processor Real-Time VMs

• Reduce σ : t→ (T ∪ {τidle})
M to M uniprocessor

schedules σp : t→ T ∪ {τidle}, 0 ≤ p < M

• Statically assign tasks to CPUs
• Reduce the problem of scheduling on M CPUs to

M instances of uniprocessor scheduling
• Problem: system underutilisation

CPU CPU CPU CPU

M



Partitioned Scheduling - 2

Virtualization Technologies Multi-Processor Real-Time VMs

• Reduce an M CPUs scheduling problem to M single
CPU scheduling problems and a bin-packing
problem

• CPU schedulers: uni-processor, EDF can be used
• Bin-packing: assign tasks to CPUs so that every

CPU has load ≤ 1

• Is this possible?

• Think about 2 CPUs with
{(6, 10, 10), (6, 10, 10), (6, 10, 10)}



Global Scheduling

Virtualization Technologies Multi-Processor Real-Time VMs

• One single task queue, shared by M CPUs

• The first M ready tasks are selected
• What happens using fixed priorities (or EDF)?
• Tasks are not bound to specific CPUs
• Tasks can often migrate between different CPUs

• Problem: schedulers designed for UP...
M

CPU CPU CPU CPU

{M



Global Scheduling - Problems

Virtualization Technologies Multi-Processor Real-Time VMs

• Dhall’s effect: U lub for global multiprocessor
scheduling can be 1 (for RM or EDF)

• Pathological case: M CPUs, M + 1 tasks. M
tasks (ǫ, T − 1, T − 1), a task (T, T, T ).

• U = M ǫ
T−1 + 1. ǫ→ 0⇒ U → 1

• Global scheduling can cause a lot of useless
migrations

• Migrations are overhead!
• Decrease in the throughput
• Migrations are not accounted for...



Global Scheduling for Soft Tasks

Virtualization Technologies Multi-Processor Real-Time VMs

• Dhall’s Effect→ global EDF and global RM have
U lub = 1

• With U > 1, deadlines can be missed
• Global EDF / RM are not useful for hard tasks

• However, global EDF can be useful for scheduling
soft tasks...

• When U ≤M , global EDF guarantees an upper
bound for the tardiness!

• Deadlines can be missed, but by a limited
amount of time



Multi-Core Root and Local Schedulers

Virtualization Technologies Multi-Processor Real-Time VMs

• Two different cases: multiple physical CPUs and
multiple virtual CPUs

• The host has multiple CPUs / cores: global or
partitioned root scheduler

• The VM is composed by multiple (virtual) CPUs /
cores: global or partitioned local scheduler

• Root scheduler: using a global or partitioned
approach only changes the admission test

• Partitioned scheduler: M instances of
uni-processor admission test

• Global scheduler: more complex admission test
(multi-CPU TDA)

• Local scheduler: things are more complex...



Multi-Core Scheduling in the Guest

Virtualization Technologies Multi-Processor Real-Time VMs

• Guest scheduler (local scheduler): once a VM /
component has been selected by the root scheduler,
select a component’s task

• If the component runs on multiple (virtual) CPUs,
can use a partitioned or global approach...

• Partitioned scheduling in the guest is easy

• Every (virtual) CPU has its sbf; use it for
schedulability analysis

• Global scheduling: on a physical machine, the M

highest priority tasks are scheduled

• VM: the m′ highest priority tasks of the guest
must be scheduled on physical CPUs

• m′: number of scheduled virtual CPUs



Global Scheduling in the Guest

Virtualization Technologies Multi-Processor Real-Time VMs

• Assume a component is scheduled on 2 virtual
CPUs...

• ...And has 3 fixed priority ready tasks
• The guest/local scheduler selects the 2 highest

priority tasks and schedules them

• Now, assume that the root scheduler schedules
one of the 2 virtual CPUs and preempt the other
one...

• What happens if the guest schedules the highest
priority task on the virtual CPU that is not
scheduled???

• The guest/local scheduler must be aware of what the
root scheduler is doing!!!

• If it is not, use partitioned scheduling in the guest!



Simpler Example

Virtualization Technologies Multi-Processor Real-Time VMs

• Example to understand the issue:

• Real-time tasks τ1 = (60, 100), τ2 = (10, 200)
• 2 vCPU threads, with (runtime,period) = (90, 100)

and (40, 100)
• PSF says the tasks are schedulable

• Scheduling τ1 on vCPU 1 and τ2 on vCPU 2, all
deadlines are respected...

• ...But if τ1 is scheduled on vCPU 2, it misses
deadlines!

• The guest scheduler must know the runtime and
period associated to each virtual CPU

• Or, it must be informed when the runtime of a
virtual CPU has been consumed!



Root Scheduler in Hypervisors

Virtualization Technologies Multi-Processor Real-Time VMs

• Bare-metal hypervisor: implements a vCPU
scheduler

• Example: Xen provides an “RTDS” scheduler
(deferrable server)

• Hoste hypervisor: use the host kernel scheduler

• Example: using KVM, QEMU creates a thread for
each virtual CPU (vCPU thread)

• The SCHED DEADLINE scheduling class can be
used as a periodic server

• Not possible to use a global scheduler in the guest
• What to do if there is no scheduler (OS-level

virtualization, etc...)?



OS-Level Virtual Machines

Virtualization Technologies Multi-Processor Real-Time VMs

• Do not virtualize the hardware, but the OS/kernel

• Host kernel: virtualize its services to provide
isolation among guests

• Based on control groups (cgroups) and
namespaces

• namespaces: isolate and virtualise system
resources

• cgroups: limit, control, or monitor resources used
by groups of tasks

• No guest kernel⇒ no separate local scheduler
• No vCPU thread to be scheduled

• What to schedule? Containers/groups of tasks→
cgroups



Container-Based Virtual Machines

Virtualization Technologies Multi-Processor Real-Time VMs

• Modify SCHED DEADLINE to schedule groups of
tasks (cgroups)

• Tasks inside the group: fixed priority scheduling
• Based on Linux containers← modifications of

the control groups scheduler for real-time tasks
• Can be used with lxc, Docker, etc...

• Reuse SCHED DEADLINE code and control groups
interface

• Plug SCHED DEADLINE (hard CBS algorithm) in
real-time control groups



Container-Based Real-Time Scheduling — 1

Virtualization Technologies Multi-Processor Real-Time VMs

• Result: scheduling hierarchy

• SCHED DEADLINE (CBS) as a root scheduler
• Fixed priorities as a second level scheduler

• Associate runtime and period to each virtual CPU of
the VM

• No runtime migration
• Can use cpusets to control the number of virtual

CPUs

• Real-Time virtual machine implementation based on
containers!

• Supports both partitioned and global scheduling



Container-Based Real-Time Scheduling — 2

Virtualization Technologies Multi-Processor Real-Time VMs

• Supports multiple CPUs

• For the moment, same runtime / period on all the
CPUs

• Can be easily fixed / improved

• One single (host) scheduler: can support global
(fixed-priority) scheduling in the guest

• No need to implement communication between
two different schedulers

• When the runtime of a vCPU is 0, the scheduler
can migrate tasks (push)



Implementation

Virtualization Technologies Multi-Processor Real-Time VMs

• Linux scheduling class: selects entities

• Scheduling entities associated to tasks
• SCHED DEADLINE→ dl entities

• Associate dl entities to queues of fixed priority tasks
(rt runqueues)

• A dl entity / rt runqueue per virtual CPU
• When the dl entity is selected, get the highest

priority task from the rt runqueue



Scheduling Hierarchy

Virtualization Technologies Multi-Processor Real-Time VMs



Experimental Comparison

Virtualization Technologies Multi-Processor Real-Time VMs

• VM with 4 virtual CPUs

• Runtime 10ms and period 100ms on each virtual
CPU

• CPU hungry real-time task in the guest

• kvm-based VM: the task only executes for 10% of
the CPU time on one core

• lxc-based VM: the task only executes for 10% of
the CPU time on all the 4 cores

• Because with kvm the guest has no way to know
when the virtual CPU runtime is consumed (and to
migrate the task)



Combining KVM and cgroup Scheduling

Virtualization Technologies Multi-Processor Real-Time VMs

• How to use global guest schedulers in KVM-based
VMs?

• Scheduler para-virtualisation: not so easy in this
case...

• Avoid invasive changes and reduce the overhead

• Idea: try to combine KVM vCPU scheduling with
real-time control groups

• Schedule kvm vCPU threads in a control group
• Hierarchical container-based scheduler for the

control group
• Need to pass information about thread priorities

from guest to host


	Multi-CPU VMs
	Multi-CPU Schedulers
	MSF And the Guest Scheduler
	Multiprocessor Scheduling
	The Quest for Optimality
	Partitioned Scheduling - 1
	Partitioned Scheduling - 2
	Global Scheduling
	Global Scheduling - Problems
	Global Scheduling for Soft Tasks 
	Multi-Core Root and Local Schedulers
	Multi-Core Scheduling in the Guest
	Global Scheduling in the Guest
	Simpler Example
	Root Scheduler in Hypervisors
	OS-Level Virtual Machines
	Container-Based Virtual Machines
	Container-Based Real-Time Scheduling — 1
	Container-Based Real-Time Scheduling — 2
	Implementation
	Scheduling Hierarchy
	Experimental Comparison
	Combining KVM and cgroup Scheduling

